THE INCRUSTATION OF BOILERS
 [Condensed from Engineering.]

It is somewhat curious that while the complaints of incon venience resulting from the incrustation of boilers are so
numerous, the attempts to avoid those inconveniences by providing boilers with pure water should be so few. Boiler owners are ready enough to patronize patent fluids, compositions, and a variety of nostrums having for their object the prevention of incrustation, bút we rarely find efficient appliances in use for purifying the water before it enters the boiler, and thus rendering such doctoring as we have just referred to unnecessary. It must not be supposed, from what we have just said, that we object in toto to the employment of chemical means for preventing incrustation; on the other hand, we believe that such means may be employed with great advantage in a vast number of. cases, but we consider, first, that chemical ""anti-incrustators" should not be applied indiscriminately and without a knowledge of the impurities which it is desired to remove; and, second, that as far as possible the purification of the feed water should be effected before it enters the boiler, and not in the boiler itself.

Many of our manufacturing towns are, as is well known, very badly off for water available for use in boilers, and pre eminent amongst these towns is Oldham. Oldham stands on elevated ground, and is supplied with water conveyed $\stackrel{a}{ }$ considerable distance from boggy ground at a higher level, and the supply is, moreover, so limited that the foul water from drains has to be used for boilers and for condensing purposes. Under these circumstances it has, of course, been necessary to provide means for purifying the water. In the first place, to make the water fit for use for condensing purposes, it is made to pass in succession through three settling reservoirs, the second reservoir receiving the overflow from
the first, and so on. The injection water is taken from the the first, and so on. The injection water is taken from the
last reserveir and the waste water from the hot well flows last reserveir and the waste water from the hot well flows
back into the second. The boilers are fed from the hot well, the feed being filtered on its way to the boilers. In one establishment the filters consist of a number of vertical cast-iron vessels strong enough to stand an internal pressure of 25 lbs . per square inch more than the boiler pressure; these vessels being each provided, at about the middle of its hight, with a perforated plate or grating, on which a layer of calcined bones, about 3 ft . in thickness, is placed. The water is forced by the feed pump up through these bones,
and is led off from the top of the filter to the boiler. The and is led off from the top of the filter to the boiler. The
water in the hot well is so filthy that the bones become water in the hot well is so filthy that the bones become
choked with dirt in about half a day's working; and each filter is therefore cleansed twice a day-namely, during the dinner hour and at night-by blowing steam downwards through it. By this simple means the bones are thoroughly cleansed and the filters made ready for work again. The results obtained by the use of the plans we have described have been of a very satisfactory kind, and the whole arrangement is so simple as to commend itself at once to those suf fering from the use of very dirty water.
In the case of non-condensing engines an arrangement of feed-heater in addition to the filters is employed, so as to obtain a supply of hot clean water. For this purpose the
water is conveyed from the last settling reservoir into a covwater is conveyed from the last settling reservoir into a cov-
ered tank, 6 ft . deep by 6 ft . 3 in . wide, having the water level ered tank, 6 ft . deep by 6 ft . 3 in . wide, having the water level
regulated by a ball-cock, so that it is maintained 9 in . below the cover. At one end there is fixed on the cover a vertical cylindrical feed-water heater, 12 ft . high by 2 ft .6 in . in diameter, this heater being traversed by tubes, whilst at the opposite end of the cover stands a vertical pipe, 20 in . in
diameter, 30 ft . high, and open at the top. By means of a diameter, 30 ft . high, and open at the top. By means of a
circulating pump the water is lifted from the cistern and circulating pump the water is lifted from the cistern and
made to fall in a shower down the pipe just mentioned, meeting in its course the exhaust steam from the engines, which is made to pass down through the tubes of the feed heater, then over the surface of the water in the tank, finally rising up through the vertical pipe, to be met by the falling shower. By this arrangement the water in the tank is heated to about 170°, at which temperature it is taken off by the feed pump and forced, first through a bone filter, and then through the feed-water heater to the boiler, which it enters at a tempera-
ture of about 210°. By the employment of this arrapgeture of about 210°. By the employment of this arrange-
ment, an important saving has been effected in fuel and ment, an important saving has been effected in fuel and
labor, and the boiler, which formerly had to be cleaned out every week or fortnight, now has to be cleaned at holiday times only.
In many cases trouble is experienced from the presence of used for feeding boilers, and in such cases Clark's process for purifying the water might frequently be resorted to with ad vantage. It is very usual to speak of the presence of large quantities of carbonate of lime in water, but this is an error the carbonate of lime being almost insoluble, a fact on which Dr. Clark's process is founded. This process consists, as
many of our readers are no doubt aware, in treating the many of our readers are no doubt aware, in treating the
water containing the bicarbonate of lime which it is desired water containing the bicarbonate of lime which it is desired
to remove, with lime water, or a kind of milk of lime, the effect being that the lime thus added deprives the bicarbonate of a portion of its carbonic acid, thus converting it-and being itself also converted-into carbonate of lime, which, being almost insoluble, is deposited. The greater part of the lime will be deposited in the mixing tank; the water drawn
off may be subsequently filtered by passing it slowly upoff may be subsequently filtered by passing it slowly up-
wards through another tank partially filled with small pieces wards through another tank partially filled with small pieces
of coke. The coke is contained in a loose cylindrical casing within the tank, so that it can be conveniently renewed when clogged with lime. This apparatus has been at work over two years, and it has bcen found to be very effectual in keeping the boilcr clear of all hard scale.

Although, however, the adoption of such methods of purification as those above described will be found exceedingly beneficial in a vast number of cases, yet we believe that ultimately it will be acknowledged that the only true reme dy for bad water is the adoption of surface ondensers. In
applying surface condensers to land engines arrangements will in many cases have to be adopted differing greatly from those employed at sea. The condensing water available on land, in many instances is of such an impure kind that such condensers as are fitted to marine engines would be clogged
by it in less than a week. In these cases the condensers by it in less than a week. In these cases the condensers
should be so arranged as to permit of all parts being thor oughly accessible, and they should be made to stand rough work. Where the condensing water contains much floating matter, and where appliances for purifying it cannot conveniently be provided, evaporative surface condensers are particularly suitable, as they can be made without any passages to clog up, and with all the surfaces in contact witl the condensing water fully exposed at all times. Condensers of this class, in fact, have been far from receiving the atten tion to which their simplicity and the comparatively small amount of water with which they can be worked, entitle them. Probably the chief objections to them are their cost and the space they occupy; but the first can scarcely be considered excessive, when their advantages are taken into con sideration, and by a little management they can generally be arranged to occupy space which would not otherwise be
tírned to account. In instancount.
In instances where, from some cause or another, surfate condensers cannot be applied, and where, notwithstanding
bad water being used, elaborate arrangements for treating it bad water being used, elaborate arrangements for treating it
cannot be employed, attempts should still be made to cause the water to deposit the greater part of its impurities in a separate receiving vessel, in which the water may be heated under pressure, rather than in the boiler itself. The boiler should only be allowed to receive with the water such mat ters as cannot practically be removed elsewhere, and if this result were generally sought after, we should hear little of over-heating, distorted flues, and a host of other troubles which now annoy the boiler proprietor, to say nothing of the more serious failures which are but too frequently caused
by incrustation. by incrustation.

THE LAND OF FIRE AND ICE

Was there ever such an anomaly as the island of Iceland Geographically it belongs to the r estern continent, and yet historically and politically, it is a member of the Eastern. It
lies close under the Arctic circle, where winter prevails durlies close under the Arctic circle, where winter prevails dur-
ing three quarters of the year, and is surrounded by sea filled with icebergs; and yet boiling geysers and fountains of heated steam burst every where from its surface, while great volcanoes pour down into its valleys and upon its plains streams of molten lava. The nearest neighbors of the Icelanders are the Eskimos of Greenland; yet while the Eskimos are sunk to the nether level of ignorance, the Icelanders have raised themselves to an elevated plane of enlightenment. And so the wonderful island lies there, a link between
the two hemispheres; site where the most opposite of elethe two hemispheres; a site where the most opposite of ele-
ments, heat and cold, are constantly contending for sovereignty; the seat of a race of the highest civilization in close contact with a race of the lowest barbarism. Nor does this end the chapter of contradictions. Lying almost beyond the range of either animal or vegetable production, the island still yields commodities which many more favored localities cannot furnish. It rivals semi-tropical Italy in the value of mineral mineral waters, Scotland and Norway in the fertility of its
salmon fisheries, and annually produces, in proportion to its salmon fisheries, and annually produces, in proportion to its
population, three times the number of horses and sheep raised in our own State of New York. It exports several articles which are either found nowhere else, or, if found, are of greatly inferior quality, such as the down of the eider duck,
which makes its way to every palace and upon which the which makes its way to every palace, and upon which the heads of all the kings of the earth easily or uneasily lie, the feldspar so largely used in optical experiments, and that semi-carbonized wood, known as surtubrandur, which, as a material for the manufacture of furniture, equals the famous ebony of the tropics. A land of glaciers, and suffering keenly from the chill winds that blow off the icy shores of Greenland, Iceland's chief harbors are open all the year round, while those of the Baltic, far to the south, are frequently closed. A treeless country, its inhabitants often burn the costliest of woods-mahogany, rosewood, and Brazil woodwhich has been borne to them from the tropics, at no expense
for freight by the current of the Gulf Stream. A land where for freight, by the current of the Gulf Stream. A land where table growth, the lichen islandicus, which, in far richer countries, is accounted a luxury. A nation almost destitute of schools, all of its sons and daughters are tauglt to read and shools, all of its sons and daug
The history and philology of the island present features equally strange and striking. It is the smallest of all Teutonic communities, while its specch is the most ancient, and, grammatically, the richest of all the 'Teutonic dialects. In it are preserved the oldest poems, the oldest political orations, said, the feeblest of all Teutonic communities, yet it was the first to develop a republican system of government, the first o establish trial by jury, the first to compile codes of law. The colonization of the island furnished a parallel in the ninth century to the colonization of New England in the seventeenth, its pioncers seeking its barren shores for the
self-same reason that led the Puritans to the rock-bound coasts of Massachusetts and Comnecticat. Its stuydy sons helped to delay the fall of the Easterz Mmpire by enlisting
in the body guard of the Byzantine monarchs; took part, under Rurik, in the foundation of the Russian monarchy; took part, under Rollo, in the establishment of that Norman dynasty which subsequently conquered England; set up kingdoms, and left traces of their speech, in Ireland and Scotland; built churches and towns in Greenland; and preceded Columbus, by five hundred years, on the dreary, watery path which led to the mainland of America.
path which led to the mainland of America.
No nation so small as Iceland has se large a literature The number of printed books amounts to many thousands, and the number of unprinted works, preserved as manuscripts in the public libraries of Europe, is at least equally great. Nor is this literature, as is the case with many minor nationalities, and with most colonial communities, made up of translations, but is almost wholly composed of original works. With the exception of the Bible and a few theological works, Homer and one or two other classics, Milton, Klopstock, Pope, and portions of Shakespeare, Byron, and Burns, ery little of the literature of other nations has been translated into Icelandic. The modern literature, especially of this century, is rich in poetry and in poetical works,
The Icelandic throws a flood of light upon the history of the English language. In thcir early stages, so nearly connected were the two tongues that we can very well imagine an intelligent Anglo-Saxon and an intelligent Icelander making themselves mutually understood, with some little slowness and difficulty perhaps. At a later period the Icelandic greatly influenced the English, especially in its northern dialects, so that most of the dialectic words used by Burns are lects, so that most of the dialectic words used by Burns are guage. Yet, notwithstanding its importance to the English cholar, the Icelandic has hitherto been, to the great mass of students of English lineage, a sealed book. While the philologists of Scandinavia were making broad repu,tations by heir investigations in the old Northern domain, while the philologists of Germany were cleverly availing themselves of this field, the English knew so little of the harvest which was a waiting the reaper, that the number of men in England and America who had ever paid any attention to Icelandic might almost, until within the last decade, have been reckoned up on the fingers of a single man. But in England new era has dawned. The labors of Laing and Dasent and Thorpe in Icelandic literature are beginning to excite inter est in the Icelandic language, and a great impulse has lat terly been given to the new movement by the publication of
the first part of an excellent Icelandic-English lexicon the first part of an excellent Icelandic-Engl
through the agency of the University of Oxford.
But through it all, through the present days when its speech opens up a mine of wealth to the linguist of every Germanic tribe, as through those past days when its writers were the chroniclers of all the neighboring Germanic na tions, the venerable island floats upon the gray waters of the distantNorthern eea, the wonder alike of the naturalist and the philosopher: The former sees in it a display of nature' powers under forms which they nowhere else assume; the latter sees in it a nation, weak in numbers, maiutaining un changed for almost a thousand years, against obstacles never bofore surmounted by man, its language, its literature, and its customs.

The Prussian Percussion Fuse.
The percussion fuse used by the Prussian artillery consists of a small metal socket into which fits a metal striker, which is a nearly cylindrical piece of brass, having at one end a needle point. The socket with the striker in it is carried in the shell, being fixed in its place by means of a screv plug which screws into the nose of the shell. The screw plug is apped for the reception of a small detonator, which, however, is not screwed in until the shell is required to be used. The striker, being free to move forward by its own weight would, of course, be liable directly the detonating plug is crewed in, to cause an explosion by falling forward upon it, either by the accidental tilting forward of the head of the shell, or from the jar given in loading, or by the sudden movement of the parts at the moment of firing. To prevent this, a stout iron pin is passed through the head of the shell, and through the fuse between the striker and the detonator, preventing any contact between the two. The centrifugal force generated by the rotation of the shell throws out the pin immediately the shell has left the bore, and there is now nothing to prevent the striker from coming into contact with the detonator. But this it cannot do until something occur to suddenly check the flight of the shell-in other words, un'il the projectile impacts upon the ground or against some obstacle, such as a man's body, which will momentarily reduce its velocity. At that moment the striker falls forward, on the same principle and from the same cause as a bad rider is thrown over his horse's head when the beast stops sudden ly in its gallop. These fuses have been much extolled, and some writers have not hesitated to ascribe to them a great part of the successes of the Prussian artillery, yet, says the Pall Mall Gazette, they are open to many serious objections and very far from uniform or satisfactory in their action, even in peace time. The Belgians, who copy the Prussians very closely in their artillery matériel, use the Prussian percussion
fuse, and Capt. Nicaise says that out of 8,245 shells and fuse, and Capt. Nicaise says that out of 8,245 shells and
shrapnel fired with this fuse between 1863 and 1869 , there shrapnel fired with this fuse between 1863 and 1869 , ther action $=5.25$ per cer bursts $=1.5$ per cent; 43 ner cent being a total of 692 failures $=8.39$ per cent. Exception may also be taken to the employment of a fuse which necessitates the operation of fixing a detonator and pin at the moment of operation of fixing a detonator and pin at the moment of
firing-an operation which has to be very carefully per formed for fear of accidents. If in the hurry of action the pin should be omitted, or if it should fall out of the shell or if the man holding the shell and charged with the duty of
keeping the pin in ts place should happen to ta shot, an ae
cidental explosion, likely to be attended with fatal conse quences to the gun detachment, must also certainly result. Other reasons might be given for not accepting the high estimate of this fuse, which, on insufficient grounds, seems to have been hastily formed. That the fuses have done better than the exceedingly defective French time fuse, does not prove much. Nevertheless, it may be fully admitted that the percussion fuse problem is very far from having yet been satisfactorily solved by our artillerists. It is one of exceeding difficulty; and it is quite certain that if not solved in England, they are just as far or farther from daving satisfactorily solved it in Prussia. In France it seems to have been abandoned in despair, and Belgium can think of nothing better than following the Prussians.

The Catacoinbs of Rome

Few travelers come to Rome without making a visit to the Catacombs, although few penetrate far into those dark and intricate recesses. Their origin is unknown-at least, there are no authentic records of their excavation. The purpose for which they were last used-the burial of the Christian dead-does not necessarily indicate the purpose for which they were formed. It is probable that they were dug out in order to obtain, for building purposes, the volcanic stone and sand which underlie the whole Campagna; but when, or by sand which underlie the whole Campagna; but when, or by
whom, is not known. The excavations may have been com whom, is not known. The excavations may have been com-
menced before the time of the ancient Romans; but if so, menced before the time of the ancient Romans; but if so,
they were continued in their day, as they contained the material required for the construction of many of their works. It was taken out by quarrying or digging, leaving only enough to sustain the superincumbent mass of earth. They are of great extent, reaching in every direction as far as modern research has extended. The whole Campagna is honeycombed by thèm. Openings occur in various places, and accidents have not been uncommon, in which riders ove the Campagna have broken in and sustained severe injury They are regarded as so unsafe, that visitors are usually taken only through a limited portion of those connected with the Church of St. Sebastian on the Appian Way. The rock and earth are liable to fall. and sad indeed would be the fate of those who should be buried beneath the falling mass; and sadder, yet, of those whose retreat should be cut off, while thicy were left to wander hopelessly, until compelled by meniness and weakness to lie down and die. Several years ago, a selicol, consisting of a teacher and more than twenty boys, descended into this subterranean city of the ancient dead, but not one of them returned to tell what was their fate. The foll of the earth over one of the passages by which they had left thee main route, rendered their escape by the same way impossible; and although diligent search was made, nothing is known to this day of how or where in the vast labyrinth they met iheir death.
The peculiar interest attaching to these Catacombs is, that during the early ages of Christianity, in the times of perse cutions by the Roman Emperors, they were the resort of Christians who fled to these recesses for safety, and probably to some extent for worship.

The passages are very narrow, not more than three or four feet wide, and about six feet in hight. On each side and throughout their whole extent they are lined with niches, or shelves, cut into the wall one above another and usually fou or five in hight, in each of which there was just room for body to be laid lengthwise. The fronts of the niches wer closed with long slabs of terra cotta, cemented. Occasionally harble was used, with an inscription, containing some motto or symbol expressive of the wishes or hopes of the living for the dead. These niches are now all tenantles and open, but we could see where the dead had been repo ing. The inscriptions are preserved elsewhere as relics One of the long halls of the Vatican is lined with the ma bles taken from these tombs.
The Catacombs connected with the church of St. Agnese, in another part of the Campagna, are nearly in the state in which they were discovered. The excavations are much more regular and on a larger scale than those which we had previously seen. Instead of being more unsafe, as they are generally supposed to be, they are less liable to crumble and fall. The rock in which the excavations are made is more solid, allowing the passages to be cut with more exactness, and they run often to a great distance in a right line. The roofs are vaulted with regularity, and the sides cut perfectly square. The same niches occur as in the other Catacombs, and rise above one another to the number of five or six, but they have not been rifled excepting to remove the slabs and inscriptions. The bones of the dead by hundreds and even thousands are lying where they were deposited sixteen or eighteen centuries ago.
After walking for a long time through these halls, some seventy feet below the surface of the ground, and having entered sereral chambers painted rudely in fresco, we ascend ed to another story, but not to the light of day. These pas sages are generally two or three stories in hight, but seldom have any intercommunication. The air is exceedingly dry,
and the temperature higher than that of the air above, but and the temperature higher than that of the air above, but after a time it becomes stifling, although there is nothing unpleasant in other respects. It appears to be perfectly pure.
The inscriptions which are found upon the marble slabs with which the niches were closed, are an interesting study, and may be seen at any time in the main entrance to the museum of the Vatican. There are many pieces of rude sculpture in bas-relief, representing Scripture scenes, and generally those scenes which were most appropriate to the persecuted state of the early Christians. The three childre
in the fiery furnace, and Daniel in the lion's den, are fre quently represented. The baptism of Christ and various scenes in his life are sculptured in the same manner. The
dove, as an emblem of peace e_{1} occurs very often. I give the translation of a few as a specimen :
"Lannes, the martyr of Christ, rests here. He suffered nder Diocletian."
"In the time of the Emperor Adrian, Marius, a young military leader, who had lived long enough: with his blood he gave up his life for Christ. At length he rested in peace. The well-deserving, with tears and fears, erected this on the Ides of December, VI"
"Here lies Gordianus, deputy of Gaul, murdered with al his family for his faith. They rest in peace. Theophila, his maid, erected this."

In peace," and "In Christ," frequently occur upon the slabs which closed the graves.-N. Y. Observer.

PERPETUAL MOTION.
 NUMBER XI.

Fig. 24 shows a principle so often employed for the pro uction of self-moving machines that it ranks next to that of perpetually eccentric weights, in its delusive power upon minds of inventors. The attempt to compel a water whee o raise the water which drives it, is, in one form or other, per etually recurring in devices upon which our counsel and opinion is sought. The worst of the matter is, that in most Fig. 24.

cases our advice to drop such absurd projects is received as evidence of our want of sagacity and knowledge, and our would-be client becomes the dupe of some not over conscientious patent agent, who pockets 'his fee, and laughs in his sleeve at the greenness of the applicant.
The device illustrated is one submitted by one of these enthusiastic individuals who, without understanding the first principles of mechanics, believes he is about to revolutionize the industry of the world by his grand discovery; and as honor, and not pecuniary reward, is his object, he seeks to make publichis invention through the wide circulation of this journal. He is quite willing we should adversely criticise the device, because its merits are so great that no amount of skepticism, resulting from our blind prejudice, can, he hinks, influence candid minds against a principle so obviously sound and, sublimely simple. It is unnecessary for us to describe the device, as it explains itself. The inventor has not tried it to see whether it will work. What need, when anybody can see on paper that "it must go?"

Fig. 25.

Fig. 25 represents an attempt at securing the desired object by means of eccentric weights, kept so by means of an adless belt and pulleys, of which the inventor thus writes The annexed drawing shows how I have at length taken this enticing jilt (perpetual motion), though after a long and weary chase-

Through pleasants and delightrul fields,
Mongst quagmires, mosses, muirs, and marshes
Mongst quagmires, mossea, muira, and
Where deil or spunkie never scarce is!
By chance I happened on her den,
And took her where she didna ken.
A represents a wheel with twelve hollow mpokes, in each of ${ }_{\text {THEO. }}^{\text {yeeres. }}$. To the end of time may not weare these wheeles by
which there is a rolling weight or ball. B is a belt passing over two pulleys, C. There is an opening round the wheel from the nave to the circumference, so as to allow the belt to pass freely and to meet the weights. The weights are met
by the belt as the wheel revolves, and are raised from the circumference till they are at last brought close to the nave where they remain till, by the revolution of the wheel, they are allowed to roll out to the circumference. By this arrangement, the weights are, on one side of the wheel, always at the circumference, so that that side is more powerful than the other, which causes the wheel continually to revolve. D is the frame of the machine. The arrow points out the direcion in wich the whens.-Dixon Vallance, Liberton
In 1612 Thoma
In 1612, Thomas Tymme, Professor of Divinity, published a philosophical dialogue, in which he discourses of the perpetual motion invented by Cornelius van Drebble, a Dutchman, who was engineer to King James, in England.
Tymme's work is a small quarto. The author's name on the title papers occurs in the smallest type. It is repeated again in full-'Thomas Tymme'-both to the dedication "To the right Honourable Sir Edward Coke, Lord Chiefe Justice, \&c., \&c.," and also the Address to the Reader, which latter concludes:
And for that rare things move much, I have thought it pertinent to this Treatise, to set before thee a most strange
and wittie invention of another Archimedes which concerneth and wittie invention of another Archimedes which concerneth King's most royall hands, by Cornelius Drebble, of Alchmar in Holland, and entertained according to the worthinesse of such, a gift my paines herein bestowed and intended for thy profit and pleasure, if it seeme but as iron, yet let it serve for the Forge and Anvill of good conceit, if the discourse seeme rough, shadow it, I pray thee, with the curtaine of smooth excuse: \&c.
The work is divided into two parts, the first containing six, the second four chapters.
Chap. 3.-Concerneth the nature and qualitie of the earth: and the handling of a question whether the earth hath naturall motion or no.
Also herein is described' an Instrument of Perpetuall Mo-
tion, as stated in the list of Contents. tion, as stated in the list of Contents.
At page 56 commences chapter 3 , from which we extract the following:
Philadelph.-For as much as the Earth and Sea make Philadelph.-For as much as the Earth and Sea make
but one globous body united and combined together, I pray you describe the form vhereof to me.

This is explained by Theophrast-the dialogue occupying four pages-at last he says:

And to make plaine the demonstration unto you, that the Heavens move, and not the earth, I will set before you a memorable Modell and Patterne, respecting the motion mitation of Nature, by a gentleman of Holland, named Cornelius Drebble, which instrument is perpetually in motion without the meanes of Steele, Springs, and waights.
Phil.-I much desire to see this strange Invention. Therefore I pray thee, good Theophrast, set it here before me, and the use thereof.
TiEO.-It is not in my hands to show, but in the custody of King James, to whom it was presented. But yet behold description thereof here after fixed.
P? ?
Theo.-It representeth the Earth : and it containeth in the with body thereof divers wheels of brasse, carried about with moving, two pointers on each side of the Globe doe pro-
portion and shew forth the times of dayes, moneths, and portion and shew forth the times
yeeres, like a perpetuall Almanacke.
PHIL.-Both doth it also
PHil.-Both doth it also represent and set forth the motions fre Heavens?
First, the houres of forth these particulars of Celestiall motion. day to day continually. Secondly setting of the Sunne, from day to day continually. Secondly, hereby is to be seene,
what signe the Motion is in every 24 houres. Thirdly, in what degree the Sunne is distant from the Moone. Fourthly, how many degrees the Sunne and Moone are distant from us every houre of the day and night. Fifthly, in what signe of the Zodiacke, the sun is every Moneth.
Pril.-What doth the circumference represent, which com-Theo- the Globe about?
Theo.- That circumference is a ring of Cristall glass, which being hollow, hath in it water, representing the sea, which
water riseth and falleth, as doth the floud, and ebbe twice in 24 houres, according to the course of the and ebbe twice in where this instrument shall be placed, whereby is to be seene how the Tides keepe their course by day or by night.
Phil.-What meaneth the little globe'above the ring of the
Theo
THEO.-That little Globe, as it carrieth the forme of a moone cressent, so it turneth about once in a moneth, setting from the wane to the full, by turning round every moneth in the yeere.
Phil.-
Pril.- Can you yeeld me any reason to perswade me con
cerning the possibility of the perpetuity of this motion cerning the possibility of the perpetuity of this motion? Theo.- You have heard before that fire is the most active and powerful Element, and the cause of all motion in nature. twining of the elements, and therefore to the effecting of this great worke, he expracted a fierie spirit, out of the minerall matter, joining the same with his proper aire, which encluded in the Axeltree, being hollow, carrieth the wheeles, making a continuall rotation or revolution, except issue or vent be given to the Axeltree, whereby that imprisoned spirit may get forth. I am bold thus to conjecture, because I did at sundry times pry into the practise of this gentleman, with whom I
was very familiar. Moreover, when as the King, our Sovewas very familiar. Moreover, when as the king, our Sove-
raigne, could hardly beeleve that this motion should be perraigne, could hardly beeleve that this motion should be per-
petuall, except the misterie were revealed unto him: this petuall, except the misterie were revealed unto him: this
cunning Bezaleel, in secret manner, disclosed to his Majestie the secret, whereupon he applauded the rare invention. The fame hereof caused the Emperor to entreate his most excellent Majestie to licence Cornelius Bezaleel to come to his Court, there to effect the like Instruments for him, sending unto Cornelius a rich chaine of gold.
Phil.-It becometh not me to make question concerning the certaintie of that, which so mighty Potentates out of the
limity of their wisedomes have approved, yet me thinketh limity of their wisedomes have approved, yet me thinketh
that time and rust, which corrupteth and weareth out all earthly things, may bring an end to this motion in a few

