posing the steam to heat the cylinder at 307° at the com mencement of the stroke, and to cool it down to 212 at the cund of the stroke, would be $95 \times 1298: 3$ (specific heat of irou) multiplied by the weight of the cylinder, piston, and that portion of the piston rod subjected to steam heat, estimated in pounds. The product would be expressed in units of heat. It is evident that such loss would be large on heavy cylinders, unlens the heat was converted into work by the expan sion of steam at lower temperatures. This is done in the ompound encrines of the Magellan, as, according to Mr. Harrison's statement, the steam performs work to within six inches of vacuum.
Now, will Mr. Emery explain what other than mechanical difficultios impede the attainment of the same result with ingle cylinder high pressure engines, using eondensers
As the heat leaves the cylinder, what does it do but coninue to expand the contained steam, thereby enabling it to follow the piston with greater efficiency down to and below the atmospheric line, the steam exhatusting at a pressure of sic inches of mercury column? Is this not possible, at theoretically, in a single cylinder, with a condenser
The heat abstracted by the rylinder at high pressures, is stored up and imparted again at lower pressures, in both'sys tems; and we maintain still, that, under the same conditions, the same amount of expansion will produce the same economical result. Of course, the surface radiation in compound is greater than that in single cylinders.
If Mr. Fimery's theory be correct, the steam jucketing of : cylinderish bad practice; for, though the cylinder abstracts no beat from the steam, as soon as the steam expands, the cylinder imparts heat, the amount of which must be greaterwhen the "ylinder is kept at a constant temperature, than when the thinperature decreases and keps more ncarly uniform with hant of the steam. If the heat imparted by the hot cylinder le not converted into work, it is lost ; and we admit that, if allowed to exhaust without condensetion, so that expansion an be carried to its lowest practical point, there would be loss ; but why this cannot be done in a single cylinder, wo in common with many other., fail to sec.

popularizing science.

We lrove soen it stated that, during the sixge of Paris Heury St. C'laire Deville, one of the most illustrious, and, at the same time, genial and popular of the scientific men of France, made an address to the members of the Academy of Scifuces, which was the occasion of earnest debate; but the text of the speech had not reached us until the English periodical Nature gave it in the original French to its readers. Deville says, what al! the world had been uttering before him, that France was conquered by the science of Germany. The very discoveries and inventions of their own men had bren used to destroy them. "Thedis coreries of Ampire, the inventions of our military cngincers, have been cruelly entployed against us, and thus they say on every side, and with truth, that we have been conquered by sicience," are his words.
In seeking for an explanation of this disastrous state of affairs, Deville grives two adequate reasons: the first, that men of sc euce had been overlooked by the Government, and mere politicians appointed in their places: and :econdly, that the members of the Academy had devoted themselves too exclusively to abstract science, and left the world to find out what was going on in the best way it could. IIe proposes as a security, that the lnstitute should appoint committo's to discuss all matters relating to the government; and, at the same time, scek to popularize science, and, by well edited publications, to familiarize the public mind with the grand iscoveries of the day
It ought not to beforgotten, in this connection, that it was Deville who obtained an appropriation of 50,000 francs from the Empuror, to make investigations into the properties and ases of aluminum. But this was a paltry sum compared with the millions expended by the same ruler on the luxuries and vanitie's of his eourt. And y et, out of the research made by Deville has grown the cheap manufacture of sodium, and, indirectly, the preparation of the rare metals aluminum, magncsium, boron, silicon, and the gold amalgamation proass. He made the fifty thousand francs go a great way, and howed what might bo accomplished if the patronage of the rovernment could be extended to similar investirations in therdirections. Deville was, therefore, entitled to call upon his fellow members to come out from the dry bones of ab, stract science, and try to clothe them with the garments of asefuluess and intelligence.
It is certainly true that the French Institute has for a long ame presernted a curious spectacle to the world. Its niembers have grown old in the study of theoretical matters. They could not :see beyond the enids of their noses, and when the war broke out, and they found themselves shut up in Paris, they suddenly tried to make themselves useful by at tacking some of the practical ques:tions of the day, such as proper food for famine times, and deadly weapons and explover for their enmaro
It is amusing to read what they said about lBoston brown, or Graham bread. Payen, who has written volumes, said that he had tasted it, and found it good; Dumas had sern it baked ; Chevreul, the founder of all we know about soap and candles, had had someexperience with it, and so on, theough the list. And these grave men actually decided that " unbolted tour was safe to eat in war times." It is cevidently high time that the members of the Institute were woken up) aud, as no inducement for them to look more to practieal uatters, it would be well for the new government to assign them places in the bureaux where a scientific knowledge is requisite. What they need in France is less politics and more science. Wonld it not be wise for ns to investigate
matters in this country, to see how far our own Government is conducted by politicians, and how often scientific men are incite
tion?
Prance, by her own showing, has been ruined by politicians; it may be well for us to take note of this and profit by the lesson. In the matter of popularizing science, we ra safely challenge criticism, in the luited States. There is scarcely a newspaper, magazine, or werkly, that has not special scientific department, and the Scien tific Ambricas in the course of the year, furnishes an account to its read ers, of every
The result of this wide dissemination of knowledse is that the American people are famous for their practical talent The uuiversal Yankee is a mystery to European nations, a they have no analogous character with which to compare him. There is more danger of our running to the other 'x treme, and of our rendering scientific knowledge superflcial by too great a desire for popularizing it. It is better to as well as technological institutes; and as our journal is outside the arena of politics, we may with propricty suggest that a little less polities and more science, in the administra tion of the affairs of Government, would enable us to escape the dencers which have brourht France so low, and threate someday to overturn our own Government.

TRIAL OF OLMSTEAD'S ELECTRIC CAR BRAKE.

An excursion party, consisting of members of the press and ailroad men, was recently invited to witness the trial and operation of this novel brake on a train of five cars on the Erie Railway.
The levers are of tho ordinary kind, and may be operated by hand in the ordinary manner. The electric device is an attachment to one of the levers of the ordinary brake. T'b. electric arrangement is as follows; A horizontal swing shaf is placed within the car truck, parallel with the car axle, on which shaft is a loose shell pulley which receives motion from the car axle against which it rests. Within the loose pulley is a fixed pulley, keyed on the swing shaft. On tho face of the fixed pulley are two powerful electro magnets, each capable of sustaining 300 pounds, so that their combined force is 600 pounds; these are connected by wires with at
Daniell's battery, on the car; each car having its acparate battery. A chain extends from the swing shaft to the brake lever.

The wires, connecting the battery and the magnets, extend to a key board attached to the ceiling of the car, and the electric connection is made at this point by a simple lever o key, operated by the bell cord. On pulling the corcl, whethe by the enginter or conductor, or by the breaking of the roup ling, the electric circuit is made, and the marnets draw the looso and fixed pulley together, whercupon the swing shaf winds up the Lrake chain, and the brakes operate on the heels and stop the train
It may be said that the electricity forms a clutch, and thes holdss tho brake shaft to a pulley which is kept in motion by the movement of the car. Wlectricity is therafore employed as an aid to utilize the momentum of a moving tain or car The party started from Jersey (ity at 1230 r . Mr, and, after passing through Bergen rumnel, the frounds of the meadows, as follows:
lst. The train was stopped in isis seeonds with hand brake 2nd. The electric brake stopped it in 45 seconds.
3 rth. With the electric brake and reversing the engine, the rain was stopped in 28 seconds.
4th. The engine was detached from the train when going t full speed, which sut the electric brakes in operatio throughout the train, the latter being stopped by their action in 20 seconds.
5th. This was the last trial, and consisted in detaching the wo rear cars, when the train had attained a maximum speed The moment they were detached, the electric brakes wer sot by the cord itself, and the two cara stopped in $1: 3$ seconds whale the part attached to the locomotive was stopped in about 40 seconds. The maximum speed in all the above trials was :30 miles per hour.
Every trial was a succoss, showing the groat utility of the evice.
The electic brake may be operated by the engineer or by the conductor, by simply puiling the bell cord. In case of separation of the train, by the running oft' of one of the cars or other cause, the brakes become self-actin!r, and their force is instantly applied.
On the conclusion of the experinnents, which were eminent y successful, the party returned to Jersey ('ity, and partool of a sumptuous lunch at the Erie Depot.
We learned that this brake had been in use on the Middle town train of the Erie rond, for the last yeven months, stop ping the train fifty times daily; and further that it was the means of saving the train from a fearful accident at West Patersou bridgr, where the engineer was warned of danger of an oil train, in 23 seconds on a down arade.
The brake was patented April, 1870, l:y J. Olmstead and W. O. Cooke, of Providence, IR. I.

OCEAN TELEGRAPHY

Cyrus W. Field, Esq., in a recent letter to Prof. Morse, tates that the date of completion of the first Atlantic cable between Great Britain and America, was August $5,18,58$. This cable ceased to work on September 1st of the same year after exactly four hundred messages had been transmitted.
An attempt to lay another cable was mades in $186 \overline{3}^{\text {; }}$; hut
he ad of August of that year, when about two thirds of the eneth had been laid, the cable broke: from the wessol and whes.
The serond cable, between Treland and Sewfoundiand s completed July $2 \pi, 1866$
The third cuble (consisting of the lost cable of 186:5. whic: was recovered in 1866,) was completed September 8 . 1866. The fourth cable, from France eint. St. Pierre, N. F., to loux bury, Muss., was completed July 2:3. 1860.
Duriug the month of March of the present year, 12,54 messares, or about 40.5 per day, were transmitted by Atlantic cable.
At preseut, only one cable-the French-is in workiner or der. The first cable is smpposed to have been defective iu onstraction. The second and third rables censed to wort ome time ago, owing to defects in the shore encls near New oundland. These cables are to be fished ur and repaired in June mext. All the business is at preseat doue on the French (able.
Thelegraph lines now rearh as far cast as Sincrapore, a disance of some nine thousand milles from New hork. From Singapore to Hong Kong, a line is to be completed within : mont h; and from this line a cable to Australia is to be completed in November next

JEAN LAFITTE AND HIS TREASURE.

The reputation for wealth acquired by piracy, which stan ,afite has attained, has set many to employ timean! neenna worthy of nobler ends, in setrching for his hidden treasures Lafitte was not a sailor, nor a pirate. He was a blacksmith y trade, and became arent to an assoriation engared in the apturc of Spanish merchantmen. This association was under a commission from the Repohlir of Columbia, which was, in the early part of the present century. at war with Spain. Columbia issued letters of marque to the ship. of , afitue's organization, and a great deal of valuable mer chandise was seized. The property was taken into posses sion by the United States Govermment, and coneumed during the defence of New Orleans, in 1814 and 181.5. Lafitte's mon were relased from the prison, in which they had been placell and sent to man the batteries in Jath:on's lines. They wer granted full liberty at the end of the war, and received the Tonks of General Jackson
These facts must be in the remembrance of uome now liv ing, and are mentioned in books aresssible to all the world: but there is a curious superstition among the more crednlons of the inhabitants of some of the Southern States, that Jatirte and his followers buried untold mines of wealth in sonte of the islands outside the Rigolets. The folly of the believer in this "yarn" has led many of them th risk theid fortune: in atempts to recover the treasures, and the fact that la fittes men when discharered from serviee never visited the tare they are reporte to y ing the chimera. Jean Lafitte was drowned in the Gulf, in the wreck of a litthe ship of which he was snpercaro. and his associates montly remained in New Orleans, and wrere al ways poor men.
Recent.ly, Mr. A.J. Newell, a compositor by trade, and ately employed on the New Orleans Pi:ayune, lift hislome o explore the islands which tradition pointed out as the che pository of the treasures. He lad receivell from hi: father an oral communication (said to be derived from one of Ja fitte's men), detailing the place of d'posit with minute tex actness. Many members of Mr. Newell's family had made imilar voyares, and their crednlity was not haken by the bays-repeated failure. But a disastor has now changed the omparatively harmes:s folly into a tragedy. Mr. Newell: oody was discovered in the water, near the islands, with the marks of a fatal gunshot on it. Thus ends a life made re markable by its utter engrossment by one idea, spent in pur uing that idea in the tecth of common sonse, reason, and history

CANALS, ANCIENT AND MODERN.

The ancients early recornized the importance of ranalia is; mediums for internal communication. Probably the first work of this kind was con-tructed by the Eeryptians. It con nueted the Nile with the Red Sea, and in 1798 the work was in such a state of preservation that a company of French en rincers reported that it only ureded cleansug to render ; navigable once more. Herodoins attributes its commence ment to Pharoah Necos, in the year 616 BC . Although Pli ny, Strabo, and other historians do not agree with hlrodotus as to the date of its commencement and the name of its founder, they all agree in that there was such a casal, and hat it was commenced some five or six conturies before the Christian era. Strabo says the caual way 150 feet (100 cubits) ond, and that ships were four days in satiling throurg it. The C'nidians, ancient inhabitants of Caria, in Asia Mino designed and dng a channel through the isthmus joining. their territory to the continent.
The (ireelis made an unsuccessful attempt to cut a maviga ble passage between the Ionian Sea and the Archipelago The Romans built large cauals, called "Fossm Philistina," nt the mouth of the Eridanus or Poriver. 'I'hecanals of the Pontine marshes were accomplished 110 B. C., and, after x ong period of disuse, were restored by the Emperor 'l'rajan. From time immemorial, the rivers of Chim have been united by canals, and there is no country on the face of the flobe where the advantages of such a network of canals are so manifest ; for these canals, with the natural water commul nications, render the tumage of that country but a little les than the combined tumarge of the rest of the world. The Grand C'mal of C'bina is the most stapendous work of the

