Optical Appearance of cut Lines in Glass. The use of high powers in delicate investigations renders it necessary that the microscopist should study the character of appearances which arise from optical laws, and which can ouly be rightly interpreted by referring them to forms and structures to which they bear no real or exact resemblance. A short time since, the writer called attention to the deceptive nature of the appearances presented by the fine cracks in silica films; and further observations show that if the finest or narrowest of such marks are select ed for examination, the chances of obtaining perfect illusion are increased by the amount of magnification and the perfection of the objectives employed. Delicate interference bands, pseudo-beading, etc., look more real with well corrected object glasses than with bad; and careful illumination will of ten add to the structural aspect of mere optical effects. The edges of silica cracks differ from edges of minute furrows cut in glass, being smooth instead of jagged. The latter as well as the formes are well worth study. Preparatory to examining such furrows as are cut with diamonds in glass for micro muters or diffraction gratings, it is well to notice the edges of thin glass cut for slide covers. If half a dozen or more thin glass squares are held close together, and viewed, edges upward, as transparent objects, a variety of curious optical effects will be seen, arising from interfering reflections and refractions. The examination should begin with an inch or tivo thirds, after which half inch, and quarter or one fifth will be advantageously emoloyed. It is easy to focus parts of the glasses' edges, so as to show their true form ; but portions a little in or out of focus will show beads, appearances like columns of Egyptian architecture, etc. Most of these optical appearances are sufficiently hazy or confused to give optical appearances are sufficiently hazy or confused to give warning of their true nature; but generally some will be
found so sharp and clear that, if viewed separately, they may easily mislead a practised observer. In making these ex periments, it is best to have handy a box containing at least several dozens of the thin glasses, as some sets will prove
much mor interesting than others. They should be viewed much morv interesting than others. They should be viewed with their edges parallel to the plane of the objective, and also at various angles. The corners of the squares should also be looked at.
Lines cut in glass for micrometers or diffraction gratings are usually filled up with finely divided black lead, and the same material has been employedin the writings and patterns made with the Peter's machine. This substance of course modifies the appearances. To see them in the simpler form, recourse was had to Mr. Ackland (Horne and Thornthwaite), who ruled several sets of fine lines, each on glass slides, at varying distances $1-2000^{\prime \prime}, 1-3000^{\prime \prime}$, and $1-4000^{\prime \prime}$, and mounted them with Canada balsam, so that they could be safely used with immersion lenses. One set was not covered or mounted in any way.
Those who have examined very minute writing done by the late Mr. Farrants with the Peter's machine will be aware that even when a very fine diamond point is used, the incision partakes more of the character of a scratch than of a clean cut. It seems impossible to cut glass with a smooth, clear edge, such as certain metals readlly give with a sharp tool. A line cut in glass is thus a furrow, more or les: rough at the bottom and sides, and when viewed correctly under the microscope, has the appearance of a narrow depression less transparent than the adjacent spaces. It is difficult to get a really correet view. Even under favorable circumstances of illumination and correction, the edges of a cut are apt to al ${ }^{\text {p- }}$ pear as two raised lines.
Many instructive optical appearances, which might bewil der the observer if the character of the object were not known, may be easily produced, as the following notes will show. The observations are made with Powell and Lealand's immersion one eighth and Ross's four tenths, condenser aperture $109^{\circ}$. Using central stop, A, and varying inclinations of mirror. Paratin lamp. ( $1 a$ ) Cuts as rounded bands; interspaces flattish furrows. The bands illuminated on right side, shaded on left. Tint of lightest part of furrows bluish. (2a) Flatti.h bands and rounded furrows, the former slightly shaded on left; tint of shading bluish. (3a) Oblique rounded furrows with narrow blue ridges; broadish bands with nar rower elevated bands up their centers, light on right side, shaded deeply down the furrowed side on left.
Same condenser $109^{\circ}$, two radial slots forming obtuse angle. Angle of mirror varying. (1b) Broad, flat spaces, narrow, shaded, and elevated ridges. (2b) Ridges four times as wide asNo. 1, with rounded tops. (3b) Narrowishgrooves, something like actual object. (4b) False ridges, puzzling to count and hollow.
Same condenser $109^{\circ}$, two rectangular radial slots. Angle of mirror varied. (1c) Half round hollows, with rod-like ridges in the middle; rounded interspace elevations some what lower than ridges and between them. (ec) Narrower ridges; nearly flat spaces. (3c) Appearance of additional ridges, strongly shaded on left. (4c) Narrow ridges, shaded on right; tlattish spaces, and low ridges, with narrower shelving shade spaces down to ridges, etc., etc.
Same condenser, $109^{\circ}$; one radial slot which was rotated to various angles. Angle of mirror varied. (1d) Each cut made into a flattish space, with two narrow raised edges, shaded on left. (2d) Cuts made into flattish, ribbon-like ele-
vations, with raised edges. (3d) Interspaces raised, with vations, with raised edges. (3d) Interspaces raised, with
rounded edges; cuts made to look flattish, and at lower level. rounded edges; cuts made to look flattish, and at lower level.
(4d) Appearance of additional and imperfect ridges. (5d) Series of imbricated and shaded bands.
In the lines cut by Mr. Ackland no attempt was made to produce the narrowest possible furrows. The width of furslightly deviated from, as some cuts were a little deeper than others, and thus caused the wedge-shaped diamond point to
open the furrows a little wider. The interspaces of the nar rowest were much wider than the cuts. It is obvious that cut wide enough to be distinctly seen, under given magni flcation, will present to view two linear edges, and thus be reckoned as two lines, if its true chasacterbe not considered. Cuts very close together may, if the cohesion of the glass nd the perfectio
It will baces
It will be seen that in the preceding statements only one instance is mentioned of appearances agreeing tolerably wel with the real facts. It must not be inferred from this that it is not easy to exhibit moderately fine cuts correctly, or very nearly so. The object of this paper was to select a number of appearances all looking as if they might correrespond with the facts, and all differing more or less from them.
Those who study the most vexatious diatoms or Nobert's test lines must, it appears to the writer, not only take into account what they do se, but what they ought to see, provided the object has a certain deflnite structure, and certain powers of producing optical images under given conditions,
ON A NEW CONNECTION FOR THE INDUCTION COIL.
By Prof. Edwin J. Honston, in the Journal or the Franclin Institute.
The following experiments were made at the Central High School of Philadelphia, with a view of increasing the quantity of the spark of the induction coil wi hout greatly diminishing its length. The instrument used was made by Ritchie, of Boston, and will throw the spark six inches in iree air.
One of the poles or ends of the secondary wire was connected with the earth by a copper wire, attached to a gas pipe. The other pole was connected with a wire, which rested on a large lecture table holding the coil. On turning the break piece, the electricity, instead of being lost by passing along the wires to the earth, jumped from the pole connected with the table to that connected with the earth. The thickness of the spark was greatly increased, its length diminished, and its color changed to a silvery white, as when a Leyden jar is placed in the path of the discharge.

While the electricity is flowing between the points, long sparks may be drawn from any part of the table, or from any metallic article within eight or nine feet of the coil. On one occasion, the gas was ligh ed by a spark drawn from the finger of a person standing on the floor. The gas pipe being in almost perfect connection with the earth, the spark must in almost perfect connection with the earth, the span
have been given to it from the Body of the person.

On another occasion, one wire was attached to the gas pipe as before, and the other to a stove, whose pipe connects with that of another stove in an adjoining room. The thickness of the spark was greatly increased. Sparks were drawn from the distant stove, and even from a small steam engine, which latter was fully thirty feet from the coil. In all the experiments it was found necessary to insulate the handie of the break piece, as a slight shock was experienced at every break. The poles being kept at a distance from each other less than the insulating power of the coil, six inches, no danger of injuring the instrument was apprehended. In one inger of injuring the instrument was apprehended. In one in-
stance sparks were drawn, in a room underneath the adjoining room, from a wire which connected with the table on which the coil rested.
These facts showing great loss of the electricity, but indicating the need for a large conductor, probably to allow the rapid discharge of the secondary wire, a large insulated conductor was extemporized, by placing some old tin stills and percolators on large glass jars. On connecting one of the poles with this conductor, and the other with the gas pipe, the quantity of the spark was increased, thongh there was reason to believe that, with a larger conductor, better results would have been obtained. The conductor was then divided into two, of about equal size, which were connected with the poles. The quantity of the spark was increased, with, however, great diminution in the length. By successively diminshing the size of one of the conductors, and increasing that of the other, the length of the spark was increased, without any sensible diminution in its quantity, until, when one of the conductors was less than one square foot in surface, a
tained.

It will be noticed that this connection is somewhat similar to that used in the common cylinder or plate mechine, in which one of the conductors, generally the negative, is con nected with the earth, and the quantity of the electricity thereby increased.
In all the experiments in which one pole was in partial connection with the earth, as when it rested on the table, the loss of electricity must have been very great, for several gas the water pipes were in connection with the table. If, then, which allows the rapid induction of electricity in the secondary wire by its rapid discharge, and thereby, notwithstanding the loss, gives so great an increase in the quantity of the spark, it would seem that if, instead of the table, an insulated conductor of very large surface were used, a much greater increase in quantity would be obtained.
It would seem from the above experiments, that the maximum increase will be obtained when one of the poles is connected with an insulated conductor, say several hundred square feet in surface, and the other with the earth.

## Cultivation of Rice

In preparing the land for rice, the ground is cleared, embanked and ditched in a thorough mianner, and is often laid out into independent fields, so that a certain number of hands complete any one operation connected with the culture of the rice, in a single day. The ditches are often five feet
wide, and as many deep, and the main one is sometimes large nough to be used as a canal in boating the rice in large flats, from the fields to the place of stacking. The land is plowed or dug over with the hoe early in the winter, and is kept under water during the warm changes in the weather. In March, the ground is left to dry, and made ready for the seeds. Trenches for the same are run at right angles with the drains from thirteen to fifteen inches apart, with a four inch trenching hoe. From April till the middle of May, the seed is scattered in these trenches at the rate of about two and a half bushels to the acre. The seed is sown lightly covered with the soil, and the plan has been to let in the water upon the land for several days after the seed is put in, or until it sprouts. Latterly it is considered better to stir the seed in clayey water the day before sowing, as the clay adheres to the seed so that it remains in the trenches when the water is let on, if not covered by the soil. After the water stands from four to six days on the sprouts, it is let off, and when the plants are about flve weeks old, the first hoeing takes place. The plants are again hoed in ten days, and then the "long water" is put on for two weeks, at first deep for four days, afterwards gradually diminishing the depth of water. Aftertwo more hoeinge, the joint appears in the plant, and the " joint water" is let on to remain a few days before the grain is ready to be cut.with the sickle.
Rice grows much like wheat, with stalks from four to six eet high. It is closer jointed than wheat, with leaves re embling those of the leek, and the seed is inclosed in a rough, yellow looking husk. The average yield on the low and is about forty bushels to the acre, a bushel weighing usually forty-five pounds.
South Carolina is the most successful rice growing State in the Union, and her rice commands the highest prices in market. It is said that the seed was first introduced into the State accidentally, from a Madagascar vessel that put into Charleston in 1694
It was formerly customary for the planters to have their laves separate the rice from the outside husk by pounding in small hand mortars. Each male hand had his task al lotted him, of pounding three pecks before hreakfast, and the ame amount after the day's work was over in the field. It is now done by machinery at the rice mill. The mill is provided with long upright wooden pestles, which pound the ice a certain number of strokes in long wooden mortars After undergoing this process the rice is cleaned and then passed over wire sieves, so arranged that the small and brok en grain falls through the fiue meshes in the sieve, the large and perfect grain through the larger ones. In this way the various grades of rice are assorted for market.

## WOVEN WIRE MATTRESSES.

In almost every newspaper one takes up, the eye meets a accomprang ress Company, Geo. C. Perkins, Secretary, Hartford, Conn. In the Scientific American about a year and a half ago when the manufacture of these mattresses was in itsinfancy, and before some of theimprovementssince added were made we published an engraving of the article, which elicited considerable inquiry from managers of hospitals and other pub lic institutions, in various parts of the United States, and from some of the warmer countries in Middle and South America.
From the time of the fall exhibition of the American In stitute of 1869, when the energetic secretary of the company first exhibited them, the wire mattress has been gaining avor with the public, until it is now on sale in nearly all cities and large towns in the United States.
The company, we learn, is turning out several handred eds a week, and the demand for hospitals, steamships and private use is constantly increasing.
The mattresses are durable, cool for warm weather, com fortable to lie upon, and insects avoid them.

A manufacturer of Easthampton has offered an endowment of $\$, 500,000$ to Amherst College, on condition of the ame being changed to "Williston University"

A railroad of 30 inch gage, 11 miles in length, is to be constructed in Green county, Tenn. It will cost $\$ 30,000$ only

PATENT OFFICE DECISION.



## The Largest Newspaper Mail <br> Which goes to any orm in thte country, ts recetved by Geo. P. Rowell \& Co. the New York Advertistng Agents. Their place of Dustness is at No. 40 Park

 Row, New York
## Zusitess and tersodal.

The Chargefor Insertion under this head is One Dollar a Line. If the
exceed Fbur Lines. One Dotlar and a Haif per Line woll be charged.
The paper that meets the eye of manufacturers throughout the United States-Boston Bulletin, $\$ 000$ a year. Advcrtisementa 17 c . a llne. For the best, purest, and most economical Machinery Oils, of all kinds, send to Oll House or Chard \& Howe, 131 Maiden Lane, N. Y We will pay more money for Brass Turnings, old Brass, Copper, Lead, and Zinc than any other estabishment. Consignments, large or
small, sollicited from all parts of the Dntted States. Du Plaine \& Reeves, small, solicited Irom all parts of the
760 S . Broad st., Philadelphia, Pa.
The best Anti-Friction Metal is made by the Tubal Smelting Works, Phlladelphia, Ps. Bny it and prove ft .
The undersigned, patentee of a valuable improvement in Window Sash Attachments, is desirous of making arrangements for the
manufacture thereof, by partles who have good facllttes. Freeman Brady, Jr., Washington, Pa
John A. Sears, Rockford, Corsa County, Ala., has for sale 80 Beaver Hides. He wishes a recelpt for batting Beavers.
Railroad Companies reach all trustworthy contractors by advertislig in the Railioad Gazetts.
Machinists' Grindstones. J. E. Mitchell, Philadelphia.
Face Grindstones, for Nail Cutters. Mitchell, Philadelphia. Craigleith, for Glass Cutters. Mitchell, Philadelphia.
Soap Stone Packing, in large or small quantities. Grenee, Tweed \& Co., 18 Park Place.
Walrus Leather, for polishing silver or plated ware. Greene, Tweed \& Co., 18 Park Plac
Wanted.-lron Planer, new or secondhand; bed short, and over 30 in . wide. Send prices andcatsto Trevor\& Co., Lockport, N. Y. Wanted.-New or secondhand Carwheel Borer, Axle Lathe, double head preferred; Wheel Press and Centering Lathe. Addre
description, maker's name, and price, Michigan Car Co., Detrolt.
Best Cement Water and Drain Pipe Machinery. Works by hand, horse, water, or steam power: State and Connty Rights fo
J. W. Stockwell \& Co., Nos. 28 and 163 Danforth st., Portland, Me.
Railroad Bonds.-Whether you wish to buy or sell, write to Charles W. Hasgler, 7 Wall street. New York
Cotton Machinery for sale. See advertisement. Also, a threestory Brick Mill. R. H. Norris, Paterson. N.J.
Manufacturers of Fire Engines (hand or steam) and Hose, please send circulard, with prices, etc., to J. P. Hale, iltayor, Charleston,
Eanawha C. H., West Va.
Engine Lathe wanted, about 30 inch swing, 12 feet bed, in good order. Pratt \& Co., 87 Chambers at, and Bufralo, N. Y
The Philadelphia Scientific Mechanics' Circle will answer any mechanical gnestlon for 25 cts . Address as above, 125 N .7 th st., Phlladelphia.
Electrical Instruments, Models, etc., made to order, and Gear
Wheels and Pintons cut, by W.Hockhausen, 119 Nassau st., Room 10, N. Y. Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct. Millstone Dressing Diamond Machine-Simple, effective, durable. For degcription of the above see sclentifc Amertcan, Nov. 2ftb,
1869. Also, Glazler's Dlamonds. John Dlekingon. 64 Nassau st., N. Y.
Experimental Machinery and Models, all sizes of Turned ShaftIng, Paper Box, Paper Collar, and Bosonn Platitng Machines, Self-operat-
ing Splnning Jack Attachmcnts. W.H.Toihurst, Mackine Shop, Troy,N. Y. Best Scales.-Fair Prices. Jones, Binghamton, N. Y. Steam Watch Case Manufactory, J. C. Dueber, Cincinnati, Ohio. Every style of case on hand, and made to spectal order.
Agents Wanted-on a new plan-to sell a patent Collar Stud. Send for Clrcular. S. E. Willams, Hartford, Conn.
L. \& J. W. Feuchtwanger, Chemists, 55 Cedar st., New York, For Hydraulic Jacks, Punches, or Presses, write for circular to E. Lyon, 470 Grand st., New York.
A. G. Bissell \& Co. manufacture packing boxes in shooks at East Sagtnam, Mich.
For mining, wrecking, pumping, drainage, and irrigating ma chinery, ses adveitisement of Andrews' Patente in another column.

Wanted.-A responsible dealer in every town in the United States, to sell " The Tanlte Co.'s" Emery Wheels and Emery Grinders.
Extra inducements from May 1st. Send for terms to "The Tanlte Co.," Extra inducemen
Stroudsburg, Pa .
The new Stem Winding (and Stem Setting) Movements of E. Howard \& Co., Boston. are acknowledged to be, in all respects, the most desirable Stem Winding Watch yet of ered, elther of European or Amerl Belting that is Belting -Always send for the Best Philadel-phtaOak-Tanned, to C. W. Arny. Manufacturer, 301 Cherry st., Phil'a. Send your address to Howard \& Co., No. 865 Broadway, New York, and by return mail you will recelve thetr Descriptive Paice List ot Waltham Watches. All prices reduced since Febrnary 1st.
Ashcroft's Low Water Detector, $\$ 15$; thousands in use; can be apphed tor less than \$1. Names or co:porations haviag thirty in use can
be given. Send or circular. E. E. Ashcroft, Boston, Mass. To Cotton Pressers, Storage Men, and Freighters.-35-horse Engine and Boller, with two Hycraulic Cotton Presses, capable of press.
ing 15 bales a h hour. Machinery first clasg. Price extremely low. Wm. ing 35 bales anhour. Machinery first class,
D. Andrews \& Bro.. 41 k Water st. New York.
Tin Presses \& Hardware Drills. Ferracute Works,Bridgton, N.J. Brown's Coalyard Quarry \& Contractors'A pparatus for hoisting and conveylog materialby ironcable. W.D. Aodrews \& Bro,414 Water st.,N.Y Carpenters wanted- $\$ 10$ per day-to sell the Burglar Proof Sash Lock. Address G. S. Lacey, 27 Park Row, Yor
Improved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one ot them. Selliog tu all parts or the country, Canada,
Europe, etc. Catalogue free. N. H. Baldwin. Laconfa, N. H. Twelve-horse Engine and Boiler, Paint Grinding Machinery FeedPumps, two Martin Bollers, sultable
drews \& Bro. 414 Water st., New York.
Cold Rolled-Shafting,piston rods,pump rods,Collins pat.double compression couplinge, manalaetn red by Jones \& Laughlins,Pittsburgh,Pa. For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron M!lls, Pittsburgh, Pa., for Mthograph, etc.
The Merriman Bolt Cutter-the best made. Send for circulars. H. B. Brown \& Co., 25 Whitney ave., New Haven, Conn. Glynn's Anti-lncrustator for Steam Boilers-The only reliable preventlvc. No foaming, and does not attack metals of botlers. Price 25
cents per lb. c. D. Fredricks, 587 Broad way, New Iork For Fruit-Can Tools Presses Dies for all Metals
or Fruit-Can Tools, Presses,Dies for all Metals, apply to Bliss $\&$ Williams, successor to May \&
fyn, N.Y. Send for catalogne
Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Biss,4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y
Taft's Portable Hot Air, Vapor and Shower Bathing Apparatus. Address Portable Bath Co., Sag Harbor, N. Y. (Send for Circular.)
Winans' Boiler Powder.-15 years' practical use proves this a cheap, emelent, ease prevention of Incrustations. 11 Wall st., New York. To Ascertain where there will be a demand for new machinery


## Queries.

[Wepresent herevoith a series or inquiries embracing a variety ar topics of greater ar less general interest. The questions are simple, tt is true, but'we
prefer to elicit practical answers from our readers.

1,-Explanation Wanted.-I am running an engine 1,-EXPLANATION WANTED.-I am running an engine trial. I first used wood (as "steadies" in my boring head, nalng a $4 \%$ borIng bar of wrought iron); and tbInkIng the wood created too much friction,
I took them out and took a single cut (not over one sixteenth cut), and still I took them out and took a alngle cut (not over one sixteenth cut), and still
the lathe would not driveit, and I fnally had to give it up. I substitnted a the lathe would not driveit, and I fnally had to give it up. I substinted a
brase pinton for one gear, and lost a tooth out of it. The lathe is ail right brase pinton for one gear, and lost a tooth out of it. The lathe is ail right
again, and today a am turning off a twenty four inch pulley (using the same gears on the lathe). Now, it seems to me that the lathe should have more to do (the cats being equal) In tnrning eff a twenty-fonrinch palley than in bortng a sisteen inch hole. Will some one
power for the bore than the polley ?-K.
2.-Electroplating. - How can I prepare Britannia metal, tin, and ordinary soft solder, so that they can be electroplated or
gllt in a cyanide solution? I cannot get the information from Smee or Na. pief, but have no doubt that some of your readerg can readlly describe the desired proeess.-J.F.
3.-Ice Boat.-Will some one tell me the dimensions of an ice boat which would carry two medium sized persons? -C. 8. M. к.
4.-Fixing Lead Pencil Marks.-I would like a ready way offixing lcadpencll marks to paper.-J. H. R.
5.-Japanning.-I wish a recipe for making and using the quickest baking and best Japan. - B. B. C.
6.-Malleable Iron.-Will some one give me practical information bow to make malleable cast \{ron? Or, are there any worksex. 7.-S
.-Spectroscope.-I have a hollow glass prism, filled with bisulphldc of carbon, two inches on each face. I would like to know
what the width and depth ofthe sllt should be, throngh which the light prat passes, what shoold be the diameter and focal length of the lens in the frat tnbe, and what distance should it be placed from the prism? Also, what power sliould the teregcope be for $v$
what lenges should tt be made?-M. T.
8.-Mucilage and Ink.-Will some of your readers give me a formula or making mucllage,such as eold by
mula for a good, cheap, black copylng ink ?-A. s.
9.-Cheap Lathe.-I would like practical directions for constructIng, at the least possible expense, alight latheof about elght inche swing; as great accuracy is not esscntal, metal need bc employed only
where absolutely necessary; as for spindies, bearings, centers, etc. Preciee Where absolutely necessary; as for spindles, bearings, centers, etc. Precise
directions, glving dimensions and all other detalls, woonld no doubt be wel come to many an amateur mechantc who cannot afford to buy even a cheap lathe, but would at once go in for one if te could only make it himself. -
c. M
10.-Nickel Plating.-I wish plain practical directions
11.-Dyeing Cotron Black.-I want to dye soft cotton black, and have no steam. Can I do it and get a good color without steam, and wonld it be better to use anlline black, or the usual dye staffs?-
H. W. H. W.
12.-Gilding on Glass.-What is the size used for gild
ing on glass?-M.
13.-Telescope and Horoscope.-I wish to know, if with the addition of ooe more convex lens of one inch dameter 1 canno make a terrestrial telescope from the directions given in No. 18. by A. W.
G., of M ich.; and wlll it change the power? I also wish to know the mean. G., ormich.; and whit change the power? I also wish
tig of tractag the horoscope, and how it ig done.-E. T.
14.-Emery Wheel.-Can any reader of the Scientific Ayprican tell me how tomake solld emery wheels thatwill not gum nor
15.-Overshot Wheel.-I wish a rule, simple and practi. cal, for calculating the power of overshot watcr wheels, and the means ot
determining with accuracy the power of water iu a dowing strcam... T . determ!
16.-Speed of Circular Saw.-I want a rule for determining the number of revolutions a clrcular allting asw of any given size
should make per minute.-T. W. B. ould
17.-Refining Gold.-Can some one give me any information on refintng gold? I melted over some scrap gold lear, whteh appeared to be very free from dirt. but after melting, it looked like a lump of
tin instead of gold. When we geli it to the gold beater, he melts it over into gne gold.-F. E. F.
18.-Belt.-Can you tell me why a belt runs to the largest part of a pulley? I have asked a
but they cannot tell why.-F. E. H.

## Gusucrs to Cotregumulents.

 when paid or
and Personat
$A L L$ refersence to
Turnbull's Blue.- With much deference to the undoubted erudition of yourcorrespondent, E. C., of N. J., I must noint bim to an errorinto which he has certainly fallen, and Intowhich he tgllkely to lead
J. B., who wants to know how to make "Turnbull's blue." E. C. has J. B., who wants to know how to make "Turnbull's blue." E. C. has
given a good formula for the preparation of ordinary Prusalan blue $\left({ }^{\mathrm{Fe}}{ }_{7} \mathrm{Cy}_{18}\right)^{\circ}$. But to make Turnbulls blue, ( $\left.{ }^{\mathrm{Fe}}{ }_{5} \mathrm{C}_{12}\right)^{2}$ ) the ferricyanide (red prnsstate), and not the ferrocyanlde (yellow prnsslate) mast be used. Also, Insteadof astng the tersulphate oflron, whlch is a sesqui-8alt, th
proto.snlphate, or some other proto-salt of fron is absolutely necessary proto-snlphate, or some other proto-salt of iron
to the production of Turnbull's blue, which differs from common Prns slan only by belngof a brighter tint. Fownes, or any other chemical authority will furnish further information..-C. L. R. S., of D.C.
Pounding of Piston.-Let E. S. take out the trap and put in abaifinch globevalve at each end of the cylinder, and keep them open while the engine is in motion. The trap, while good in theory, ts
llable to fallia exhausting the water whenever the gpring, which lifts the open while the engine is in motion. The trap, while good in theory, is
Hable to fallio exhaustlng the water wbenever the spring, which lift the
valve, losegittastrength orls held downby welght of water. The advan valve, losesitsatrength orlshelddownby wetght of water. The advan
tage of the globe valve 1s, that white but a little steam will escape, it tage of the globe valve 1s, that white but
effectually exliausts the water.-H. A. G.
To Kill Bedbugs.-Any woman ought to be ashamed to ask for an article to ktll bedbugs. No one will be troubled with these pests if they will take the trouble to thorougbly cleanse the bed and room once
a month. Bedbugs can stand anything better than cleaninness. Thie a month. Bedbugs can stand anything better than cleanilness. The
March cleanaing is the most fatal to them; it destroys them root and branch. Any one troubled withithis "pecullar heathen" who will take the trouble to observe the foregolng method for three or six months, will be entirely relleved ofthem without fall. If the cleaning be continned at To Kill Bedbugs.-If "Housekeeper," No. 11, page 346 Vol. XXII., will nse bennine or gasoline, she can kill bedhugs as fast as
she can find them; and by asing a spring bottom oller, the anld can b she can find them; and by ouing a spring bottom oller, the Anld can be forced into cracks and crevtces whtch can he reached only by this or stmi.
larmeans. I cleaned them ont of a room lined andi cclled with matched larmeans. I cleaned them ont of a room lined andi cclled with matched
boards, by it. Housekeeper wlll have to be careful about fre, and the boards. by it. Housekeeper whll have to be careful about fire, and the
room ghould be well ventllated tlll thegas passes away.-J.M.A.
Honing Razor.-P. R. says that in honing his razor, he al ways gets a rough wire edge. So he ought to bave. Always hone untll
you turn the edge, or you might as well not hone at all. Now to get a you turn the edge, or you might as well not hone at all. Now to get a
smooth cutting edge is what you want. Molsten your thnmb nalland smooth cutting edge ts what you want. Molsten your thnmb nailland draw the edge of the razor back and forth a time or t wo across the nail.
Put it on the coarse side of your strap drat. Keep trying it across the Put it on the coarse slde of your strap drat. Keep trying it across the
nall untll you get a smooth edge. You can tell this by its feel; furwhen nall until you get a smooth edge. You can tell this by its feel; for when
smooth, it willseem to catrightin thenall, and no roughness will be fclt. Then bring up the edge on the $\mathrm{m}_{\text {ne }}$ side of the atrap, with a few strokes on thepalm of the hand to fansh it. If you once get a smooth edge, and it
shaves well, never nse any strap but the palm of y onr hand ; and I will
guarantee it to keep its edge for months. It is very easy to atrap thc edge guarantee it to keep its edge for months. It Is very easy to strap thc edge
off of a razor by strapplng too maeh. Never wipe your razor on dry off of a razor by strapplng too mueh. Never wipe your razor on dry
paper, or cloth of any kind it will take the edge off. - H. D. W., of D. C. Magic Lantern.-Your querist, No. 11, page 282, can construct a magic lantern to meet his requirements, as follows: Use a plain vex lens, 2 Inches In diameter, in the focus of the flrst. The light should be placed three inches from the large lens. -H . W. G., ot Mich.
Oiling Furniture.-In answer to query No. 1, in your issue of May 30, I would state for the information of A. H. that pure Insced
oll (raw oll) Is used for walnat furnture, applied with a brush. Some oncefer, however, the red forniture oll, as it gives the wood a darker ap prefer, however, the re fis in
pearance. If it is to be finlshed with copal varnish, the oil shonld be al pearance. If itis to be inished with copal varnish, the oil shonld be al-
lowed to dry perfectly; then two or three coats of varnlsh should be applled for the purpose of fllling the pores or grain of the wood. After whlch the article mast be rabbed with fine or worn out sand paper to get smooth ear face. Then apply two or three coats of varnish, and rab down
and polish or flow as necessary. Care shonld be takentolet each coato anarish ket perfectly dry and hard before putting on another.--H. L., ot N. Y.

Pounding of Piston.-Your correspondent "S. E." in iss:: of May zoth, asks what makes his piston pound. I set up an englue oncc that was troabled with thesame diffcalty, and atterwardy spent a large
amonnt of time ant some money In trying to remedy the tronble. The amonnt of time and some money in tryling to reinedy the tronble. The company that made the englne, made the cyllinders a little longer, givitg more clcarance, and consequently more steam room at each cnd, and we never had any more trouble from that source. Our company was striving a sposslblefn "cushloning," as it lis called, but always afterward gave plenty of clearance to the pistons.-C.H.C.
Pounding in Steam Cylinder.-S. E. asks "what is the cause of the knocking in the cyltnder?" I have known valvesta steam closets to k nock, and sound as though the trouble were in the cylinder. I
suspect, however, that the troable of which $9 . E$. compisins, is that the suspect, however, that the trooble of which s. E. compialins, is that the
crank is ahead oftbe steam pressure at the beginning of the stroke, when the governor valve ts hard down, so as not to admitt sumflent steam to start the piston tn time for the crank. This can be obvlated by setting the eccentric ahead. If his englae be of short stroke and large cylinder, and
sethigh from the bed plate, and pounds when the governor valve ts setivng full ateam, S. E. may depend ou it that the bed plate ts too weak. s.G. D., of Pa.
M. E. Y.-Some medicines appear to operate in a peculiar way npon the retina of the eye. For example: Dr. Rose, of Berilln, has
described a sort of color blindness, in respect to blue colors only, pro duced by taktng a doseofsantonine. After the eff'ect of the medicinehas subsided, the natural power of the eye to dlatlogulsh blue returns.

