Optical Appearance of cut Lines in Glass. The use of high powers in delicate investigations renders it necessary that the microscopist should study the character of appearances which arise from optical laws, and which can ouly be rightly interpreted by referring them to forms and structures to which they bear no real or exact resemblance. A short time since, the writer called attention to the deceptive nature of the appearances presented by the fine cracks in silica films; and further observations show that if the finest or narrowest of such marks are select ed for examination, the chances of obtaining perfect illusion are increased by the amount of magnification and the perfection of the objectives employed. Delicate interference bands, pseudo-beading, etc., look more real with well corrected object glasses than with bad; and careful illumination will often add to the structural aspect of mere optical effects. The edges of silica cracks differ from edges of minute furrows cut in glass, being smooth instead of jagged. The latter as well as the formes are well worth study. Preparatory to examining such furrows as are cut with diamonds in glass for micro ing such furrows as are cut with diamonds in glass for micro
meters or diffraction gratings, it is well to notice the edges of muters or diffraction gratings, it is well to notice the edges of
thin glass cut for slide covers. If half a dozen or more thin thin glass cut for slide covers. If half a dozen or more thin
glass squares are held close together, and viewed, edges upglass squares are held close together, and viewed, edges up-
ward, as transparent objects, a variety of curious optical effects will be seen, arising from interfering reflections and refractions. The examination should begin with an inch or tivo thirds, after which half inch, and quarter or one fifth will be advantageously emoloyed. It is easy to focus parts of the glasses' edges, so as to show their true form; but portions a little in or out of focus will show beads, appearances tions a little in or out of focus will show beads, appearances
like columns of Egyptian architecture, etc. Most of these optical appearances are sufficiently hazy or confused to give warning of their true nature; but generally some will be found so sharp and clear that, if viewed separately, they may easily mislead a practised observer. In making these experiments, it is best to have handy a box containing at least several dozens of the thin glasses, as some sets will prove much mors interesting than others. They should be viewed also at various angles. The corners of the squares should also be looked at.
Lines cut in glass for micrometers or diffraction gratings are usually filled up with finely divided black lead, and the same material has been employedin the writings and patterns made with the Peter's machine. This substance of course modifies the appearances. To see them in the simpler form, recourse was had to Mr. Ackland (Horne and Thornthwaite), who ruled several sets of fine lines, each on glass slides, at varying distances $1-2000^{\prime \prime}, 1-3000^{\prime \prime}$, and $1-4000^{\prime \prime}$, and mounted them with Canada balsam, so that they could be safely used with immersion lenses. One set was not covered or mounted in any way.
Those who have examined very minute writing done by the late Mr. Farrants with the Peter's machine will be aware that even when a very fine diamond point is used, the incision partakes more of the character of a scratch than of a clean cut. It seems impossible to cut glass with a smooth, clear edge, such as certain metals readlly give with a sharp tool. A line cut in glass is thus a furrow, more or les:s rough at the bottom and sides, and when viewed correctly under the microscope, has the appearance of a narrow depression less transparent than the adjacent spaces. It is difficult to get a really correet view. Even under favorable circumstances of illumination and correction, the edges of a cut are apt to al ${ }^{\text {p- }}$ pear as two raised lines,
Many instructive optical appearances, which might bewilder the observer if the character of the object were not known, may be easily produced, as the following notes will show. The observations are made with Powell and Lealand's immersion one eighth and Ross's four tenths, condenser aperture 109°. Using central stop, A, and varying inclinations of mirror. Paratin lamp. ($1 a$) Cuts as rounded bands; interspaces flattish furrows. The bands illuminated on right side, shaded on left. Tint of lightest part of furrows bluish. (2a) Flattiah bands and rounded furrows, the former slightly (2a) Flattiah bands and rounded furrows, the former slightly
shaded on left; tint of shading bluish. ($3 a$) Oblique rounded shaded on left; tint of shading bluish. ($3 a)$ Oblique rounded
furrows with narrow blue ridges; broadish bands with narrower elevated bands up their centers, light on right side, shaded deeply down the furrowed side on left.
Same condenser 109°, two radial slots forming obtuse angle. Angle of mirror varying. (1b) Broad, flat spaces, narrow, shaded, and elevated ridges. (2b) Ridges four times as wide asNo. 1, with rounded tops. (3b) Narrowishgrooves, something like actual object. (4b) False ridges, puzzling to something like act
Same condenser 109°, two rectangular radial slots. Angle of mirror varied. (1c) Half round hollows, with rod-like ridges in the middle; rounded interspace elevations some what lower than ridges and between them. (2c) Narrower ridges; nearly flat spaces. (3c) Appearance of additional ridges, strongly shaded on left. (4c) Narrow ridges, shaded on right; tlattish spaces, and low ridges, with narrower shelving shade spaces down to ridges, etc., etc.
Same condenser, 109°; one radial slot which was rotated to various angles. Angle of mirror varied. (1d) Each cut made into a flattish space, with two narrow raised edges, shaded on left. (2d) Cuts made into flattish, ribbon-like ele-
vations, with raised edges. (3d) Interspaces raised, with rounded edges; cuts made to look flattish, and at lower level. rounded edges; cuts made to look flattish, and at lower level.
(4d) Appearance of additional and imperfect ridges. (5d) (4d) Appearance of additional and imp
Series of imbricated and shaded bands.
In the lines cut by Mr. Ackland no attempt was made to produce the narrowest possible furrows. The width of furrows found practically convenient for micrometers was only slightly deviated from, as some cuts were a little deeper than others, and thus caused the wedge-shaped diamond point to
open the furrows a little wider. The interspaces of the nar rowest were much wider than the cuts. It is obvious that a cut wide enough to be distinctly seen, under given magni flcation, will present to view two linear edges, and thus be reckoned as two lines, if its true chaacterbe not considered.

Cuts very close together may, if the cohesion of the glas their interspaces.
It will be seen that in the preceding statements only one nstance is mentioned of appearances agreeing tolerably well with the real facts. It must not be inferred from this that it is not easy to exhibit moderately fine cuts correctly, or very nearly so. The object of this paper was to select a number of appearances all looking as if they might correrespond with the facts, and all differing more or less from them.
Those who study the most vexatious diatoms or Nobert's test lines must, it appears to the writer, not only take into account what they do se, but what they ought to see, provided the object has a certain deflnite structure, and certain powers of producing optical images under given conditions.
ON A NEW CONNECTION FOR THE INDUCTION COIL.
By Prof. Edwin J. Hoaston, in the Journal or the Franklin Institute.
The following experiments were made at the Central High School of Philadelphia, with a view of increasing the quantity of the spark of the induction coil wi hout greatly diminishing its length. The instrument used was made by Ritchie, of Boston, and will throw the spark six inches in free air.
One of the poles or ends of the secondary wire was connected with the earth by a copper wire, attached to a gas pipe. The other pole was connected with a wire, which rested on a large lecture table holding the coil. On turning the break piece, the electricity, instead of being lost by passing along the wires to the earth, jumped from the pole connectalong the wires to the earth, jumped from the pole connect-
ed with the table to that connected with the earth. The thickness of the spark was greatly increased, its length diminished, and its color changed to a silvery white, as when a Leyden jar is placed in the path of the discharge.

While the electricity is flowing between the points, long sparks may be drawn from any part of the table, or from any metallic article within eight or nine feet of the coil. On one occasion, the gas was ligh ed by a spark drawn from the finger of a person standing on the floor. The gas pipe being in almost perfect connection with the earth, the spark must in almost perfect connection with the earth, the s
have been given to it from the Body of the person.

On another occasion, one wire was attached to the gas pipe as before, and the other to a stove, whose pipe connects with that of another stove in an adjoining room. The thickness of the spark was greatly increased. Sparks were drawn from the distant stove, and even from a small steam engine, which latter was fully thirty feet from the coil. In all the experiments it was found necessary to insulate the handie of the break piece, as a slight shock was experienced at every break. The poles being kept at a distance from each other less than the insulating power of the coil, six inches, no danger of injuring the instrument was apprehended. In one inger of injuring the instrument was apprehended. In one in-
stance sparks were drawn, in a room underneath the adjoining room, from a wire which connected with the table on which the coil rested.
These facts showing great loss of the electricity, but indicating the need for a large conductor, probably to allow the rapid discharge of the secondary wire, a large insulated conductor was extemporized, by placing some old tin stills and percolators on large glass jars. On connecting one of the poles with this conductor, and the other with the gas pipe, the quantity of the spark was increased, thongh there was reason to believe that, with a larger conductor, better results would have been obtained. The conductor was then divided into two, of about equal size, which were connected with the poles. The quantity of the spark was increased, with, however, great diminution in the length. By successively dimiasshing the size of one of the conductors, and increasing that of the other, the length of the spark was increased, without any sensible diminution in its quantity, until, when one of the conductors was less than one square foot in surtained.

It will be noticed that this connection is somewhat similar to that used in the common cylinder or plate mochine, in which one of the conductors, generally the negative, is connected with the earth, and the quantity of the electricity thereby increased.
In all the experiments in which one pole was in partial connection with the earth, as when it rested on the table, the loss of electricity must have been very great, for several gas and water pipes were in connection with the table. If, then, the table merely serves as an imperfectly insulated conductor, which allows the rapid induction of electricity in the secondary wire by its rapid discharge, and thereby, notwithstanding the loss, gives so great an increase in the quantity of the spark, it would seem that if, instead of the table, an insulated
conductor of very large surface were used, a much greater conductor of very large surface were u.
increase in quantity would be obtained.
It would seem from the above experiments, that the maximum increase will be obtained when one of the poles is connected with an insulated conductor, say several hundred square feet in surface, and the other with the earth.

Cultivation of Rice

In preparing the land for rice, the ground is cleared, embanked and ditched in a thorough manner, and is often laid out into independent fields, so that a certain number of hands fomplete any one operation connected with the culture of the rice, in a single day. The ditches are often five feet
wide, and as many deep, and the main one is sometimes large nough to be used as a canal in boating the rice in large flats, from the fields to the place of stacking. The land is plowed or dug over with the hoe early in the winter, and is kept under water during the warm changes in the weather. In March, the ground is left to dry, and made ready for the seeds. Trenches for the same are run at right angles with the drains from thirteen to fifteen inches apart, with a four inch trenching hoe. From April till the middle of May, the seed is scattered in these trenches at the rate of about two and a half bushels to the acre. The seed is sown lightly covered with the soil, and the plan has been to let in the water upon the land for several days after the seed is put in, or until it sprouts. Latterly it is considered better to stir the seed in clayey water the day before sowing, as the clay adheres to the seed so that it remains in the trenches when the water is let on, if oot covered by the soil. After the water stands from four to six days on the sprouts, it is let off, and when the plants are about flve weeks old, the first hoeing takes place. The plants are again hoed in ten days, and then the "long water" is put on for two weeks, at first deep for four days, afterwards gradually diminishing the depth of water. After two more hoeinge, the joint appears in the plant, and the "joint water" is let on to remain a few days before the grain is ready to be cut.with the sickle.
Rice grows much like wheat, with stalks from four to six eet high.. It is closer jointed than wheat, with leaves re embling those of the leek, and the seed is inclosed in a rough, yellow looking husk. The average yield on the low and is about forty bushels to the acre, a bushel weighing usually forty-five pounds.
South Carolina is the most successful rice growing State n the Union, and her rice commands the highest prices in market. It is said that the seed was flrst introduced into the State accidentally, from a Madagascar vessel that put into Charleston in 1694
It was formerly customary for the planters to have their slaves separate the rice from the outside husk by pounding in small hand mortars. Each male hand had his task al lotted him, of pounding three pecks before hreakfast, and the ame amount after the day's work was over in the field. It is now done by machinery at the rice mill. The mill is pro. ided with long upright wooden pestles, which pound the rice a certain number of strokes in long wooden mortars After undergoing this process the rice is cleaned and then passed over wire sieves, so arranged that the small and brok en grain falls through the fiue meshes in the sieve, the large and perfect grain through the larger ones. In this way the arious grades of rice are assorted for market.

WOVEN WIRE MATTRESSES.

In almost every newspaper one takes up, the eye meets a very artistic engraving of a mattress, fabricated in wire, and, ress Company, Geo. C. Perkins, Secretary, Hartford, Conn In the Scientific American about a year and a half ago when the manufacture of these mattresses was in itsinfancy and before some of theimprovements since added were made we published an engraving of the article, which elicited considerable inquiry from managers of hospitals and other pub lic institutions, in various parts of the United States, and from some of the warmer countries in Middle and South America.
From the time of the fall exhibition of the American In stitute of 1869, when the energetic secretary of the company first exhibited them, the wire mattress has been gaining avor with the public, until it is now on sale in nearly all cities and large towns in the United States.
The company, we learn, is turning out several handred beds a week, and the demand for hospitals, steamships and private use is constantly increasing.
The mattresses are durable, cool for warm weather, com fortable to lie upon, and insects avoid them.

A manufacturer of Easthampton has offered an endowment of $\$ 500,000$ to Amherst College, on condition of the name being changed to "Williston University"

A railroad of 30 inch gage, 11 miles in length, is to be constructed in Green county,Tenn. It will cost $\$ 30,000$ only

PATENT OFFICE DECISION.

