Srientitir Amoriam,

MUNN \& CO., Edilors and Proprietors
published weekly at
ROW (PARK buildina), new york. o. d. munn. s. h. wales. A. e. beach.

 VOL. XXIV.. NO. 2 ... [New SERIEs.] Twenty-sixth Year. NEW YORK, SATURDAY, JANUARY 7, 1871.

WHERE IS THE LIMIT OF INVENTION ?

Let one take up the Patent Office Reports, beginning with the first volume, and pass cursorily through them to the very latest, and he will, if not familiar with the number of inven tions which are there recorded, probably be struck with as tonishment, and rise with a feeling that after all this struggle for the complete mastery of the physical forces, there must emain very little to be done; that the field must have been worked nearly or quite entirely over, and that scarcely any thing, in comparison, can remain for inventive talent to grap ple with.
A closer and more rigid examination would, however, cor rect this mistake. Scrutinizing the character of each invention separately, he would find that by far the greater portion oven those entitled to be called useful, at the date of their devising, can, from the very nature of things, only remain useful till some advance in other departments renders them ob solete, and creates a want for other and entirely different ap pliances.
Besides this, each important invention is the parent of a large family of minor ones. See how numerous are the inventions which have been born of the application of steam as a motor. Governors, cut-offs, boilers, boiler feeders, high and low-water detectors, low-water alarms, steam whistles, valves, cocks, steam-engine indicators, apparatus for testing the trength of boilers, etc., etc., have been invented, each one of the classes specified or omitted including, we had well-nigh said, countless inventions of greater or less utility.
A discovery of means whereby electricity could be so cheaply employed as to exceed, or even to compete on equal terms with steam, as a motive power, would be inevitably fol lowed by generation after generation of inventions, till the whole civilized world would teem with them. It would take a long time to cull out and count the inventions born of the Morse system of electro-magnetic telegraphy, yet this system is scarcely more than a quarter of a century old. The introduction of insulating cables for submarine telegraphy, and the extension of the system to very long distances, created a demand for more delicate recording apparatus, which, not withstanding the large number of exquisitely ingenious de vices created to supply it, is still unfilled.
"The eye is never satisfied with seeing, nor the ears with hearing." The human mind constantly feels a craving for something more than it possesses. Any creation of inventive genius which appeals to this craving is sure to be received with favor, be it nothing more than a sixpenny toy.
Looking at the progress of invention in this light, it will be seen that instead of approaching its ultimate limit, the field enlarges as we advance. In short, it has no limits. It is infinite as is the capacity of mankind to desire. We are all of us to-day longing for swifter means of travel and commu nication; for cheaper books; for more extended educational facilities; for more powerful instruments of scientific inves tigation; for fuller gratification of our tastes in the arts; and we are willing to employ, and keep employed, the creative genius which devotes itself to the supply of these wants.
Every announcement of a new discovery in chemistry or physics, heralds to the world the fact that a new "placer" has been opened, wherein rich veins of ore may perchance be found by the skilled inventor. When "oil was struck" in Pennsylvania, a few years since, who would have dared to predict the extent of the field it opened to inventive genius ? No doubt the mechanical devices and chemical processes to which it has given birth may be numbered by thousarhs, and the improvement in the general welf
ing therefrom, is simply incalculable.

No, the end is not yet; and it will never come so long as man remains constituted as at present. There are as many chances to win now in invention as there ever were, but it rquires now higher qualifications for eminent success. The more inventions multiply the greater the necessity for higher
standards of technical education, and the more general diffu sion of theoretical as well as practical knowledge.

THE PROFESSION OF THE MECHANICAL OR DYNAMICAL
 ENGINEER.

The term "Mechanical Engineer" is a very unsatisfactory one, and its meaning is very indefinite. To some it convey the idea of practical engineer; another will confine it to the profession of steam engineering, while the courses of study designed to fit young men for the profession of mechanical engineering are variously styled as "Mechanics and Engineering," "Applied Mechanics," " Industrial Mechanics" and "Ap plied Mathematics."
The necessity for a more accurate defining of the limits of the two great branches of engineering which in the terms "Civil Engineering" and "Mechanical Engineering" have had a very imperfect line of demarkation, has impelled the Shef field Scientific School of Yale College to apply a new and more definite term, "Dynamical Engineering," to the chair of "Mechanical Engineering," in that institution.
In the inaugural address of Prof. Trowbridge, the reasons for the adoption of this term are given by him as including those we have already stated, and he adds that its indefinite character
arises from the fact that the term "Mechanical" is not employed in the sense which it would derive from the word Me principles; but from the more restricted sense in which it is used to designate the work of construction of a machine, and the labors of the artisan or mechanic. It originated in the large machinery establishments, and at first referred especially to the manipulations necessary to produce and combine the
material parts of a machine, rather than to the intelligent apmaterial parts of a machine, rather than to the intelligent ap-
plication of the laws of statics and dynamics, in designing plication of the laws of statics and dynamics, in designing and adapting machinery for the performance of specific work. civil engineering is also a mechanical science ; the only differ civil engineering is also a mechanical science; the only differ-
ence between this and mechanical engineering being that one ence between this and mechanical engineering being that one
is based on the principles of statics, and the other upon $d y$ namics. These considerations would have little importance if the questions involved were merely those of words; but, as before remarked, they involve confusion of ideas, especially
in the popular understanding of the subject. It has not al. ways been deemed exsential, for instance, that a mechanical engineer should be thoroughly acquainted with the science of
mechanics, and his calling has been regarded as a trade or an art, rather than as a learned profession; as depending mo on knowledge and experience in manipulations, or the labo of the hands and the use of tools, than on the exertions of the intellect.
We are glad that the new term "Dynamical Engineering" has been adopted, and think with Prof. Trowbridge that its singular appropriateness will be generally recognized.
In the address under review Prof. Trowbridge also makes some able remarks upon practical and theoretical instrucThe practical course ignores books, and the study of the natural sciences. A boy on entering a machine shop is placed at some simple mechanical work, the use of the file, or chip-
ping hammer, or lathe. In two or three years he may acquire ${ }_{*}^{\text {experience in finishing the finer parts of machinery. }}$

If he obtains a position in the drawing or designing room drawing, but his time is absorbed acquire a knowledge of working drawings under the direction of superiors who have no time to impart general instruction in the fundamenta principles of the work on which he is engared. A shop, or machinery establishment is a business establishment, not a school of instruction, and it is rather a favor to young men, to allow them the limited privileges of such information as they may acquire through their own observations and experience lence in the specialties of one establishment, but even in lence in the specialties of one establishment, but even in
such a case the knowledge is gained by imitation. New problems even in that specialty-which involve new forms and dimensions-are apt to be discussed and solved by reference to the nearest example or precedent.
The instances of men who have reached an enviable degree of excellence by passing the first years of their training in the workshop are regarded as exceptional, and as resulting from peculiar qualifications of industry and application.
Theoretical knowledge as well as practical is necessary in order to avoid fatal errors. The only resource of practical men who are deficient in such knowledge, in solving new problems, is an actual trial involving expense and risk. On the contrary the young man who begins by a thorough course of theoretical study takes with him into his practice written experiences, deductions, and classifications, with a knowledge of an accumulation of facts which he could not acquire in a fetime of practice.
The questions connected with the dynamical theories of eat employed as a source of power;-the propulsion of ships y steam, the movement of heavy railway trains, the raisin of water, the construction of heavy steam and water-whee machinery for rolling mills, forges and factories-all involv corresponding resistances-are subjects which can be success fully treated only by the most rigid applications of the principles of mechanics.
This is a branch of the profession which no amount of practice alone, can reach. Sooner or later, every one who aspires to become a consulting engineer must devote himself to the
study of the laws, theories, rules, and formulæ, which constistudy of the law
tute this science.
Strength of
materials and the proportions of parts to endure the strains to which they must be subjected are also subjects for the most rigid application of theoretical knowl edge.

* Inaugural Address before the Sheffeld Selentific School of Yale College, Engineering. New Haven: Printed by Tattle, Morehousel\& Taylor.

In the course of study which a young man desiring to enter the profession of Dynamical Engineering should pursue, the art of drawing is considered as of primary importance, though not by any means the most difficult accomplishment to acquire. Next in order is a sound knowledge of pure mathematics; next the science of mechanics, both independent of and in connection with its practical applications; and lastly a thorough knowledge of chemistry, physics, and metallurgy The fields of usefulness open to men possessing these qual fications are extensive and increasing, and the indirect benefits to be derived from the training of men in this way to take charge of the industries of the country will be felt in the increased economy of production, and the consequent reduction of cost in all that the necessities, tastes, and luxuries of modern civilization demand.

THE MONT CENIS TUNNEL COMPLETED.

The readers of the Scientific American have been made familiar with the history and progress of this enterprise which for thirteen years has been looked upon as one of the greatest of modern engineering feats; yet, at this time, a brief recapitulation will not be out of place, as telegraphic dispatches have announced the completion of the work.
It was, we believe, about the year 1830 when the tunnel was first talked of. In 1842, the king of Sardinia agitated the subject, and subsequently, under the encouragement of Count Cavour, its projectors appointed a committee of engi eers to make preliminary surveys. In 1857 the work wa commenced. At first, only the ordinary excavating tools-the pick, spade, and hand drill-were employed, and the work pro ceeded very slowly.
In 1861 a perforating machine was set to work on the Ital ian side, and in 1863, a similar machine was put in operation on the French side. No vertical shafts have been sunk; the work proceeded continuously from both sides till the tw cuttings met. The cutting has been somewhat more rapid on the French side than on the Italian side.
The machines used were driven by compressed air, conveyed to them through tubes, and ventilation was also maintained by the aid of machinery. Gunpowder was at first used fo blasting; afterwards gun-cotton was employed, and, finally

In 1862 the French Government agreed to defray half th estimated expense of the cutting ($65,000,000 \mathrm{f}$.), in annual subsidies, provided it should be completed in twenty-five years, a the end of which time, should the tunnel remain unfinished the French should cease to pay anything further. On the contrary, it was stipulated that if the tunnel was completed in ten years from June 30, 1863, the French should pay th full half of the estimated expenses. As the latter condition has been fulfilled, with two and one half years to spare, th French Government will now be held for its moiety.
The Mont Cenis Tunnel, which is eight miles in length, is he greatest work of its kind ever undertaken, and the suc cess and rapidity with which it has been brought to its early record.

PAVEMENTS.

Want begets supply. When the public become dissatisfied with what they have, and are fully decided as to what is real ly needed, nothing is surer, in these days of scientific and mechanical progress, than that somehow, by somebody, the need will be met. The public want better pavements. The public will certainly have them. The old cobble-stone pave ments, " the car rattling over the stony street," are soon to be hings of the past. What is to be the pavement? There is no more promising or more difficult field for inventors than his. The man, or the company, who can answer the ques tion satisfactorily, not only does the world a great service but opens a mine of wealth. Inventors know this, and rush nto the field with almost the same eagerness of competition as wealth-seekers thronged to the gold diggings of California or to the diamond regions of South Africa. New pavements multiply upon us. "Their name is legion." Each claims to be the pavement par excellence, but none has yet impressed the public as just the thing. It is not our purpose to discuss the merits of the different kinds of pavements, nor the claim which the inventors of each may put forth, but to call atten tion to the requisites of a perfect pavement. We have befor alluded to this subject, and we return to it for the reason that those who are working in this direction seem almost invaria bly to lose sight of some feature indispensable to permanen success. And here a remark or two upon the word success may not be out of place. Success in making large profits through corrupt "jobbists" is one thing; a success in a me chanical, scientific, utilitarian point of view is quite another In the former sense we have had many successes; in the lat ter sense, as yet, none. We do not mean to say that we have not pavements possessing some of the essentials, but we do mean to say that there has been no pavement extensively lai for which any close student of the subject will venture to predict universal use, or anything like it, say fifteen or twen y years to come.
Let us seek to enumerate the essentials, and let each in ventor consider for himself whether his
combination provides for or meets them.
1st. Durability. Not merely sufficient to withstand a few years' wear in some fashionable avenue, frequented for the most part only by carriages, but sufficient to justify adoption in our most thronged and roughly-used business thorough fares. It may be claimed, with show of reason, that we may have different varieties of pavement for different localities but it will certainly be conceded that a pavement for which streets adapted to its endurance must be selected cannot claim to be perfect.

AIR LIGHT

What has become of the air light about which so much was said a few years ago? This light belonged to the class where an oxide is rendered incandescent, and hence powerfully luminous by the heat of a burning jet of mixed gases. Instead of using oxygen and hydrogen, it was proposed to compress illuminating gas into cylinders and to employ at mospheric air also under pressure, but previously superheated. The air contains one part, or 20 per cent, of oxygen, and four parts, or 80 per cent, of nitrogen; hence it would require four or five parts of air to give the requisite quantity of oxygen; that is, to obtain one foot of oxygen, five feet o air would be needed, as four of them would be nitrogen.
It has been proposed to remedy this difficulty by passin It has been proposed to remedy this difficulty by passing
the air through water under pressure, and freeing it of the air through water under pressure, and freeing it of
a large part of its nitrogen, as that gas is not so soluble in a large part of its nitrogen, as that gas is not so soluble in
water as oxygen. But this would involve expensive apparatus. If the nitrogen could be prevented from carrying away the heat from the jet at the point of ignition, the air would give us all the heat and light required when burnt in com bination with illuminating gas. To prevent the nitrogen from conducting away the heat the air must be previously superheated in furnaces and fed hot to the burner. Some of the locomotives on the New York Central Railroad were at one time supplied with head-lights composed of four compound jets, encircling a small pencil of lime. A current of pound jets, encircling a small pencil of lime. A current of vice the air was heated before reaching the jet. The flow o gas was controled by simple regulators and stop-cocks within the lamp. Two gas holders, placed under the engine, com-
municating with the lamp by a small pipe for each, were municating with the lamp by a small pipe for each, were constructed to carry two or three times the requirements of a
trip. The air was superheated by being passed through the fire-boses under the boilers without additional cost. The en gineer who explained it to us pronounced it a perfect success, but that was several years ago; since then we have hear nothing of it, and so repeat the question: What has becom of the air light:

WASTE LIQUORS OF PAPER MILLS.

The American Wood Paper Company at Manayunk, Penn., have introduced an important feature into their works in saving the waste alkali solutions. It is said that eighty-five per cent of the original alkali employed is recovered. The spent liquor is conducted from the pulp boiler into a suitable reservoir, where it is pumped up into evaporating furnaces. These furnaces are constructed according to a patent granted to Messrs. Keen \& Burgess in 1865. They are of great length and radiate from the center of a building resembling a loco motive shed, and all communicate with one central chimney. A powerful draft carries the hot gases of combustion over and under the evaporating pans, and the water is thus rapid ly carried off. The alkali is finally transferred to the calcin ing furnaces, where it is brought to a condition suitable fo mixing with a fresh portion, preparatory to being used again In the manufacture of paper from straw the stock is also boiled in caustic soda lye under pressure, and in most estab lishments the impure black liquor is thrown away. The soda extracts silica and gluten from the straw, and thus forms a very weak and impure soluble glass. It has been proposed by some manufacturers to evaporate the solution and economize the soluble glass and the extra alkali, but the expense of the evaporation has deterred most of the larger establish. ments from attempting to make the saving. It would be well for such paper manufacturers as deal in large quantities of alkali, to try the Manayunk process described above. If soda were a substance that could be thrown down from a solution by precipitation, it would be an easy matter to save it, but unfortunately there is no reagent with which it can
be combined for this purpose, and we are compelled to have be combined for this purpose, and we are copeled to have recourse to evaporation. The use of the spent alkali for ag ricultural purposes has been tried, and if potash had been employed instead of soda the results would be favorable where the expense of transportation did not destroy all the
profit, but as soda is now considered by many authorities as profit, but as soda is now considered by many authorities as
actually deleterious to the growth of plants, this application actually deleterious to the growth of plants, this application
of the spent alkali of the paper mills cannot be recommended. The soluble silica would be of great value in agriculture if it could be separated from the alkali, but this separation is not feasible. There is no reason why the lime used in the vats to render the soda ash caustic should not be put upon land, and such a disposition of it is made at many country mills.

If any of our readers can give us additional information on this subject we shall be glad to make room for their communications.

SPIRITUALISM AND sCIENCE.

Two of our correspondents exhibit a commendable desire for information in reference to the movements of tables by invisible spirits, and as one of them appears to have been severely handled by some of the evil kind, we do not wonder that he seeks for an explanation of the phenomenon.
If there is anything established in nature, it is the invariableness of her laws. The laws which regulate the material world are beyond all reach, and the Creator never permits the management of the universe to pass out of his own hands, or to be interfered with by any of his creatures. The moment we deny this, that moment science becomes impossible. For ages the belief obtained that angels and demons were able to control or influence physical laws. Λ s long as such superstition prevailed, scientific progress was impossible. It was only when it was discovered that the laws of the physica? universe were fixed and sure that men were encouraged to
carry on scientific research, for they then knew for the first
time that if they asked for bread they would not receive a stone.
The physicist now knows that to move a table without the aid of muscular or mechanical force requires a suspension of the law of gravitation, and he also knows that the momenta ry suspension of this law would reduce the whole universe to chaes and destroy the equilibrium of matter. To suppose that any spirits have such power as this is impious and irrev rent in the extreme. None but the Divine Spirit can act on matter except through the medium of matter, and to ascribe such power to any of od's creatures, whether in the fleshior out of the flesh, overthrows all that religion and science have taught us. Hence the scientific man never believes in any apparent infraction of the laws of the universe. He knows that the phenomenon observed is due to natural causes, and goes to work to search out the mystery. There are plenty of known causes which have always been in operation, that are quite sufficient to produce all of the genuine results of spiritual manifestation without the necessity of appealing to the supernatural for an explanation, and Dr. Hammond has shown us that there are other causes which explain why honest people may conscientiously believe in the genuineness of all hese manifestations.
We have recently given a series of articles on the history of attempts to invent a perpetual motion. The physicist is absolutely certain that a perpetual motion accomplishing work is an impossibility according to the known laws of mechauics, yet the attempt to construct such a machine has been made for centuries, and no doubt will continue to be made as ong as the world stands
If a party of true believers in spiritualistic manifestations could seat themselves by the side of a stream of water and make it run up hill, they would accomplish a much more clever trick than to chase a table up stairs or out of the window, as your genuine spiritualist will not hesitate to do for you at any time; but as it is difficult to take hold of the paricles of a liquid, this particular form of exhibition is never attempted, and making water run up hill is chiefly confined to a vulgar force pump.
Many of our readers have no doubt witnessed the performances of necromancers, and have gone home greatly puzzled lect to have seen a cane set upright on a floor and al lad bal lect to have seen a cane set upright on a floor and a lad bal. wanderful about this, but when the cane was taten away, without the lad's falling, and it was passed over, and under, and all about him, so as to show that he was not supported by wires from the ceiling or by rods from the floor, we had no ready way for accounting for it, but were absolutely certain, from our knowledge of the fixity of all physical laws, that there was some trick by which it was done, not visible to the senses. Aristotle believed that the heavenly bodies were suspended by invisible cords, otherwise they would fall upon the earth and crush it. He was evidently no spiritual ist, but a believer in the necessity of something tangible to hold up the stars.
Some of our correspondents complain that scientific men will not examine into the phenomena of table-turning and give us an explanation upon a physical basis. They forget that this has been done by the highest authorities in this country and Europe.
In 1859, in the city of Boston, a reward of five hundred dollars was offered, through the columns of the Courier, for a satisfactory exhibition of some of the ordinary manifesta tions which mediums of every degree were constantly pre tending to produce and which were fully believed in by the faithful as of spiritual origin. The challenge was accepted by a spiritual corps consisting of Dr. H. F. Gardner, Mr. Allen Putnam, Mr. Alvin Adams, Major Raines, Miss Kate Fox, and others, and Professors Peiree, Agassiz, Horsford, and Dr. B. A Gould, were appointed a committee to give them a fair trial It is hardly necessary to say that the whole thing was an ut ter and complete failure, although the distinguished profes sors displayed the utmost candor and patience in their search for the truth, just as they would have done in any other sci entific investigation.
In Ingland the late lamented Professor Faraday subject vestice phenomena of table-turning to a most searching in sivelyation. The report of his experiments has been exten sively published and ought to be regarded as conclusive by he most skeptical inquirer. Our readers will find it in Th thenceum, page 801, for the year 1853.
Professor Faraday by an ingenious device found a way of measuring the direction of the force by which the table was moved and showed that the movement of the muscles wa involuntary. Whenever an index was attached to the table which made the least motion visible to all, there was no effect, because the involuntary feature was destroyed and the parties to the transaction could not exert the force required for lifting it excepting in the ordinary way, and such table lifting would be like moving furnitureabout the room in the most humdrum style. The esperiments were a perfect dem onstration of the muscular origin of the table moving, and must be admitted as such by any one possessed of sufficient capacity to understand them.
There is no doubt that rappings and tippings were known to the Romans, and they were re-discovered, so far as this country was concerned, at Rochester, in 1846. Since that date we have had a surfeit of them, and it has now become a regular business, as much so as selling groceries or giving exhibitions with the magic lantern. The tricks of the trade
have been exposed over and over again, but the world will be deceived by them in spite of all the warnings that we or the daily papers can give. We must look to our schools to correct the evil by the dissemination of accurate scientific information among the people.

