ADDRESS OF PROFESSOR MORSE, AT THE CEREMONY OF UNVEILING THE STATUE IN CENTRAL PARK. NEW

Friends and Children of the 'Telegraph: When was solicited to be present this evening, in compliance with ponded to the suggestion of one of your number that a comnd which has this dou been placed in position and unveiled hesitated to comply, not that I did not feel a wish in per on to return to you my heartfelt thanks for this unique could use no terms which would adequately express my ap preciation of your kindness. Whatever I may say must fall tions, which agitate me on an occasion so unexampled in the
history of inventions. Gladly would I have shrunk from his public demonstration, were it not that my absence to night, under the circumstances, might be construed into an apathy which I do not feel, and
kindness would justly rebuke.
But where shall thanks begin, if, looking through all in he telegraph to the world be not first of all acknowledged "Not unto us, not unto us, but unto God be all the glory." When I consider that He who rules supreme over the ways ments to accomplish His benevolent purposes to man, as if y grandest contrast, to point the mind with more marke the lowest seat of His footstool. It is His pleasure, however o work by human instrumentality. You have chosen to mpersonate, in the statue this day erected, the invention that, in the attitude so well chosen and so admirably exe cuted by the talented young sculptor whose work presents him so prominently and so favorably before you, he has given permanence to that pregnant and just sentence which was wrought?" Little did that young friend, 27 years ago, (and artless innocence of to-night I most cordially greet, in th artless innocence of a devout heart, dream of the far-reachwho transmitted it. While, as if by inspiration, she struck
the key-note of the invention, placing its real Author upon the throne, it at the same time struck a responding chor within this bosom which still vibrates to temper, with it ringing note, any proud aspirato exclaim: "Is not this, great Babylon which I have built by the might of my power $\%$ "Yes,
little did that young friend dream that she had thus fur nished me a substantial retreat from the contlictinir element which public and private praise at home, and the gratula tions of foreign nations, stir into activity in the human hear $\underset{\text { gift. }}{ }$
You have chosen to impersonate in my humble effigy an
invention which, cradled upon the ocean, had its birth in an American ship. It was nursed and cherished not so much
from personal as from patriotic pride. Forecasting its fu ture, even at its birth, my most powerful stimulus to perse verance through all the perils and trials of its early days-
and they are neither few nor insignificant-was the thought and they are neither few nor insignificant-was the thought that it must inevitably be world-wide in its application, and
moreover, that it would everywhere be hailed as a great moreover, that it would everywhere be hailed as a grea ent occasion that I look upon your proceeding as intended "whose lines" from America "have gone out through all the earth, and their words to the end of the world." In the car
rying out of any plan of improvement, however grand o feasible, no single individual could possibly accomplish without the aid of others. We sire none of us so powerfu that we can dispense with the assistance, in various depart
ments of the work, of those whose experience and knowl edge must supply the needed aid of their expertness. It not sufficient that a brilliant project be proposed, that the there are, in every part of the enterprise, other minds, and other agencies to be consulted for information and counsel to perfect the whole plan. 'The Chief Justice, in delivering
the decision of the Supreme Court, says: "it can make no difference whether he" (the inventor) "derives his information from books or from conversation with men skilled in the
science,"一and "the fact that Morse sought and obtained the necessary information and counsel from thie best sources, and acted upon it, neither imp
The inventor must seek and employ the skilled mechani cian in his workshop toput the invention into practical form, and for this purpose some pecuniary means are required, as
well as mechanical skill. Both these were at hand. Alfred Vail, of Morristown, N. J., with his father and brother, came mechanical skill put it into a condition creditably before the Congress of the nation. To these New Jersey friends is due the first important aid in the progress of the
invention. Aided, also by the talent and scientific skill of invention. Aided, also by the talent and scientific skill of Professor Gale, my esteemed colleague in the University, the
telegraph appeared in Washington in 1838, a suppliant for the means to demonstrate its power. To the Hon F. O. J. belongs the credit of a just appreciation of the new invenof the inditing of an admirably written report in its favor signed by every member of the committee. It was neverthe less thrown aside among the unfinished business of the se sion; and now commenced days of trial. Years of delay were yet before it. It was not till 1842 that it was again
submitted to Congress. Ferris, and Kennedy, and Winthrop, and Aycrigg, McClay, and Wood, and many others in the House, far-seeing statesmen, length, by a bare majority the bill that carried through the ordinary forms, and sent to the Senate where it met with no opposition, and was passed the last night of the session.
necessary here to more than allude. To Ezra Cornell, whose noble benefactions to his State and the country have placed roll of public benefactors, is due the credit of early and roll of public benefactors, is due the credit of early and public line of telegraph ever established. Notwithstanding public success of the experimental essay, another important step
was necessary ere the invention could demonstrate its vast utility. It was not until the skill and experience of the best Postmaster General that ever held that office, the Hon. Amos
Kendall, were brought into requisition, that, amid many dis-

couragements, the various companies were organized, and in

 the hands of such enterprising men as Sibley, who united the Atlantic and Pacific, and Swain, and Wade, and a host ofdetermined men whose names would read like the pages of a dictionary, this vast country, from the northern boundaries of Canada to the Gulf of Mexico, and from the shores of the
Atlantic to the Pacific, was webbed with telegraphic wires. Another grand stride was yet to be taken ere international communication could be established. InOctober, 1842, the first submarine telegraph cable was laid by me in one moonlight night, in the harbor of this city, which proved experimentally the practicability of submarine telegraphy, and from the result of this success I ventured, the year after, in a letter to
the Secretary of the Treasury, to predict the certainty of the atlantic Telegraph It was then believed to be a visionary dream; and had the individual carrying out of so bold an dream; and had the individual carrying out of so bold an
enterprise depended upon me alone, it might still have been
a dream. But at this crisis another mind was touched with a dream. But at this crisis another mind was touched with
the necessary enthusiasm, admirably fitted in every particuthe necessary enthusiasm, admirably fitted in every particuas well as financial skill and influence, to undertake the novel attempt. 'To Cyrus W. Field, more than to any other individual, belongs the honor of carrying to completion this great undertaking. Associating with himself Cooper, and
Taylor, and Roberts, and White, and Hunt, and Dudley Field, and others on this side the Atlantic, and, two years later Peabody, and Brett, and Brooking, and Lampson, and Gurney, and Morgan and others in Great Britain, making the ocean but an insignificant ferry by his repeated crossings, un-
daunted by temporary failures and unforeseen accidents, he rested not till Britain and America were united in telegraphic bonds-the Old and the New World in instantaneous communication.

If modern progress in the arts and sciences has given unhroughout the world, back of all are the former discoveries and inventions of the scientific minds of Europe and Amer Steinheil, Nersted, Arago, Schweigger, Gauss and Weber, minds in Euraye, Daniell, and Grove, and and Henry in our own country in the past, and the more modern discoveries and inventions of Thompson, of Whitehouse, of Cooke, of Varley, of Glass, and Canning, and numerous others. These all, in a greater or less degree, contributed to the grand result. There is not a namé I have mentioned, and there are many erience in mechanical and engineering and nautical tactics, r in financial practice, might not be the theme of vol
Tonight you have before you a sublimeproof of the
progress of the telegraph, in its march round the globe. It is but a few days since that our veritable antipodes became telegraphically united to us. We can speak to and receive an answer in a few seconds of time from Hong Kong, in day there, and it is perhaps a debatable question whether their ten o'clock is ten today or ten tomorrow. China and the fact but can imarination realize the fact? But I must not further trespass on your patience at this late hour
I cannot close without the expression of my cordial thanks whose unwearied labors early contributed so effectively to the establishment of telegraph lines, and who in a special
manner, as chairman of your memorial fund, has so faithfully and successfully and admirably carried to completion your flattering design. To the eminent governors of thi demonstration their honored presence; to my excellent city authorities of New York; to the Park Commissioner; to the officers and managers of the various. and even rival, tele ion; to the numerous citizens, ladies and gentlemen; and though last, not least, to everyone of my large and increasing my cordial thanks.

IMPROVEMENT OF THE MISSOURI RIVER AT ST. JO-

A preliminary survey of the Missouri river, in the vicinity St. Joseph, with a view to determine the practicabilit f constructing a bridge with a draw, and of protecting the banks from the action of the current, and controling the direction of the channel, in such a way as to secure a con stant steamboat channel along the levee, in front of the city, has been made by Mr. E. D. Mason, C. E., whose report contains some interesting information relative to the char acter of the river at this point. As a navigable river, the Missouri is one of very great importance, affording an outle for the p:oducts of an immense area of great fertility, and
rich in mineral wealth. Such a work as this survey antici pates is of more than local importance, and we therefore give place to some facts concerning it.
The areadrained by the river is over a half million square miles, and four fifths of the water collected from this water shed passes St. Joseph. The average annual rainfall, on that part of the basin drained by the river above the city, is nine teen and a half inches; but six tenths of this water passes during the months of June and July. The river is, there fore, during these months, a swollen, rapid torrent, making havoc in its banks, cutting out new channels and filling up
old ones, and, it is needless to say, so changing its channels that, in the subsequent low water, navigation is inter fered with, and the approach of steamboats to the levee is difficult. Mr. Mason states that, during an ordinary spring lood, 170,000 cubic feet of water pass per second, with a ve locity of three and eight tenths miles per hour, while, at low water the mean flow is reduced to 18,000 cubic feet per sec , and the velocity to two and six tenths miles per hour.
The following extract from the report will se, ve to exhibit the necessary results of this enormous difference in fow, and the engineering difficulties to be overcome in the proposed improvements
A survey was made of the river, from the rock bluffs nea and its low and high water miles, to a point below the city, The fall in the low water channel, for that distance, was found to be uniformly $82-100$ of a foot per mile. This chan nel is very tortuous, crossing the bed of the hivh water chan
current at high water is much shorter than at low water, and has a fall of over one font per mile. Although the mean ve which probably flow with nearly double that speed, at both high and low water At low water the channel opposite the city is from 400 to 500 feet wide, and from fifteen to thirt feet deep The difference of level between extreme high and low water is found to be twenty-three feet. At the greates flood, the narrowest channel opposite the city will be 1,420 feet wide. Rock is found at an average depth of forty-three feet below low water, and at no point deeper than forty-eigh ceet. The bed of the river is fine sand on top, with layers souri shore, in the vicinity of the hereinafter proposed brid site, is composed of tough clay, or "gumbo," having consid erable power to resist the action of ruming water. Its lin has changed comparatively little within the memory of the
oldest settlers. The Kansas shore is alluvium, in alternate layers of fine salt and silt. of small specific gravity, and ver easily moved by an impinging current. The sand in the be the material composing the moved byore - and trifling the material composing the Kansas shore; and trifling ob portant changes in the direction and depth of the channel making a rapid river with is but rock where a few days before was dry land at ordinary high water. With these facts in view, any bridge across the Mis built upon the hypothesis that the river is at flood the whol from bank to bank, its channel bed on the rock, and he current running at its swiftest speed.
In connection with the improvements designed to main ain a channel along the levee, the protection of the Kansa shore, to prevent the destruction of valuable arable lands is considered. Mr. Mason thinks this might be accomplished by sloping the bank and covering it with rip-rap, constitutin paved levee the whole distance from St. Joseph to Wathe na; but he thinks piers to deflect the current from the shore a better plan. as well as cheaper. These piers would not only protect the Kansas shore, but accomplish the desired end of throwing the current over and along the levee at St. Joseph, keeping the channel clear and open.
The proposed bridge will be 1,450 feet in length, having our fixed spans, each 260 feet in length, and a draw of two spans 225 feet each. Its estimated cost is $\$ 765,000$

SCIENTIFIC INTELLIGENCE.

QUANTITATIVE DETERMINATION OF LODINE

William Reinige proposes a new method for the quantita ive determination of iodine, founded upon the decomposition of the permanganate of potash by iodide of potassium. As neither chlorine nor bromine exhibits the same reaction, thi method would appear to be the best for she quantitative analysis of iodine compounds. Take a solution of an iodin salt, add a little sulphuric, acid to neutralize the excess of alkali, or render slightly alkaline by means of carbonate of potash or soda; then heat to gentle boiling in a beaker glass, and gradually add a solution, composed of 2.5 grammes per manganate of potash dissolved in 4975 grammes distilled water, until all of the iodide of potassium is decomposed The quantity of permanganate consumed will give the mount of iodine for every gramme milligrammes of iodine. Tue accuracy of the analysis is not destroyed by the presence of bromine or chlorine in the solu tions.

NEW GAS burner.

A new lamp, similar to a Bunsen burner, and called a forge lamp, has been introduced in London, by Delheid \& Berg'é. It consists of a candue burner, overwhich is put a tube as in is larger and always ends below the opening of the gas jet, o that the air enters below thejet, and on all sides of it. As oon as the gas mixed with air is lighted at the top of the ylinder, a powerful draft is at once produced, giving the ffect of a blowpipe flame. To obviate the flickering of the lame, an outer cylinder is soldered to the inner in such a way that the air, before it reaches the inner tube, must pass hrough the outer. This serves the double purpose of keeping the apparatus cool and of heating the air before it mixes with the gas, by which the caloric effects are largely inreased. The gas is entirely consumed, and the draft of air is much greater than in an ordinary Bunsen burner, and the apparatus is remarkably simple.

SUITABLE MUCLLACE TOR PABCHMENT PAPER.
The difficulty of pasting edges of parchment paper toge. her has seriously interfered with the employment of this material for many purposes. The enormous consumption of
the celebrated pea sausage during the recent war in Europe, ccasioned an unusual demand tor suitable packing cases. As 100,000 sausages were manufactured daily, the supply of entrails was wholly inadequate to meet the demand, and any experiments were made with parchment paper, until Dr. Jacobsen succeeded in inventing a glue that would withtand hot water, and was entirely suited for the purpose of making watertight joints. One firm is reported to have made more than a million cases in the course of a few months, and s many as 150 workmen are kept constantly employed. Several layers of parchment paper are placed upon each ther, and in this way imitation parchment is prepared for bookbinding. It is also probable that elastic gas tubing could be made of the same material, and that an extensive use would at once arise for paper bags impervious to moise, and for wraps for all kinds of delicategoods. It would

In recompense for the short duration of life entailed by one occupations, it must be regarded as a consoling, almos sublime fact, that labor, in general, does not tend to shorten fe, but rather, by strengthening the body, to lengthen it while idleness and luxury are productive of the same results as the most unhealthy occupations.

Improved Feed Cutter.

The combination of devices, shown in the annexed engraving, renders the machine illustrated a most efficient, as well as simple and durable, implement. We have seldom met with an agricultural machine which seemed, in all respects, more adapted to the purpose it was intended to subserve. The feed cutter is a machine that should be on every farm, and the inventor of the one we are about to describe has evidently comprehended the requirements of farmers in this respect. The feeding apparatus is one of the principal features of the invention. Its operation is as follows
A lug, A, is attached to the knife plate. As this plate is actuated by the hand in cutting the forage, the lug lifts the end of a pivoted bar, B. To the bar, B, is pivoted a ratchet bar, C. This bar is bent at right angles and toothed, as shown, so that the teeth of one end engage the upp r ratchet wheel, D, and the lower teeth actuate the lower ratchet wheel. These wheels are res pectively attached to the feed rolls. The ef fect of this arrangement is, that the operato can gage his feed exactly as he wants it while cutting, the amount of feed being re gulated by, and depending upon, the motion of the knife plate. The higher the latter is lifted, the greater will be the feed, and vice versâ.
The upper feed roller is held down upon the hay or other material to be cut, by means of a wooden spring, E, which acts through a crosshead and vertical bars, F.

The feed rollers are furnished with suitable blader and points with which to grasp and carry forward the materials to be cut and also to hold them firmly so that they will not be drawn out of place by the press ure of the cutting knife
The cutter bar, at the point where it is pivoted to the fulcrum, is compressed beby a nut, and a friction compress tightened by a thumb screw, so as to force the knife always to move close to the face plate, allowing no chance for it to spring off from the ing no chance for it
substance to be cut.
The advantages gained, in addition to those already stated, are, a broad guide plate for the knife; the closeness with which the knife holds itself to the face plate; and the auto tomatic $f \in e d$ arrangement, by which the dan ger and labor of feeding by the hand of the operator is avoided.

The machine is covered by two patents, obtained through the Scientific American Patent Agency, dated respectively Dec. 1, 1869, and Nov. 15, 1870. Address the patentee, G. S. Garth, for territorial rights and further information, at Mill Hall, Clinton Co., Pa. Pa., Md., and D. C., are not for sale

RE-VACCINATION--GLYCERIN LYMPH

The great prevalence of smallpox in Europe and this coun try, at the present time, has led to a re-examination of the statistics of vaccination. It has been found that no re-vacci ñated person has been admitted into the London hospitals, a fact which speaks volumes in favor of the practice.
Another peculiarity is now recognized, and that is, that vaccination previous to the age of puberty cannot be relied upon as a protection afterward, and that therefore children should be re-vaccinated when they have passed the boundary between childiood and adult age.
Prussia is avowedly the country where regular re-vaccination is most generally practised, the law making the precau tion obligatory on every person, and the authorities conscien tiously watching over its performance. As a natural result cases of small pox are very rare. It has, however been objected, there as here, that lymph is scarce. To make the most of such lymph as there is, Government has tried its application when mixed with glycerin, and the result was so successfu as to lead to a public recommendation of the mixture to official vaccinating surgeons. The manner in which the glycer in lymph is prepared is thus described by the Reichsan zeiger: The pustules of a healthy vaccinated person are openzeiger: The pustules of a healthy vaccinated person are oped by means of a lancet, the same instrument being gently applied to assist the efflux. The lymph is then best placed in the hollow of a watch glass, and there is mixed with twice its quantity of chemically pure glycerin and as much distilled water. The liquids are thoroughly well mixed with a paint brusl. The mixture may be preserved for use in capillary tubes or small medicine glasses. The lymph thus procure is considered equal in effect to pure lymph; care must, how ever, be taken to shake it before use. As the same quantity that now suffices for one is thus made to suffice for five, the discovery ought to be extremely useful in crowded cities like ours.

Electrotypy---Imitation of Leather.

'There is not a doubt but that this is an age of imitations; and the sham is so often taken for the real that even judges themselves have been misled. In manufactures there is such a constant demand for something new that the best energies are severely taxed to meet the requirements of the hour, and it is surprising to many how promptly this craving is satis fied. As an instance of the extending power of the imitator's art, we have noticed that Messrs. Elkington and Co., of Birmingham, have arranged to produce, by the electrotype process. imitations of the choicest grains of leather. They say that the system of producing leathers in exact facsimile of
morocco, seal, and other skins. by means of electro deposited copper rollers, has now become an established branch of leather manufacture. The fine grain of the most rare and valuable skins can by this process be reproduced at a merely fractional cost, as compared with the ordinary inferior imitations. The system may be briefly described as follows: An ordinary machine roller is fitted with a mandrel, upon which is denosited, by a new process, the copper facsimile. The latter is an exact copy of any rare or choice skin required to be reproduced, and it is only by a recent improvement in electrotyping that the difficulty of depositing from such a substance as leather has been surmounted. An ordinary skin can thus be impressed with the beautiful surface of morocco skin, even to the finest variations of grain, and several thousand may be copied by one deposit. In all cases the actual skin required to be copied must be sent. These roll

350 rooms, and six smaller ones, as well as nearly 2,000 houses, were utterly broken in pieces. The deaths are known to amount to 2,293 people. The influence took a cir cular direction, and covered 400 miles of ground. Our readers will understand the effect of this visitation on such a people as the Chinese, whose superstition and credulity are proverbial.

THE GOVERNMENT OF NEW YORK CITY.

The rapidity of the growth of population and wealth in New York city naturally makes its inhabitants anxious that its administration be conducted in the best, wisest, and most economical manner. All Americans are proud of the Empire City, and we natives especially hope to see it the best gov erned city in the United States.

Of the importance of the city, and the magnitude of its interests, the annual message of the Mayor, just published, gives us opportunity for judging. The population is declared to be 942,252 souls, the amount of property real and personal, valued for taxation is $\$ 1,075,000,000$, and the taxes for the year $\$ 23,300,000$. The imports fromother countries amounted to over $\$ 300,000,000$, and the cus toms duties collected to over $\$ 140,000,000$. The exports from the port of New York were about $\$ 300,000,000$. These are imposing figures, showing that the commercial interests of New York will alone suffice to place the United States high in the category of nations. For the comfort and well being of its vas population, 460 miles of streets, 340 miles of water pipes, and 275 miles of sewers, hav been constructed ; 19,000 gas lamps have been erected ; and nearly 1,300 cars and omnibuses and 94,000 carriages, licensed and private traverse the streets daily.
The area of New York city comprises about 22 square miles, with a frontage to the Hud son and East Rivers of 29 miles. Of the neces sity for the reconstruction of the whole water frontage, we have spoken at length in a re cent article, as well as of the plans under con sideration, and the manner of carrying them out. In respect to public improvements gen erally, the Mayor states that the city could be liberally ornamented and beautified, as wel
ers are supplied ready for the machine: or, if preferred, manufacturers may send their own mandrels and have the facsimile deposited thereon

BORING AND MORTISING MACHINE.

Our engraving is a good representation of a boring and mortising machine, invented by Arthur O'Neal, of Hyde Park, Mass. As will be seen, it is simply the adaptation of an old principle to driving a gang of augers instead of a

single one. The power is first transmitted to the central auger, and from its shaft to the others by means of gearing, the two outside ones having their twist and cutting edges in the opposite direction from the middle one.

Tremendous Earthquake in China
The neighborhood of Bathang, in the district of Sechuen, the central western province of China, has been devastated by one of the most appalling earthquakes of modern times, On April 4th, the earth trembled so much that houses and public buildings were thrown down and destroyed. Volcanic fire burst forth from fissures in the ground, and tempests of wind increased the destructive power of the flames. The subterranean thunder continued to be heard for three days, and the whole district was rocked like a vessel at sea. The disturbance lasted for ten days, after which the motion sub sided. Berides large public buildings, a temple containing
as rendered more subservient to the public convenience, by an expenditure of $\$ 20,000,000$ during the nex three years. and that the increased value of property would lighten the pressure of tax incidence. The property belonging to the $\$ 267,000,000$, while the outstanding debt is only abou $\$ 80,000,000$. There is no wonder, then, that the saving banks and other monetary institutions in search of unques tionable investments, which are accustomed to prefer securi ties that are backed by real estate, invest largely in bonds of the City of New York.

The Marks from Small Pox

The painful and malignant disease, which has lately, thanks to uncleanliness and the disregard of the most ordinary precautions for the preservation of health, made such a change in the bills of mortality in this country and in Europe, calls to mind several of the remedies which are reputed to have the virtue of preventing the disfiguration of the skin. Among others, the Sarracenia purpurea was introduced into Eng land. This plant is familiar to the natives of South Caro lina, and is used by them internally, in the form of infusion, or decoction, for the cure of the same disease. It is a tonic slightly stimulating, and is useful in cases of dyspepsia, wa terbrash, and abdominal distension. There is another, well known in India, the leaves of which are used by the natives to cover the bodies of sufferers for the above mentioned pur pose. Dr. Wright says that " the leaves, beaten into a pulp and externally applied, act like a charm in removing the most intractable form of psora and other pustular eruptions.' This plant is the Melia Azadir-achta of Linnæus, and is called pride of India, pride of China, or bead tree. It is found, also, in our Southern States. It is, when taken internally, cathar tic, emetic, and a powerful vermifuge; but its use, as de scribed by Dr. Wright, does not appear to be known in this country. We look with interest for the results of experiments with it for the purpose of lessening the terrors of small pox.

Singer's Sewing Machine in England.-Arrangements have been made for the extension on a large scale of the Singer Sewing Machine Company's manufactory in James street, Bridgeton. Building operations have already been commenced, and the additions contemplated will give about 25,000 square feet of extra floorage, thus affording employ ment to 300 additional hands. The new premises are e pected to be finished and ready for occupation by August. The factory will then be capable of turning out fully 1,400 machines per week, being nearly double the present average production; while the total number of hands employed will be very little sh.ort of 1,000 . These extensions will necessarily involve a large addition to the existing plant, and a lot of new machinery is about to be introduced for the medium or No. 1 machine. It is said that the Singer machine factory at Bridgeton is now the largest in the United Kingdom, and, in its enlarged form, it will compare favorably with some of the colossal establishments on the other side of the Atlantic. -Engineering.

