compose the levers at a right angle with the rod next to it. \mid mass. The laws of falling bodies will furnish the answer This lever is attached to the periphery of the wheel by the to our question.
hinge joint, B, provided with the shoulder, to prevent its falling into any other than a right line from the center of the circumference of the wheel. The levers are furnished at their outer extremities with a bucket, or receiver, the bottom of which is sufficiently broad to retain the ball, C. The balls remain in the buckets till the buckets come into the position of the lever, D, when they are expected to roll out of the buckets on to the inclined plane, and by their own gravity roll to the other end of the inclined plane, ready to be again taken into the buckets.

QUARTZ CRUSHER.

In machines designed for breaking stones, crushing ores, etc., simplicity is absolutely essential. Pride and poverty etc., simplicity is absolutely essential. Pride and poverty
are fully as congenial as rude work with complication in are fully as congenial as rude work with complication in
mechanism. The parts of such machines should therefore be few and massive, and be so put together thas even commo laborers may be able to keep them in running order.
Messrs. Varney \& Rix, of San Francisco, Cal., have pat ented a machine which seems, so far as simplicity is con cerned, to answer the requirements of the case.
Our engraving is a representation of this machine. The power is transmitted from cranks on the shaft of a heavy fly wheel through a system of powerful links, or toggle bar

to pivoted jaws, which thus approach each other with great force at each revolution of the fly wheel, compressing the quartz and thus crushing it. The general principle of the mastication of food by the jaws of animals is very nearly ap proached in this machine.
action of the reciprocating parts of steam en GINES, AND ITS INFLUENCE ON .THE PROBLEM OF HIGH PISTON-SPEED.
Read before the Polytechnic Club of the A meric
Your attention is invited to a proposition, which, on its bare statement, will probably strike many persons as absurd It is, that a reciprocating engine is, with respect to the line of centers, identical with a rotary engine ; reciprocation is, in the line of motion, identical with rotation; the reciprocating parts of an engine, at the instant when the direction of their motion is reversed, exert a force, which is precisely the same centrifugal force that would be exerted by them continually if they were revolving with the crank; so that reciprocation may properly be defined to be rotation in a straight line.
I am well aware that the doctrine that the reciprocating parts of an engine exert a force on the dead centers where they are at rest, when their motion in one direction has ceased and that in the opposite one has not yet begun, is rank heresy ; as much so as was once the assertion that the earth revolves on its axis. It is, however, equally true. The demonstration of it is quite simple, and I do not doubt that at every step I shall have your entire and cordial concurrence. If we find ourselves on ground not before trodden, we shall nevertheless be sure that it is firm and solid ground
It may be observed here, that the action which we are to investigate has no necessary connection with high piston-speed Although it is what makes rapid speed practicable, and al though a correct understanding of it wholly removes any theoretical objection to the employment of such speed, still it take place at all speeds, varying only in the amount of centrifu gal force developed, according to the law of central forces, namely : directly as the mass, directly as the diameter of the circle when the number of revolutions is constant, inversely as this diameter when the velocity is constant, and as the square of the speed in a given circle.
We know that the motion of a piston controlled by a crank is not uniform, but, commencing from a state of rest it becomes at the mid stroke slightly in excess of that of the crank-pin, and at the termination of the stroke has been reduced back to nothing. In giving the piston-speed of an engine, we always name its mean speed, found by multiplying the length of the stroke, in feet, into the number of strokes made per minute; but the speed attained at the middle of each stroke is about 57 per cent greater than this, having the same relation to it that the semi-circumference bears to th diameter of a circle.
Let us take, for illustration, the case of a horizontal en gine, of 16 in . diameter of cylinder, by 30 in . stroke, the re ciprocating parts of which weigh 1200 lbs ., and which makes $122 \cdot 3$ revolutions per minute. The mean piston-speed is $611^{\circ} 5$ feet per minute, while that reached at the middle of each stroke is 960 feet per minute, or 16 feet per second.
The first question requiring to be answered is: What is the amount of accelerating force, constantly exerted through a distance of 15 inches, that is required to impart to a body of 1200 lbs. weight a velocity of 16 feet per second? We
suppose the motion to be without friction, and are inquiring suppose the motion to be without friction, and are inquiring
only for the force required to overcome the inertia of the

The motion being horizontal, gravity has no effect, either to produce or to destroy it; but a force of 1200 lbs., equal to he weight of these parts, would, by being constantly exerted orizontally through a distance of 16.083 feet, give to them velocity of $32 \cdot 166$ feet per second, this being the velocity mparted by gravity to a falling body.
But what velocity would this force impart, by acting hrough a distance of $1 \cdot 25$ feet? The velocity acquired by body accelerated by a constant force, varies as the square roots of the distances through which the force acts. Thus, a falling body, to acquire a double velocity, must fall through our times the distance, and to acquire five-fold velocity, it must fall through twenty-five times the distance; and so the orce equal to their weight, acting through 1.25 feet, would mpart to the reciprocating parts a velocity of 8.968 feet per second.

$\frac{32.166 \times V 1.25}{V 16.083}=8.968$

But if 1200 lbs . will give a velocity of 8.968 feet per second, what force will be required to impart a velocity of 16 feet per second? The forces required to impart different velocities by acting through a given distance, must vary as the squares of the velocities,imparted. Thus, to give to a body in moving through a distance of 16.083 feet, a velocity of 64.332 feet per second, or double that which gravity would inpart, the accelerating force must be equal to four times its weight, and so the force required to impart to a body of 1200 lbs. weighta velocity of 16 feet per second by acting through los. weighta velocity of 10 feet per
a distance of 125 feet, is 3820 lbs .

$\frac{1200 \times 16^{2}}{8.068^{2}}=3.820$

We have thus completed the first step in our demonstraion. There can be no doubt that our piston, crbsshead and connecting rod have attained a velocity of 16 feet per second, that this velocity has been imparted to them in moving through a distance of 15 inches, and that they must have been accelerated by a force, supposing it to have been exerted constantly, of 3820 lbs
But it is obvious that the force accelerating the motion of piston cannot be a constant force, because if it were so, then at the middle of the stroke, where acceleration ends, it must cease abruptly, and retardation must commence in the same manner, as would be illustrated by the two parallelo grams, A B C D and CEF G, in the accompanying fig

ure. Now we know very well that, instead of this, acceleraion passes at the mid-stroke into retardation, in a manner wholly insensible.
How shall this mystery be explained? There are various methods, more or less abstruse, of reaching the explanation, but there is one that is exceedingly simple, indeed so much so that it is surprising that engineers are not uniformly familiar with it. It is found by almost the mere inspection of the table of versed sines.
The motion of a piston, disregarding the effect of the angular vibration of the connecting rod, is equal to the versed sine of the angle which the crank forms with the line of centers. The versed sine of any angle shows, then, the moion of the piston from the commencement of the stroke. If we take the versed sine of any degree, and subtract from it hat of the preceding degree, the remairfder will represent the motion of the piston while the crank is moving through he last degree

Thus, in the above figure, while the crank is traversing the arc, A B, the piston is moving through a distance equal to A b, the versed sine of the angle, A D B, and so on.
The following table, which any one can complete, shows, in the first column, the versed sine, or total piston motion, or the first and last five degrees which the crank passes hrough while the piston is making a half stroke, and in the econd column, obtained by subtraction as above, shows the motion for each one of these degrees.
The motion for each succeeding degree, of course, increases Il the way, but in what ratio does it increase? This is the vital question. To answer it, we subtract from the motion or each degree that for the preceding one, and the difference hows the velocity imparted while the crank was moving hrough the last degree. In this manner we obtain the third column, showing at a glance the velocity imparted to the
piston at each degree; and how wonderful is the revelation The acceleration, at first nearly uniform, diminishes in an increasing ratio, which for the 90th degree is less than $\frac{1}{57}$ that for the first degree, and is just equal to the diminution in the acceleration for the 89th degree, showing how at the end of this degree it ceases altogether.

1	-0001823	. 0001523	-0003046	
2	-0006092	-0004569	-0003046	0
3	-0013705	-0007613	-0003044	2
4	-0024359	-0010654	. 0003041	3
5	. 0038052	-0013693	-0003039	2
86	.9302435	-0173992	-0000265	
87	$\cdot 9476640$	-0174205	. 0000213	52
88	$\cdot 9651005$	-0174365	-0000160	53
89	$\cdot 9825476$	-0174471	-0000106	54
90	$1 \cdot 0000000$	-0174524	$\cdot 0000053$	53

The motion during the first two degrees seeras to be uniformly accelerated; but if we should go to a sufficiently high place of decimals, we should find the acceleration absolutely reatest on the very dead center.
It will be interesting to compare this diminishing accelera tion with the uniform acceleration of the motion of a falling body. The following table represents the latter; decimals are omitted for convenience, but this does not at all affect the table for the purpose of this comparison. The second and third columns are derived from the first by subtraction, in the same manner as above.

咢			
1	${ }^{\text {ft. }} 16$	${ }^{\text {ft. }} 6$	32
2	64	48	32
3	144	80	32
4	256	112	32
5	400	144	32
6	576	176	32

If now, at each degree, we draw an ordinate, perpendicular to the line of centers, and of a length proportionate to the acceleration at that degree, we shall find that a straight line connects all their extremities, showing the acceleration to be represented by the right-angled triangle, D C H, Fig. 1. Thiṣ any one can verify
It is thus revealed to us, that precisely on the dead center the acceleration of the piston's motion is double its mean ac celeration, and the force required to produce it is twice that which would be constantly required; or, in the case we are considering, is 7640 lbs ., equal to a pressure of 38 lbs . on each square inch of piston area.
The fact is so important, that it may be well to exhibit it also in another manner. We have seen that the motion of the piston is, for the first two degrees, accelerated in a man ner which may be regarded as uniform. The distance moved through by a body uniformly accelerated, increases as the square of the time, as shown in the last table.
If, then, we take the coefficient of the motion for the first degree, 0001523 , and multiply it by the square of the num ber of degrees traversed by the crank in one second, we shal have the distance which the reciprocating parts would be moved in one second, at their original rate of acceleration, supposing it to be continued uniformly during that time, if the length of the crank equaled 1 . Thisdistance is $82 \cdot 05254$ feet, for the crank moves in one second through 734 degrees, and $734^{2} \times 0001523=82 \cdot 05254$. The length of the crank is however, $1 \cdot 25$ feet, so that the distance moved through would be $102 \cdot 5$ feet. This distance, divided by 16.083 , gives the quotient $6 \cdot 37$, which is the accelerating force in terms of the weight of the parts. But $1200 \times 6 \cdot 37=7644$, the same resul as before.
The second point in our demonstration is now established that on the dead center, where motion begins to be imparted to the piston, it is imparted in double the average ratio, and the force required for this purpose is just twice as great as a uniform accelerating force would have to be to give to it the velocity that it has at the mid-stroke.
The retardation of the motion of the piston by the crank, bringing it to rest at the end of the stroke, is the reverse of the acceleration, commencing insensibly at the middle, and culminating at the termination of the stroke, and is repre sented by the triangle, E, C, I, Fig. 1. This, to one who has clearly apprebended the acceleration, must be sufficiently obvious.
We are arrived now at our final proposition, that the resistance offered by the reciprocating parts to this alternate acceleration and retardation is, at its culminating point, the dead center, precisely the centrifugal force that the same weight would exert continually, if it were revolving with the crank pin.
Let, us examine this action in the light that has now been thrown upon it. We will suppose the steam to be suddenly shut off, so that the acceleration, as well as the retardation, is effected through the crank. We note, first, this distinction that while at the mid-stroke acceleration passes when diminished to nothing into retardation commencing at nothing ; at the centers, on the contrary, retardation passes at its maximum into acceleration at its maximum, A closer examination shows, however, that while, in the first case, the direction of the force changes, in the latter it does not change This direction must be reversed twice in each revolution, and this reversal takes place at the middle of each stroke and not on the center. The crank begins, at each mid-stroke

