AIr LiaHt.
What has become of the air light about which so much was said a few years ago? This light belonged to the class where an oxide is rendered incandescent, and hence powerfully luminous by the heat of a burning jet of mixed gases Instead of using oxygen and hydrogen, it was proposed to compress illuminating gas into cylinders and to employ at mospheric air also under pressure, but previously super-
heated. The air contains one part, or 20 per cent, of oxygen, heated. The air contains one part, or 20 per cent, of oxygen, and four parts, or 80 per cent, of nitrogen; hence it would require four or five parts of air to give the requisite quantity of oxygen; that is, to obtain one foot of oxygen, five feet o air would be needed, as four of them would be nitrogen.
It has been proposed to remedy this difficulty by passin It has been proposed to remedy this difficulty by passing
the air through water under pressure, and freeing it of the air through water under pressure, and freeing it of
a large part of its nitrogen, as that gas is not so soluble in a large part of its nitrogen, as that gas is not so soluble ia
water as oxygen. But this would involve expensive appara tus. If the nitrogen could be prevented from carrying away the heat from the jet at the point of ignition, the air would give us all the heat and light required when burnt in com bination with illuminating gas. To prevent the nitrogen from conducting away the heat the air must be previously superheated in furnaces and fed hot to the burner. Some of the locomotives on the New York Central Railroad were at one time supplied with head-lights composed of four compound jets, encircling a small pencil of lime. A current of pound jets, encircling a small pencil of lime. A current of
air and of gas was conveyed to each jet, and by a simple de. vice the air was heated before reaching the jet. The flow of gas was controled by simple regulators and stop-cocks within the lamp. Two gas holders, placed under the engine, com municating with the lamp by a small pipe for each, were
constructed to carry two or three times the requirements of a constructed to carry two or three times the requirements of a trip. The air was superheated by being passed through the fire-boxes under the boilers without additional cost. The en gineer who explained it to us pronounced it a perfect success, but that was several years ago; since then we have hear nothing of it, and so repeat the question: What has becom of the air light?

WASTE LIQUORS OF PAPER MILLS.

The American Wood Paper Company at Manayunk, Penn., have introduced an important feature into their works in saving the waste alkali solutions. It is said that eighty-five per cent of the original alkali employed is recovered. The spent liquor is conducted from the pulp boiler into a suitable reservoir, where it is pumped up into evaporating furnaces. These furnaces are constructed according to a patent granted to Messrs. Keen \& Burgess in 1865. They are of great length and radiate from the center of a building resembling a locomotive shed, and all communicate with one central chimney. A powerful draft carries the hot gases of combustion over and under the evaporal ly carried off. The alkali is finally transferred to the calcin ing furnaces, where it is brought to a condition suitable fo mixing with a fresh portion, preparatory to being used again In the manufacture of paper from straw the stock is also boiled in caustic soda lye under pressure, and in most estab. lishments the impure black liquor is thrown away. The soda extracts silica and gluten from the straw, and thus forms a very weak and impure soluble glass. It has been proposed by some manufacturers to evaporate the solution and economize the soluble glass and the extra alkali, but the expense of the evaporation has deterred most of the larger establish ments from attempting to make the saving. It would be well for such paper manufacturers as deal in large quantities of alkali, to try the Manayunk process described above. If soda were a substance that could be thrown down from a
solution by precipitation, it would be an easy matter to save it, but unfortunately there is no reagent with which it can be combined for this purpose, and we are compelled to have recourse to evaporation. The use of the spent alkali for ag. ricultural purposes has been tried, and if potash had been employed instead of soda the results would be favorable where the expense of transportation did not destroy all the profit, but as soda is now considered by many authorities as actually deleterious to the growth of plants, this application of the spent alkali of the paper mills cannot be recommend ed. The soluble silica would be of great value in agriculture if it could be separated from the alkali, but this separation is not feasible. There is no reason why the lime used in the vats to render the soda ash caustic should not be put upon land, and such a disposition of it is made at many country mills.

If any of our readers can give us additional information on this subject we shall be glad to make room for their com. munications.

SPIRITUALISM AND science.

Two of our correspondents exhibit a commendable desire for information in reference to the movements of tables by invisible spirits, and as one of them appears to have been severely handled by some of the evil kind, we do not wonder that he seeks for an explanation of the phenomenon.
If there is anything established in nature, it is the invariableness of her laws. The laws which regulate the material world are beyond all reach, and the Creator never permits the management of the universe to pass out of his own hands, or to be interfered with by any of his creatures. The moment we deny this, that moment science becomes impossible. For ages the belief obtained that angels and demons were able to control or influence physical laws. Λ s long as such super stition prevailed, scientific progress was impossible. It was
only when it was discovered that the laws of the physical only when it was discovered that the laws of the physical
universe were fixed and sure that men were encouraged to carry on scientific research, for they then knew for the firs
time that if they asked for bread they weuld not receive a stone.
The physicist now knows that to move a table without the aid of muscular or mechanical force requires a suspension of the law of gravitation, and he also knows that the momenta ry suspension of this law would reduce the whole universe to chaes and destroy the equilibrium of mater. To suppose that any spirits have such power as this is impious and irrevrent in the extreme. None but the Divine Spirit can act on matter except through the medium of matter, and to ascribe such power to any of od's creatures, whether in the flesh'or out of the flesh, overthrows all that religion and science have taught us. Hence the scientific man never believes in any apparent infraction of the laws of the universe. He knows hat the phenomenon observed is due to natural causes, and goes to work to search out the mystery. 'There are plenty of known causes which have always been in operation, that are quite sufficient to produce all of the genuine results of spiritual manifestation without the necessity of appealing to the supernatural for an explanation, and Dr. Hammond has shown us that there are other causes which explain why honest people may conscientiously believe in the genuineness of all hese manifestations.
We have recently given a series of articles on the history of attempts to invent a perpetual motion. The physicist is absolutely certain that a perpetual motion accomplishing work is an impossibility according to the known laws of mechanics, yet the attempt to construct such a machine has been made for centuries, and no doubt will continue to be made as long as the world stands.
If a party of true believers in spiritualistic manifestations could seat themselves by the side of a stream of water and make it run up hill, they would accomplish a much more lever trick than to chase a table up stairs or out of the window, as your genuine spiritualist will not hesitate to do for you at any time; but as it is difficult to take hold of the particles of a liquid, this particular form of exhibition is never attempted, and making water run up hill is chiefly confined to a vulgar force pump.
Many of our readers have no doubt witnessed the performances of necromancers, and have gone home greatly puzzled lect to have seen a cane set upright on a floor and al lad bal lect to have seen a cane set upright on a floor and a lad bal.
anced horizontally upon it. There was nothing particularly wanderful about this, but when the cane was taken away, without the lad's falling, and it was passed over, and under, and all about him, so as to show that he was not supported by wires from the ceiling or by rods from the floor, we had no ready way for accounting for it, but were absolutely certain, from our knowledge of the fixity of all physical laws, that there was some trick by which it was done, not visible to the senses. Aristotle believed that the heavenly bodies were suspended by invisible cords, otherwise they would fall upon the earth and crush it. He was evidently no spiritual ist, but a believer in the necessity of something tangible to hold up the stars.
Some of our correspondents complain that scientific men will not examine into the phenomena of table-turning and give us an explanation upon a physical basis. They forget that this has been done by the highest authorities in this country and Europe.
In 1859, in the city of Boston, a reward of five hundred dollars was offered, through the columns of the Courier, for a satisfactory exhibition of some of the ordinary manifesta ions which mediums of every degree were constantly pre tending to produce and which were fully believed in by the faithful as of spiritual origin. The challenge was accepted by a spiritual corps consisting of Dr. H. F. Gardner, Mr. Allen Putnam, Mr. Alvin Adams, Major Raines, Miss Kate Fox, and others, and ProfessorsPeiree, Agassiz, Horsford, and Dr. B. A. Gould, were appointed a committee to give them a•fair trial It is hardly necessary to say that the whole thing was an ut ter and complete failure, although the distinguished profes sors displayed the utmost candor and patience in their searcl for the truth, just as they would have done in any other scientific investigation
In England the late lamented Professor Faraday subject ed the phenomena of table-turning to a most searching investigation. The report of his experiments has been exten sively published and ought to be regarded as conclusive by he most skeptical inquirer. Our readers will find it in Th Athenceum, page 801, for the year 1853.
Professor Faraday by an ingenious device found a way of measuring the direction of the force by which the table was moved and showed that the movement of the muscles was involuntary. Whenever an index was attached to the table which made the least motion visible to all, there was no effect, because the involuntary feature was destroyed and the parties to the transaction could not exert the force required for lifting it excepting in the ordinary way, and such table lifting would be like moving furniture about the room in the most humdrum style. The esperiments were a perfect dem onstration of the muscular origin of the table moving, and must be admitted as such by any one possessed of sufficient capacity to understand them.
There is no doubt that rappings and tippings were known to the Romans, and they were re-discovered, so far as this country was concerned, at Rochester, in 1846 . Since that date we have had a surfeit of them, and it has now become a regular business, as much so as selling groceries or giving exhibitions with the magic lantern. The tricks of the trad have been exposed over and over again, but the world will be deceived by them in spite of all the warnings that we or
the daily papers can give. We must look to our schools to correct the evil by the dissemination of accurate scientific information among the people.

