Contegpoudente.

The Editors are not responstble for the opintons expressed by thetr Cor

Life Preserver for Hotels and other Lofty Buildings.
Messrs. Editors:-While reading an account in the papers of the great loss of life at the burning of the Spotswood Hotel, in Richmond, a very simple and inexpensive means of escape in case of fire suggested itself to my mind, and I give it to you for publication, if you think it worthy of pratical application. Let A in the sketch given be an iron hook of suitable strength to retain its form, and bear the weight of an ordinary man. Let B be a bag of net work, made of rope about the size of a clothes line, and secured to
 the hoop; and C, a rope attached to the bag, and long enough to reach from a window to the pavement beneath, with slack to secure it to any object in thic room, even at a distant point. With al arrangemeut of this kind in the room on the upper floors of a hotel, every man woman, and child might escape in per fect safety, the last man, of course would have to slide down by means o the rope itself. The bag ought to bc made about $4 \frac{1}{2}$ feet high, or perhaps little above the waist would answer and in case of infants and children being put in, they would have plenty of ait put in, they would have plenty of air
through the open spaces. It will bu necessary to use a bag, because being perfectly pliable the party in it could more readily assist in launching himself or herself off the sill of the window for in case of having to lift out an affai of the kind with its human freight, mor strength would have to be brought to bear than person at the top could easily put forth. I have thrown out these hints in hopes that the may lead to the saving of human life and if of no practicul value in themselves, possibly some one may be thereby induced to bring out an invention that will answer the end ind view.

Homanity.
Baltimore, Md.
Boring Segment of Hollow Gylindrical Ring.
Messrs. Editors:-In your issue of the 20th of November L. V. asks this question: "Will some practical mechanic tel me how I can bore out true a segment of a hollow cylindrical ring, the segment being the sixth part of such a ring, the diameter of which is two feet, and the diameter of the bore being required to be six inches?"
I sent yoù what I supposed to be a true plan for the pur pose, but in your issue of December 17th you ask me, "Have you not mistaken the drift of L. V.'s query?" In reply answer, yes. And now, fully understanding your correspon dent's wishes or statement, I propose to try it again:

Make a wooden frame, into which fasten the segment to be bored, with the bore down. Place this frame in front of an engine lathe opposite the face plate. Turn a piece of round iron about one third the diameter of the bore of segment and bend it over a turned circle the same as desired (viz two feet); pass it through the segment and fasten it to the frame rigidly. In the exact center of the segment on this bent bar or mandrel make a sliding head some four inche long (in halves and rabbeted) so as to move freely through the segment. Feather the same, if liable to turn in the least. In the center of this slide turn a collar, and thereon place a ring with a cutter in the center. Set the cutter out to take a cut, and hold the loose ring with a set screw. Now it is very evident that if you push this slidethrough the segment you will cut a groove to correspond with the circle of the mandrel. Draw it back and loosen the sat screw and turi the ring for a new cut. Tighten with the set screw ant sew the? , eration until the circle is complete. I pro pors to use the face plate of the lathe for a crank, and em ploy connecting rods from the crank pin to the slide for the purpose of driving it. This is an expensive method, but am sure it is a good one
H. Wheeler.

Gilver Creek, N. Y
[We fear all our readers will not share the confidence our correspondent feels as to the practicability of his method We see many practical difflculties in the way of getting a true job in the manner specified. However, as it is an attempt to sulve a difficult problem, and suggests thought, we give i for what it is worth.-EDs.

The Great American Desert a Myth.
Messrs. Editors:-A short time ago I read a short article on the barrenness of the land west of the Missouri River, which conveys a very wrong impression. After over 5,000 miles travel over the plains, mostly on foot, I am thoroughly convinced that there is but very little which cannot be util ized. I was taught in my schoolboy days the magnitude of the great American desert, but, with the exception of the
sand bluffs along some parts of the Platte River, and a sand tract about twelve miles wide a little south-east, and about sixty miles from what used to be named the junction on the South Platte, I have failed to find it. All over the plains there are indications of water near the surface, and springs are frequent in the bluffs. As for the soil it is very rich. I am more willing to trust my own eyos than the speculations of others.
T. L. Von Dorn.

Omaha, Nebraska.

The Hoosac Tunnel.

Messrs. Editors:-In your issle of Dec. 24th, No. 26, Vol. XXIII., is an article from the pen of G. C. Breed, on the diffiulties of getting a correct plumb line, etc., in the Hoosac unnel. Now, Messrs. Editors, I am not an engineer, but occasionally do some thinking, and this article suggested the

dea to me that if the thing cannot be done from the top of he shaft by a long plummet, why can't it be done from the bottom from a short-sighted one
I give you a rough sketch of my idea. We will suppose a od or tube, a, suspended by strings, c, or in any other conve nient way, in the center of the bottom of the shaft, the rod or tube being hollow or sighted like a gun barrel. Why couldn't a person, looking through it or its fine sights, get the point as it ought to be, either at the top of the shaft or by a star or some other point in the sky.
I do not believe in perpetual motion, or any thing of that sind, but in my experience I find that if a thing cannot be done in one way it is no sign that it cannot be done in anoth r. This suggestion may expose my ignorance, but still tak for what it is worth
Havana, N. Y., Dec. 24, 1870.
Can a Perpendicular be obtained by Means of the Plumb Line?
Messrs. Editors:-As Dr. Heirry's article, in your issue of December 10th, has impressed an erroneous idea upon some of your readers hereabouts, I submit the following for the purpose of enlightening the doctor upon the subject, as. wel as such of your readers as have been misled by his state ments.

The doctor's statement that it has been proved to be impossible to obtain a perfect perpendicular line by means of a plummet is a mistake, which has probably resulted from his not having comprehended the experiment to which he alludes It is well known that a plummet suspended and caused to vibrate as a pendulum, will, by the motion of its plane of vibration, demonstrate the rotary motion of the earth; and it is also well known that a plummet dropped will strike a point below, eastward (not westward, as stated by Dr. H.) of a vertical through the point whence it was dropped; but these facts by no means prove that a plummet may not be suspended so as to indicate a true vertical line, all of which will readily be understood from the subjoined diagram and xplanation.
Let E W N S represent a horizontal section of the earth hrough its center, and let A B represent a parallel of latitude
through A , which may represent the mouth of the central shaft in the Hoosac tunnel in lat. 42°, say L ; and let P rep resent a point at the bottom of the shaft vertically below A let A R be perpendicular to the earth's axis, $S \mathrm{~W}$, and le $P Q$ be parallel to $S N$. Then, because the earth revolves on its axis, all parts not in the polar axis have an eastward motion in space which is proportional to their distance from the polar axis; therefore the eastward motion of a point at P (which is at the same distance from the axis as the point at Q) will be less than the eastward motion of the point at A But the point, A, will make a revolution about R in on sidereal day-about 86,160 seconds. Hence, we readily find the difference per second of the velocities of the points, A and P , to be $\frac{2 a \pi \cos \text {. } \mathrm{L}}{86,160} 8=0.671$ of an inch nearly, a being he depth of the shaft.
Now, for a plummet to face through 1,030 feet will require about 8 seconds of time. Hence a plummet would fall to the bottom of the shaft of the Hoosac tunnel in 8 seconds, and consequently it would fall east of the point vertically below the point from which it was dropped, a distance $=\frac{2 a \pi \cos \text {. } \mathrm{L}}{86,160}$ $\times 8=5.37$ inches, nearly.
But if the plummet is suspended in a vessel of oil, for instance, as you suggest, which vessel rests upon the earth a the point, P , it is clear that when the plummet is at relative rest within the oil, it will have lost a portion of the motion it had when at the point, A, and will have precisely the same eastward motion as the point, P, and will therefore be at rest, relative to the oil, when vertically below A.
Des Moines, Iowa.
J. E. Hendricks.

To Estimate the Power of a Stream.
Messrs. Editors:-Almost every man has about him in his daily walk sufficient apparatus for a tolerably accurate estimate of the quantity of water flowing in any stream. A walking-stick, a jack-knife, and a watch, provided the walk-ing-stick is just three feet long, are all the tools necessary for the purpose.
Take a section of the stream as uniform in breadth and depth as possible, and measure off upon its bank some definite length, say from one to four hundred feet, according to the rapidity of the water; set a stake close to the water at each rapidity of the water; set a stake close to the water at each
end of this section, then throw into the water, opposite the end of this section, then throw into the water, opposite the
upper stake, a green twig or limb of a tree, or other object of such specific gravity as to nearly, but not quite, sink, and of such size that one portion shall remain at the surface while another portion nearly touches bottom; the object being to get the average speed of the water; the resistance caused by the bed and banks of the stream necessitate some care in this part of the experiment.
Note accurately the time the object is passing from stake to stake, and repeat the operation several times and at as many points towards the opposite shore; the sum of the several times divided by the number of points at which the speed was taken gives the average speed of the water
Now measure the depth at several equidistant points across the stream, as at a, b, c, d, e, f (the diagram representing a cross section of the stream), the sum of these depths divided by the number of points at which the depth was measured

gives the average depth; this average depth multiplied by the breadth of the stream gives the area of the cross section, this area, multiplied by the length of the section, gives the cubic contents of body of the water embraced in the section Thus we have the quantity and its velocity, which are the elements necessary to show the value of a stream for manufacturing purposes, provided it has sufficient fall anywhere to render it available.
Allowing sixty-two pounds for each cubic foot of water, and a supply of one thousand cubic feet per minute, and a fall of ten feet, we have $1,000 \times 62=62,000$ pounds, $62,000 \times 10$ $=620,000$ pounds momentum, $620,000 \div 33,000=18 \cdot 7$-horse power. One fifth at least must be deducted for friction and loss, making in this case about 15 -horse power. F. G. W,

Popular Errors Regarding the Watch

Messrs. Editors:-A hunter's (or close) case is almost uni versely supposed to be the best protection for the watch; it is also supposed that it prevents the breaking of glasses, that it better protects the movements from dust, and that in all things is the most desirable to have-to all of which I wholly dissent.
Every watchmaker of experience and observation knows that a close case permits more dust and lint to get into the ovement than an open one, for the reason that the case over the glass, which springs open on being unlocked by the push in the stem, necessarily fits loosely down on its place, to allow it to open by the force of the lifting spring. If it snapped, like the opposite side, the spring could not lift it open. The dust finds its way inside the cover, through this loose fit, and thence it works its way into the movement through the opening left for the lifting spring to act on the case, and through the opening around the locking spring, which holds the case sliut; the hole through the stem, through which the push-pin acts, also permits dirt to pass inside. There is also another trouble in close-case watches, which is, that the lifting spring is constantly bearing upwards on the cover, and every time the case is opened the hinge (joint) is worn a little. After opening many times, the joint becomes much worn, and more or less open, affording an additional place for
the dust to enter. Particularly does this occur. when the case \mid and I assume that one jar must have been let fall upon an is allowed to fly back against the joint with a force propor tioned to the strength of the lifting spring and the weight of case, thus adding to the natural wear a stretching open of the joint, that very soon allows the dust to pass in quite freely All these causes conspire to foul the movement in a very short time.
In the open-faced watch not one of these openings exist for the admission of dust; the rim (bezel) which holds the glass closes with a snap-joint; the back case closes with the same snap, there is no opening through the stems, and the whole case, if properly made, is water-tight, and will remain so for years, thus affording almost perfect protection to the move ment from dust.
The serious inconvenience caused by the rapid accumula tion of dirt in the close cases, has stimulated inventive genius to devise ways and means to remedy the defect. "Dust rings" thus far have been the only product of this inventive labor; some are placed around the edge of the movement; some go inside the case; neither kind are entirely successful in excluding the dust. The only possible advantage in the use of
the close case is, that it may be continued in use after the the close case is, that it may be continued in use after the glass is broken. An open-face watch must be laid up if the glass breakstill another can be had; but only the very heavy cases protect the glass from breakage, and probably three fourths of the close cases in use are supported by the glass, instead of affording protection to it; and particularly is this the case with ladies' watches in which the glass must be flat, and very thin.
There is no doubt but that more glasses are "broken by the use of close cases than would be broken if open cases were in general use, the latter admitting of much thicker and stronger glasses. Neither are the very heavy close cases the protection to the movement that many suppose; one sufficiently heavy to prevent being crushed, is well, but all the weight of metal beyond that is dangerous, and for this reason, that in the event of the watch falling, or enduring any sudden jar, the momentum of the massive case produces a concussion which must damage some part of the movement, thusits very strength proves destructive.
For the benefit of the "craft," I advise the use of "hunter's cases;" for the good of the wearer, most certainly "open " ones.
R. Cowles.

Cleveland, 0 .

Nitro-Glycerin Explosions.

Messrs. Editors:-In your issue of November 19th, 1870 you refer at some length to the recent explosion of nitroglycerin at Fairport, Ohio.

In the article referred to you denounce in a very emphatic manner its manufacture and use as a blasting agent. As I bave been engaged in its manufacture for two years, and have possibly as much practical knowledge of it as most men, I beg you to allow me space in your valuable journal to vindicate, in some degree, this much abused substance.
In the first place, without attempting to disparage the general accuracy of the report of the Painesville (Ohio) Telegraph, further than to call attention to their sensational style of reporting such matters, I will state a few facts in relation to the explosion not generally known, but which, if published, will go far to allay the popular fear of nitro-glycerin.
On the day of the explosion there were 15,000 pounds of the substance in the magazines (equal in explosive force to 195,000 pounds of gunpowder) all of which exploded almost simultaneously. Nevertheless we find by actual facts that its deadly area did not extend to a radius of eighty yards, and that the concussion was incapable of exploding a quantity of nitro-glycerin in an exposed position eighty feet from the nearest magazine. Again, the effect upon the houses in Fairport has been ridiculously exaggerated. Ruinous preFairport has been ridiculously exaggerated, Ruinous pro-
vious to the explosion, all the dwelling houses, thirty or forty vious to the explosion, all the dwelling houses, thirty or forty
in number (the nearest being about 600 feet from the mag. in number (the nearest being about 600 feet from the mag-
azines), have since been put in good repair by an expenditure by the nitro-glycerin company of a sum not exceeding eight hundred dollars.
As to the assertion that the shock was communicated through the earth 160 miles, I think it is simply puerile and unworthy of consideration. For why was not Cleveland, only thirty miles distant, also moved by the shock? The inhabitants in that city did not even hear the report. May not, however, the theory of a simultaneous earthquake be entertained on good grounds of belief? It is on record in the public prints that on the same day and about the same time of the explosion, the shock of an earthquake was distinctly felt in Canada, the States of New York, New Jersey, and Pennsylvania. The working of telegraph wires was in some places interrupted, and many individuals are reported as having experienced the peculiar feeling of nausea which is said to be the concomitart of earthquakes. Taking these circumstances into account you ean, of course, draw your own inferences.
In Gainesville (notwithstanding sensational reports) no consternation was caused, and no damage was done. Many people did not even know of the explosion. Others hearing
the noise thought it was the firing of a cannon or, perchance, the noise thought it was the firin

You refer to the case of a man sick with typhoid fever having been instantly killed by the shock. Dr. Jackson, the physician in attendance upon the man, declared upon oath moribund, and died some time after the explosion.

Apart from the assumption that this explosion may have resulted from an earthquake, I can easily believe that it may be accounted for thus: The unfortunate men were engaged
in removing from the magazines some earthenware jars conin removing from the magazines some earthenware jars con-
taining nitro-glycerin in a partially frozen or solidified state,
other accidentally, which, striking against each other with sufficient force, would fully account for the unfortunate occurrence.
I will now, if your space will permit, state my conviction, induced by large experience, that the manufacture and handling of, and the blasting with, nitro-glycerin can be carried on with perfect immunity from danger. During its manufacture I cannot conceive any circumstances under which it may explode. In my experience I have seen at the same time two vessels, each containing six pounds of nitro-glycerin in a state of incandescence, caused by a small quantity of unconverted glycerin lying on the surface of the crude nitroglycerin. This apparently alarming phenomenon proved to be perfectly innocuous, as on precipitating the unconsumed contents of the jars in water, I found that ten pounds of nitro.glycerin had been consumed gradually and without explosion or instantaneous decomposition. Can $\cdot a$ correlative plosion or instantaneous decomp
case be quoted as to gunpowder?
Undoubtedly in the safe manufacture and using of nitroglycerin certain conditions must be implicitly complied with, the chief of which conditions are, persistent forethought and caution. All the employés of the Lake Shore N. G.Company were duly advised on their engagement of the nature of the product, and were well instructed in the mode of handling the same, but "familiarity may have bred contempt;" careless
trophe.
During the last two years the Lake Shore Nitro-Glycerin During the last two years the Lake Shore Nitro-Glycerin
Company have man factured about 150,000 pounds of nitroglycerin, equal in explosive force to $1,950,000$ pounds of gunpowder, all of which has been used for blasting purposes without the loss of one single life. Has gunpowder a similar record? Indoed the very fact that miners were certainly unconversant with the rudimental principles of chemistry, have (taking their safety intoconsideration) decided wherever it has been introduced, in favor of nitro-glycerin, shows beyond doubt that the dan
re merely hypothetical.
I have been a regular s
I have been a regular subscriber to your invaluable journal for the last twelve months, yet, notwithstanding that many casualties, through the use of gunpowder, attended with the loss of many lives, have occurred during the same period, I have not seen that you have censured those manufacturing or using it.
Since the explosion in Fairport I have observed in the public prints that in various parts of this country and in Europe seventy people have lost their lives and many more been injured by the accidental explosion of gunpowder \cdot and gun cotton, all of which you pass by without comment.
In conclusion, may I venture to suggest to you that it is impolitic, not to say unfair, to decry and condemn any branch of national industry simply because some serious accidents have occurred in its development.
Look back through the histories of gunpowder and the steam engine-two of man's most indispensable servantsthen say if nitro-glycerin of death upon their pages, and hurled against it. Samter. Thompion,

Chemist to the Lake Shore Nitro-Glycerin Co. Painesville, Ohio
[We are always willing that both sides of a question shall e heard. In this case we allow an advocate of nitro-glycerin to speak with peculiar satisfaction, since we think every canstrengthened belief that nitro-glycerin is too dangerous a substance for general and indiscriminate use. Since the explosion at Fairport another man has been blown to atoms at the Hoosac Tunnel, and the black record will keep increas ing so long as nitro-glycerin is used as a blasting agent.
Only such exigencies as rarely occur in engineering work should, in our opinion, justify the use of this deadly explosive. Our correspondent's theory of an earthquake occurring
simultaneously with the Fairport explosion strikes us simultaneously with the Fairport explosion strikes us a particularly humorous, if such a thing as her in so serious a matter. So far as we have been able to learn from the accounts of the many disasters caused by such explosions the earth has in every case literally quaked at the power of an agent that can instantaneously an nihilate human beings so that notrace is left of them.-EDs.

Chemistry in Rolation to Practical Agriculture
Messrs. Editors :-A writer of great intelligence in a recent number of a prominent agricultural journal in Rich mond, Va., declares his conviction that science, and especially chemistry, does not aid practical agriculture? Per contra, the statement of one fact may illustrate the fallacy of his
conclusion more briefly than his argument to "prove a neg. ative":
This farm has been in the possession of my forefathers for more than one hundred years, and during all of that period a bed of peat has occupied a central and comparatively elevated position. Moreover, since my boyhood here (during more
than forty years) some of the best practical farmers in Delaware have rented it, and never paid, on an average, a suff cient amount to equal the rent of my dwelling in Baltimore Since 1865 one half has increased in productiveness, yielding last year an income of $\$ 7,000$, and an aggregate of $\$ 14,000$ during the preceding three years, and I depend on this peat to make the other half equally productive and indirectly sustain the crop as above. Its value, however, was not ascertained until last summer, and then as one of the first essays in analysis of my son, which I subsequently verified. We at the same that the nitrogen or quasi ammonia, when valued
pay for excavation, although associated with more than seventy-five per cent of water-in proportion to the carbonaceous residue or magma or solid part of the peat. Still our estimate of the phosphoric acid potash and lime indicated a money value of these elements alone in each tun of 2,000 pounds, worth $\$ 3 \cdot 70$, including the ammonia. After more than twenty years' experience in the analysis of soils and marls for others in Maryland, I now testify to the practical importance of such results on my own farm, having devoted my attention to it as a much more certain and profitable investment of my time and acquirements than the laboratory, although that was a success and decidedly so.

David Stewar's, M.D.,
Formerly Chemist of Maryland State Agricultural Society, etc. Port Penn, Del.

To Put a Grain Mill in order.

Messrs. Editorb:-Adjubting the Spindle.-First see if the cock-head and spindle-neck be true; if not, take the spindle out and adjust it. Put the cock-head in a female center, in the dead head of the lathe. Turn the neck true, then run the neck in a suitable bearing. Gland the spindle to the face plate, run the dead head back, and true the cockhead with the center out.
Fitting the Drivers.-Turn the runner or upper burr back down. Draw a chalk line through the center of the burr and through the center of the recesses in which the drivers work. Then draw another line (which we will call A) at right angles or square with the first line, passing over the center of the burr and cutting its circumference into four equal parts. Turn your spindle head downwards with the driver on into its place. Wedge the drivers hard up with hard-woód wedges on which it will press when running. Put on your jack or radial arm and file the pressing faces of the driver till the point in the jack stands equidistant from the face of the burr at both ends of the line, A.
Level the Bed Stone true in all directions with a good spirit level. Put in your spindle and tram it true to the lev eled bed stone.
Balancing the Runner.-If the back is much out of true it will look a great deal better to turn it. However, it can be balanced without turning. You can either face off on; or you can inch and put in two pieces of hard wood dressed true, 6 inch es wide by $\frac{3}{4} \mathrm{i}$. thick. Bring your runner down nicely till it takes the oscillation of the burr without grinding the wood After you have turned the back, take out the wood. See how much weight it will take, placed on the very verge of the back, to bring it to standing balance. Place the same weight on the same light side on the edge of the burr, down as near the face as possil,le. Run up to grinding speed; either mark the back with a pencil or the face with a lath dipped in red paint. If the originally heavy or opposite side now trails, move your band and balance a little nearer to the cock-head till you find the exact point where it will be both in running and standing balance. If, on the other hand, the light side still trails, or if the trail has moved to right or left, or "quartered," put more weight over the trail on the lower edge of the burr near its face, and exactly the same weight on the top or back of the burr on the opposite side of the circle, as much as will bring it to balance. It will then be in balance, standing, and at all speeds.
Concluding Remarks.-In order that the intelligent mechanic may know the theory as well as practice of balancing, let him fancy a pair of governor balls, one of wood and one of iron. The iron one will fly up to the horizontal line quicker than the wooden one; and suppose these balls are inverted (turned upside down), the iron one will come down quicker and press harder than the wooden one. From this it will be seen that the cock-head is the center of suspension for the balancing forces, and that you cannot put a burr in standing and running balance by operating.on the back alone. You can put it in running balance at one speed, and then you can put it into standing balance on the neutral ground of the plane of the cock-head.

Joirn W. Hopkins.

Wilmington, Del.

Dualin, the New Explosive.

Messrs. Editors:-I notice an article in the Screntific American, page 401,Vol. XXIII, in relation to the experiments made with dualin at the east end of the Hoosac tunnel, in which your correspondent wrongly informed you about the strength of it. Lieut. Dittmar, the inventor, brought $1,500 \mathrm{lbs}$. here Nov. 28 th, which I used on our 8 ft . slope with good success. I have used over $1,000 \mathrm{lbs}$. of dualin here since Dec. 1st, and am confident that it possesses the full strength of nitroglycerin, besides being perfectly safe for any ordinary blaster to handle. It will not explode by concussion, and can be tamped as hard as powder with perfect safety. I see no reason why it will not eventually entirely supersede common powder for all blasting purposes.
H. G. Holden,

Dec. 30, 1870.
Supt. east end of Hoosac Tunnel

Why Mantiprings Ereak.

Messrs. Editors:-On page 372, last volume, of the Scientific American, Mr. Henry Hollinshed, Jr., of Camden, N. J., attempts to solve the mystery of the breaking of mainsprings by stating that they are wound up too tight around the arbors, and that in this state contraction breaks them.
If Mr. Hollinshed is conversant with watches, he must know there is a stop attached so as to prevent the spring from even being wound tight around the arbor, or strained to its full capacity, and also to prevent its running down beyond a certain point. But it is a practice among watch repairers or
watch spoilers to forget to put these stops back after taking a watch apart, so as to get plenty of jobs in putting in new mainsprings. This is one of the radical causes of mainspring breaking, as the spring is in that case sure to be overtased. Springs are also sometimes unequally tempered. In this case
the weak point gets continually weaker until it finally breaks. the weak point gets continually weaker until it finally breaks.
Most generally this occurs soon after winding, because at that $\begin{array}{ll}\text { Most generally this occurs soon after winding, because at that } \\ \text { time the spring is strained most. } & \text { C. H. Palmer. }\end{array}$ time the spring is strained most
New York city.

Something about Lavas.

Lava is seldom seen in a state of complete igneous fusion, but consists of crystals, or granules, in a fused paste, and its fluidity is, in a great measure, due to the steam with which it is permeated. The flows of lava vary very much in extent. We may quote two cases, in the first of which an area of fourteen miles by six miles was covered, and in the second an area of fifty miles by fifteen miles was covered to a depth of 500 ft . When we consider that the mass of liquid stone in the last instance far surpasses the magnitude of Mont Blanc, we may form some idea of the extent to which the face of the country would be altered, even by an ordinary eruption; and, in such a case as this, the lava would probably continue to flow for more than a year. Owing to the expansion of the elastic vapor in it, lava is often vesicular, or porous, and when these vesicles, or hollows, are filled up by minerals de posited from the water percolating the mass the lava is called amygdaloid; and when single detached crystals are scattered through a compact base, or large crystals through a fine grained base, the lava is known as porphyry, and the rock is said to be porphyritic. Lava, also, sometimes assumes a columnar structure, of which the well-known "Giant's Causeway," in Ireland, is a good example. Besides these forma tions lava is of ten forcibly injected into cracks in other rocks, forming what are called "dykes," or walls; the adjacent rocks are very much altered, both in form and construction,
by the exceeding heat of the melted lava injected into them.
Igneous rocks, are without exception, composed of silicates of magnesia or alumina, and may be classified under three heads-Volcanic, Trappean, and Granitic. Volcanic rocks differ among themselves in being made up of.different miner line (or granular), some compact, and some glassy. .The mineral constituents of the granular rocks are easily determine by simple inspection, while those of the compact rocks ma be discovered by chemical analysis.

Volcanic rocks, or lavas proper, may be classified unde three heads-Trachyte, Dolerite, and Trachy-Dolerite. Trachytes are so called from the Greek word "trachys" (rough) because they have a rough, prickly feeling when handled In appearance they are generally pale-gray or white, though they sometimes assume a dark-gray and nearly black aspect They are composed principally of a feldspar, which is rich in silica, but the different varieties vary both in composition and appearance. The trachyte, properly so called, has either a fine-grained or quite compatt texture, a harsh feel, and cellular appearance. In color it varies from pale to dark gray, and is sometimes reddish, from the presence of iron.
Qf the many varieties of trachytes we will only mention two-Volcanic glass, which is the vitreous condition of a trachytic rock, resembling coarse bottle glass in appearance; and pumice, which is the cellular and filamentous form of the foregoing. Cellular pumice is dark-green in appearance, with less silica than alumina, while the filamentous is richer in silica, and white in appearance. Pumice is, in fact, the froth of lava, and although when powdered its specific gravity varies from 2 t
porous character.
Dolerites or hornblendic lavas are so called from the Greek word "doleros", deceptive. They are usually of a dark green or black color, becoming brown on the surface, when exposed to the weather. They are generally heavier than the trachytes, containing less silica, and more of the heavier hornblendic minerals. The dolerite itself is of a dark gray color, and of a granular crystalline structure; and besides the main ingredients, silica, magnesia, and alumina, a considerable proportion of iron and lime enter into its composition. The two chief varieties of dolerite are anamesite and basalt. Anamesite is only a fine-grained dolerite, so fine grained that its granular texture is only just perceptible. It forms the connecting link between dolerite and basalt, which is a compact and, to all appearance, homogenous black rock. It often contains crystals of hornblende and magnetic iron, and is sometimes vesicular or amygdaloidal. It is for this reason that the " iant's Causeway,' in Ireland, has sometimes been called an anamesite, though generally considered to be a basalt. The trachy-dolerites or, as they may be called, intermediate lavas, do not, from their very nature, admit of any accurate definition. They consist of an almost intimate mixture of the two foregoing species of rocks, the minerals of each blending together so that they can scarcely be distinguished. Besides these regular lavas or volcanic rocks, there is the volcanic ash, which consists of the ash mixed with fragments of lava ejected from the crater of a volcano during eruption. This socalled ash often greatly exceeds in bulk the streams of lava. A tract of country, with a radius of 25 miles, has sometimes been covered to a depth of ten feet, and the lighter ashes may be carried 600 or 700 miles by the wind. The degree of consolidation of these materials varies very much, and depends upon the circumstances under which
they were ejected. Sometimes they remain loose, and somethey were ejected. Sometimes they remain loose, and some
times form a solid rock. If they are ejected upon land, they times form a solid rock. If they are ejected upon land, they quence of the percolation of water derived from rain falling with the ashes, or subsequently gaining access to them. As
an example of this we may say that the ash which fell on

Herculaneum was mixed with water, and is, consequently, much harder than that which covered Pompeii. If the ash cisely similar to the mechanically-formed aqueous rocks al ready treated of, and often contains fessil shells.

Air Holes in Ice.

Mr. John Langton, of Ottawa,'Ontario, in a very interestipg communication to Nature, upon the " Prismatic Structure of Ice,"thus speaks of the formation of air holes:
" There are also some curious facts connected with the air holes which form themselves during winter. There are of ten particular spots where partial openings in the ice will be formed every winter. These I conceive to arise from warm springs, and to have no connection with air holes, properly so called, which are not confined to any particular locality, but may appear anywhere. There is always a good deal of air under ice, and you may often see it scattered about in small bubbles when the ice is thin. It is probably air excluded in the process of crystallization, and when there is added to it sundry gases formed from decaying matter in the water, it amounts, during the winter, to a considerable quan tity. Such collections of air, inke uneasy condition, and are rapidly transferred from one place to another on any casual disturbance of the level, giving rise to one of the numerous noises which are always, more or less, heard on a lake covered with ice-at least, we used always to attribute to this cause a peculiar groaning sound, which was very common. Now, if there
should be any casual inequality in the lower surface of the should be any casual inequality in the lower surface of the F., which, in so far as it consists of evolved gas, it probably will be, the receptacle will be increased by thawing. ome-shaped cavity will thus be gradually formed, which will finally reach the surface; air will escape from below, and the urface water, of which there is almost always more or less fier the snow has fallen, will run from above, wearing the ittle jagged channels, which are characteristic of air holes. The whole thing will then, after a while, freeze up again, leaving an indication of where the air hole has been in the ifferent color of the freshly-formed ice. I have tried several such air holes with an axe, when first formed, and have al ways found them to lead to such a dome-shaped cavity. I remember, on one occasion, an otter frequenting a large air hole which remained open for some time, and which must have been from a mile and a half to two miles distant from the nearest open water. How did he reach it? for no otter an travel that distance under water without access to air The Indians say they will go to greater distances still under
the ice, and that they will always find air there. It is likely enough that there may be many such dome-shaped cavities, which have not yet reached, and may never reach, the surface as air holes, but one would imagine the air they contain to be not of the most wholesome character. However, this otter did frequent that air hole for about a week, which it ertainly did not reach by traveling on thc ice; and though t had few chances of breathing there, in the daytime at any rate, it contrived during that period to elude the snares of a white man and an Indian, who wasted a good deal of time in looking after it.
"So far, the process of the formation of air holes, if I am right in my explanation, is intelligible enough; but sometimes they are formed in a manner which is difficult to acfriend's house, about four miles off, and we had determined to start together next morning to our nearest town, but I had to go home first. I first went over by daylight, when there certainly was nothing unusual in the appearance of the ice which might be four or five inches thick at the time, with a slight sprinkling of wettish snow on it. I returned home about eleven at night, and, as it was bright starlight, with only a few floating clouds, I should have noticed any change but I came straight across, and saw nothing to attract attention. But when I crossed again at daylight in the morning, in one part of the lake the whole surface was covered with air holes; there must have been hundreds of them. At first I gave them rather a wide berth; but, on approaching one to examine it, I found it frozen up again, the clear ice in the hole, with very slight indications of the characteristic jagged edges, being the only sign that there had been an open air
hole there during the night. I had no axe with me to try whether they were connected with any cavity, but the ap pearance was as if holes of from two to five or six inches in diameter had been punched through the ice. Of course, we attributed it to electricity, as people will do anything which they do not otherwise understand, and I have never been able to give any more intelligible explanation of the phe nomenon. There certainly had been some faint sheet lightning that night, a very unusual thing in winter; but what connection, if any, there may have been between the two things, I cannot say."

Method of Scarching for Diamonds

re is little doubt that diamonds exist in many places as unknown, or where their presence is unsuspected. Gold s discovered readily in auriferous regions, even by those who are inexperienced at the work, but the diamond is far less to distinguish it in its natural condition from crystals of quartz or topaz. One, therefore, who has no experience in diamond seeking may see, and even handle, such gems without recognizing them or even suspecting their value. It was in consequence of the geological knowledge of Humboldt that the diamond regions of the Ural Mountains, in Russia, were first discovered. At his suggestion the gold washers were directed to search for diamonds before they had been found
or any suspicion raised of their existence. From that time
to the pre
The color of the gems constitutes the main difficulty in de ecting their presence. They, in fact, are of various shade and hues, as yellowish brown, green, blue, and rose-red, and ery closely resemble the common gravel by which they are surrounded. The finest, however, are of no color at all, and are to the inexperienced diamond seeker identical in appearnce with transparent quartz crystals.
In Brazil, where great numbers of diamonds, chiefly of small size, have been discovered, the method of searching for them is to wash the sands of certain rivers in a manner preisely similar to that employed in the gold fields of Australia; namely, by the aid of prospecting pans. A shovelful of earth is thrown into the pan, which is then immersed in water, and gently moved about. The result is that the contents are converted into a kind of thick, muddy slush, from which the stones are picked out by the hand. As the washing goes on the dirt and sand are gradually disposed of, and the pan contains apparently only about a pint of thin mud. Great caution is now observed, and ultimately there remains only a small quantity of sand. The diamonds and particles of gold, if haply they are present, sink, by virtue of their great specific ravity, to the bottom, and are selected and removed by the practiced eye and hand of the operator. But how shall the gems be detected by one who has had no experience, and who in a jeweler's shop could not separate them from quartz or French paste? The difficulty can only be overcome by test ing such stones as may be suspected to be precious. Let these be preserved until the day's washing is over, and then tried by the very sure operation of attempting to cut with their sharp corners glass, crystal, or quartz. When they are too minute to be held between the finger and thumb the specimens may be pressed into the end of a stick of hard wood, and run along the surface of a piece of window glass. A diamond will, in such case, make its mark, and cause, too, a ready fracture of the glass in the line over which it has traveled. Tested in a similar way upon a crystal of quartz the diamond will make such an impression as no one crystal can have upon another. But a yet more certain and peculiar characteristic of the diamond lies in the form of its crystals. The sapphire and the zircon will readily cut glass and scratch quartz, but they have not the curved edges of the diamond. In small crystals this peculiarity can only be observed by using a magnifying glass, but it is invariably present in the true gem, whether it be large or small. It is, perhaps, rare to find a diamond with four curvilinear faces, but such a circumstance places its identity beyond the domain of doubt. Another form of diamond is that of the octahedron, or eightsided solid, with the edges replaced by interrupted narrow convex surfaces. Such interrupted, convex, or rounded angles are sure indications of genuineness. The diamond breaks or is scratched with difficulty, and hence a test sometimes employed is to place the specimen between two hard bodies-as a couple of coins, for example-and force them together with the hands. Such a pressure will crush a particle of quartz, but the diamond will only indent the metal. Thus much of practical information for the service of the diamond hunter of the Cape; and now, supposing a successful issue to his exertions, let us say a word or two as to the mode of estimating the value of diamonds. They are invari bly valued by the carat, which is four assayer's grains. The estimate is made by squaring the number of carats, and multiplying the result by the price of a single carat. The price, will thus be seen, increases in a multiple proportion to the weight. The actual price of a small, rough diamond, fit to be polished, is about $£ 2$ per carat. One of two carats is worth, herefore, $2 \times 2=4 \times 2-£ 8$; one of four carats, $4 \times 4=16 \times$ $8=£ 128$. The value increases by both size and color-or vater, as it is termed.
When diamonds are cut and polished they are known to ewelers as brilliant, rose, and table diamonds, depending on the form and number of the artificial faces. Diamond cutting s chiefly done in Holland, on wheels of iron or copper, and with the agency of the dust of inferior diamonds, known as diamond dust. A set diamond may be tested by placing wax on its back. The luster of a true gem will not be affected by this operation, while the spurious brilliancy of paste imitations will be totally destroyed by it.-Mechanics' Magazine.

Unhealthy Foundations for Buildings,

Two learned doctors, saysthe New York Mercantile Journal, have disagreed (a thing not unprecedented in history) in regard to the cause of the recent unhealthiness in Liverpool. Dr. Stallard, who has made a report on the subject, attributes it to the filling in of the brick-pits with refuse, consisting of ashes, fish bones, lobster shells, cabbage leaves, potato parings, old door mats, broken pottery, and other things, too numerous, as well as disacreable to be mentioned, which the drainage of the sewers will not remove. He affirms that no house can be healthy built on such a sub-soil, and that sewers must inevitably be filled with noxious gases, so long as such a state of things exists. To whom Dr. Trench opposes the opinion that, as a physician and chemist, he sees no reason why the materials named should not, if left undis turbed, be decomposed without the evolution of noxious gases, to any injurious extent, and the products of decomposition become a good and firm, though porous foundation; the latter quality rendering it a more healthy foundation than the clay upon which the greater part of the city stands. The Health Committee of the city, in view of these conflicting opinions, have resolved to refer the matter to Professor Hux ley, requesting him to name two competent scientific men to investigate the matter thoroughly. The report which wil be made will be looked for with interest, as this is a sanitary question of the first importance to all cities.

Improved Steam Gage. an artion, volume XXIII., of the Scientific American, ers," we expressed our opinion that "unsomy in Steam Boillegislated out of the market, if possible," etc. Since we thus wrote, the daily journals have given accounts of several sad disasters from "Boiler Explosions," on land and water, which are doubtless to be attributed either to imperfect construction, or to the unfaithfulness or incompetency of employésprovided the owners themselves were not in fault, from unworthy pecuniary considerations. Not seldom do the latter force their employes to use apparatus which they know to be extra hazardous, or of the safety of which, at least, they have no assurance. We feel justified in the inference that the party who sells and the one who buys a boiler second-hand, for one fourth its first cost, cannot be ignorant of the probable existence of defects from which serious existence of defects from which serious
consequences may result. If, however, they persist in the use of such boilers, they persist in the use of such boilers,
they endanger lives and property crimithey
nally.
We also stated in the article alluded to, that it is somewhat difficult to frame a law the enforcement of which would secure proper care in the attendance of boilers, and their usual attachments, or to conceive any system of legal inspection which would be sufficiently stringent with one class, withouthavingconditions that would be onerous in their bearing upon others.
Such being the case, we must look for some mechanism to be used in connection with the various adaptations of steam, both as a power and in its general application as a vehicle for transmission of heat, which will afford greater security to the public against foolhardiness, presumption, ignorance, and irresponsibility.

Pertinent to this subject, we present to our readers an illustration and description of Edson's Recording Steam Gage, an invention which re ceived the first premium at the late Fair of the American Insti tute, and which seems to meet a long-felt want. This instru ment will doubtless be as fully appreciated in its practical use as it already has been in anticipation. We have evi dence that the charts, or steam-written "logs" it affords, are considered by the life, fire, and marine underwriters, as reliable vouchers of the care exercised by those in charge of steam, and that they consequently are valuable to them in determining risks which they assume. If, as is claimed by the inventors (who have been several years secretly perfecting these steam gages, before submitting them to public inspection), these instruments shall prove to be more reliable for accuracy in denoting the steam pressure than the gages heretofore used, in addition to their recording features, users of steam will not fail to discriminate in their favor. A watchman of this kind will supervise machinery and workmen with more fidelity than many a living watchman. An alarm gong is continuously sounded when any limited pressure is exceeded.
One of the charts will last for several months, and portions may be removed from time to time and filed away for future reference. The cut needs but a brief description. The steam enters by an ordinary pipe coupling into a series of circular, horizontal chambers, placed behind the pencil bearing, and by expanding, the former is made to operate the gear, causing the pencil to move upward in proportion to the degree of steam pressure, and ringing the alarm when the previously fixed limit is reached. The reverse movement of the gear, produced during the reduction of pressure, moves the pencil downwards, simultaneously with the rotary motion (given by means of a horizontal rack and lever operating a pawl within the upper rim) of the receiving drum, and, in consequence of the motion thus given to the chart, the pencil is made to trace an oblique line, invariably in proportion to the fluctuation or reduction of pressure. A vertical line always denotes degrees of increasing pressure.

The chambers consist of pairs of corrugated steel disks, each disk, as well as the other motive parts, being nickelplated, to prevent them from corrosion, even in a saline atmosphere.
The vertical scale is placed at the left of the pencil, as a guide for the chart; also for greater convenience when marking the pressure upon the chart, previous to its removal. The charts are divided into sections, numbered consecutively " 50 ," " 51 ," etc.,the sections being sub-divided into four parts, marked 1, 2, 3, 4.
The instrument is secured with a combination lock, and may be placed in the cabin of a steamer, or office of the commander, as well as in an engineer's or superintendent's room, when required. It is adapted to locomotive, stationary, and marine boilers, of high or low pressure, and to any vessels sustaining internal pressure, as gas receivers, stills, soda fountains, etc.
If was patented in the United States May 5, 1868, Aug. 3, 1899, and Aug. 16, 1870; also in several foreign countries. Manufactured and sold solely by "The Recording Steam Gauge Company of New York," 91 Liberty st., New York.

A Queer Capture or Telegraph Apparatus.
At Manheim there is on exhibition a telegraphic apparatus, taken from the French, which is to be sold for the benefit of the captor. It was obtained in the following manner: A certain dragoon of the Baden Guards, by name Muench, with
two of his comrades, was sent to reconnoitre as far as the Vosges. They had to pass through the village of Raon 1' Etampe, the simple inhabitants of which place had not, as yet, seen any Germans. On the entrance of the three armed dragoons they fled in every direction, with the cry of "The Prussians! the Prussians!" and shut themselves up in their houses. Thus left masters of the town, the dragoons, coolly smoking their cigars, rode to the Town Hall and summoned the Maire. He soon came, pale and trembling. They asked him where the Telegraphic Bureau was located. He pointed it out, and they at once went to it, and Muench singly, and

EDSON'S RECORDING STEAM GAGE

The commandant of the place, on learning what had happened, declared that he could not survive the dishonor of
having commanded in a town of 8,000 inhabitants, where having commanded in a town of 8,000 inhabitants, where
three of the enemy's men were allowed to enter and work three of the enemy's men were allowed to enter and work
their own will, and shot himself dead on the spot. The ap paratus is worth about 600 francs, and was presented to Muench, on his return to camp, by his commanding officer.

MERRIMAN'S IMPROVED WATER-PROOF DRESS AND LIFE PRESERVER.

The accompanying engravings represent C. S. Merriman's patent water-proof dress and life preserver ready for use, and detail of the same.

It consists of two parts; namely, pantaloons and coat joined at the waist, so as to be water-tight, by means of a metallic ring and elastic rubber bands, as shown in Fig. 2.
The coat is provided with a hood, which covers the head, leaving an aperture about the nose, eyes, and mouth, which surrounded by a band of elastic india-rubber.
The neck of the garment is made of a size sufficient to al low the head to pass up through into the hood, which has a lining extending down the back of the neck in such manner as to form an air chamber. When unfolded the air chamber presses upon the back of the head of the wearer, causing tendency to push the head forward out of the opening, and causing the flexible rubber to be drawn smoothly and tigh about the faces so as to exclude water from pressing in.
The front and back of the coat are also lined, and are inflated by means of the tubes shown. Vertical partitions in the middle of the front and back of the coat, and also at the and the lining into four air chambers, besides the one at the back of the head. The sleeves terminate with rubber gloves, as shown.

The bottom of the coat is provided with an elastic rubber and, three inches wide, and one sixteenth of an inch thick. The inside and lower edge of this band for a width of one nch is left three sixteenths of an inch thick, with the projec ion on the inside, and square shoulders at the top, as shown in the detail.
The pantaloons are provided with a ring or band of metal or other rigid material, sufficiently large to pass over the hips of the wearer. Said band is made flaring, with the large side up, and is put between the inner lining and outside ma terial at the top of the pantaloons. A rubber band, two and ne half inches wide and one eighth of an inch thick, is then drawn smoothly about the first even with its upper edge, and

The pantaloons are lined down to the rubber the are inflated by means of ets. Tubes which pass in at the pock ets. The lower portions of the panta loons terminate with tight boots.
When the coat and pantaloons are joined together, the bottom of the former is drawn over the top of the latter, so as to have the thicker portion of the rubber band on the coat below the thicker portion of the similar band on the pantaloons. The joint then forms a dovetail or lock-joint, as shown in the detail. The whole is now secured by means of a strap buckled tightly over the joint. The strap is secured in its place by small loops or thimbles placed at intervals about the rubber band of the coat.

On the 18th day of October, 1870, the inventor, as we learn from a Western exchange, swam and floated fully three miles in the Missouri River in presence of many spectators. The water was very cold, ice having formed a quarter of an inch thick the night before. On coming from the water he found himself perfectly dry, warm, and comforta ble. On the 19th day of December, 1870, he gavean exhibition off the Battery, at New York, with equal success, which ex hibition we had the pleasure of witnessing, and from which we formed a very favorable opinion of the usefulness of the device as a life-preserving apparatus.
The dress is convenient to carry, weighing only from ten to fifteen pounds, and when folded, being easily packed in a carpet bag. It can be put on and adjusted in from two to three minutes, and when properly put on excludes the water perfectly. When the dress is fully inflated the body is surrounded with a stratum of air, and lies with the utmost ease pon this elastic cushion. The non-conducting property of this layer of air, and the material of which the suit is made,

keeps the body warm even in a very cold atmosphere. The body floats about one third above the surface, and the head rests on the elastic pillow formed by the inflated hood. We judge from the experiment we witnessed, that, under favor able circumstances, a man in this dress could swim from two to three miles in an hour without exhaustion.
Patented in the United States, August 10, 1869, and subse quently patented in most of the foreign countries through his office. Communications may be addressed to the inven tor, Mr. C. S. Merriman, 363 Broadway. New York.

Tue lessons of the war to surgical science are beginning to be published. One of the most remarkable facts made known from the hospital reports is that the French soldiers have suffered more from the Prussian shells than from the needle gun and bayonet combined. This is contrary to usual experience, which has reckoned artillery more powerful to frighten than to harm; but it agrees with Napoleon's re ported remark to King William at Sedan, as to the marvelous precision of the German cannoneer. It is also said that the needle-gun bullets, though larger than those of the chasse pot, do not penetrate the flesh so far, and so make less serious wounds. The sword bayonet used by the French is a much more savage weapon than the old-fashioned triangular blade, which is still retained by the Prussians. Shell wounds are generally found to heal very easily if no bones are fractured

It is said that in the Antarctic seas there are sea weeds which haye stems about twenty feet high, and with a diameter so great that they have been collected by mariners in those regions for fuel, under the belief that they were driftwood. They are as thick as a man's thigh.

