it correct? He says, "the distance traveled by the piston is the versed sine of an angle formed by a line from the center of the crank pin, in any part of its stroke to the center of the circle described by the crank pin, leaving out of the cal culation the angularvibration of the connecting rod " Wha he means by the "angular vibration," I do not know. He is wrong in the statement. If he will think of it he will see it If he meant to say that the piston's travel was measured by the versed sine of the angle formed by the connecting rod and the line of horizontal centers, he is wrong again, yet nearer the truth than before, just as the proportion between the length of the connecting rod and the half diameter of the circle described by the crank pin. This can quickly be seen by supposing the connecting rod to be detached, and allowed o fall down on the center line, at any part of the stroke. If to fall down on the center line, at any parstood this (as no doubt he did), he should not ignore the facts.
What I am aiming at is this. When a man attempts t demonstrate a thing mathematically, he must take into his calculation everything essentially connected with the problem just exactly as it is, and not as he would have it; otherwise, he cannot, by any possibility, attain a correct result. When he claims, as now, the practicability of running engines at high speed, I think he is claiming too much. Build an en ine of proper materials, make it strong, and fit everything as it should be, balance crank and fly wheel to a nicety, keep everything snugly in its place, and the terrors of a quic
stroke vanish.
S. W. H.

Test for White Lead

Messis. Editors:-I have read, with much interest, Dr Chandler's colorimetric test of the purity of white lead, a published in the Scientific American sometime ago. I en close another test, which, though not new, is of value to al usin γ white lead on account of its simplicity and effective ness. It has been in use here for nearly two years, and has been found reliable. Having never seen it in print, I have tried to put it in as simple words as possible.

Felix Mcardle, Analytical Chemist.
St. Louis, Mo.
Take a piece of firm, close grained charcoal, and, near one end of it, scoop out a cavity about half an inch in diamete and a quarter of an inch in depth. Place in the cavity a ample, of to it continuously the blue or hottest part of the tlame of the blow pipe; if the sample be strictly pure, it will in a very short time, say in two minutes, be reduced to me tallic lead, leaving no residue; but if it be adulterated to he extent of ten per cent. only, with oxide of zinc, sul phate of baryta, whiting or any other carbonate of lime (which substances are now the only adulterations used), or if t be compoiel entiraly of these materials, as is sometime the case wit'l cheap lead, it cannot be
Dry white lead, (carbonate of lead) is composed of metallic ead, oxygen and caib inic acid, and, when ground with lin seed oil, forms the white lead of commerce. When it is sul jected to the above treatment, the oil is first burned off, and then at a certain degree of heat, the oxygen and carbonic acid are set frce, leaving only the metallic lead from which it was
manu factured. If, however, there be present in the sample any of the above mentioned adulterations, they cannot of course be reduced to metallic lead, and cannot be reduced by any heat of the blow pipe flame, to their own metallic he carbonate of intimately incorporated and ground
It is well, aiter blowing upon the somple say for It is well, aiter blowing upon the sample, say for half
minute, by which time the oil will be burned off, to loosen the sample from the charcoal, with a knife blade or spatula in order that the flame may pass under as well as over and against it. \because ith proper care the lead will run into one but ton, instead of scattering over the charcoal, and this is the reason why the cavity above mentioned is necessary. A common star candle or a lard oil lamp furnishes the best flame for use of the blow pipe; a coal oil lamp should not be used.
By the above test, after a little practice, so small an adult eration as one or two per cent. can bedetected; it is, however only a test of the purity or impurity of a lead, and if found adulterated, the degree or percentage of adulteration canno be well ascertained by it
Jewellers usiually have all the necessary apparatus for making the test, and any one of them can readily make it by observing the above directions, and from them can be obtain ed a blow pipe at small cost
If you have no open package of the lead to be tested, a sample can most easily be obtanned by boring into the side or top of a keg with a gimlet, and with it taking out the re quired quantity ; care should be used to free it entirely from the borings or particles of wood, and it should not be larger than the size mentioned; a larger quantity can be reduced, but of course more time will be required, and the experiment cannot be so neatly performed.

How to Build a Chinney.

Messrs. Editors:-I am satisfied that a great many fires originatethroughpoorly constructed chimneys; and, although not a bricklayer by trade, I would offer a few hints how to construct a fire-proof chimney. Let the bed be laid of brick and mortar, iron, or stone; then the workman should take a brick in his left hand, and with the trowel, draw the mortar upon the end of the brick, from the under side, and not from the outside edge, as is usual. Then, by pressing the brick against the next one, the whole space between the two bricks will be filled with mortar; and so he should point up the in $\mathrm{A}:$ as $\cdots \mathrm{rli} \mathrm{c}+1 \mathrm{r}$ as the outide as hoproceeds.

By drawing the mortar on the edge of the brick, the space between the ends will not always be entirely filled, and will make (where the inside pointing is not attended to) a leaky and unsafe chimney, which, if not kept clear of soot, will, in burning out, stand a good chance of setting the building on fire. The best thing that I know of, to put the fire out in a burning chimney is salt; but the matter of first importance,
after having a chimney properly constructed, is to keep it after having a chimney properly constructed, is to keep

Westfield, N. Y
Austin B. Culver.

Crystallized Honey.

Messrs. Editors:-Please allow me to say to the querist who, through your columns, asks what to do with crystalline honey, that if he will "doctor" it with almost any artificial honey of the day, it will not become like lard in cold weather, which change is a natural proof that it is pure For almost any purpose, pure honey is preferable to that which has been adulterated, but purity is a minor consideration with many.
Next we shall hear of some fastidious customer who objects to pure lard, because it look 3 white when cold. To such ve would recommend lard
A. M. B. Louisville, Ky.

RAMBLES FOR RELICS.

At a depth of fifteen feet, we were about to suspend our abors, supposing from the nature and uniformly dark color of the earth, that we had reached thesurface of the alluvium, when a sign of the inevitable wood and bark layer was seen in a crevice. An excavation, five or six feet, into the wall, revealed the skeleton of a man laid at length, having an extra coverlid of woolen material. Eighteen large oblong beads, an ax of polished green stone, eleven arrow points, and five implements of bone (to be described) were deposited on the left side; and a few small beads, an ornamental shell pin, two small hatchets, and a sharp-pointed flint knife or lance, eight inches long, having a neck or projection at the ase, suitable for a handle, or for insertion in a shaft, on the right side. The earth behind the skull being removed, three enormous conch shells presented their open mouths. One oit my assistants started back as if the ghost of the departed bad come to claim the treasure preserved, in accordance with uperstitious notions, for its journey to the "happy lands." The alarm seemed to be a warning, for at the moment the mbankment, overloaded on one side, caved in, nearly bury ing three workmen, myself, and a spectator. Our tools being at the bottom of the heap, and the wall on the other side, shaken by the falling earth, giving tokens of a change of base, our prospects of a ready deliverance were not very hopeful. The bystanders, however, went to work with their hands, and we were s:on relieved, not without casualty, the spectator having the worst of it. Struggling to extricate himself, instead of abiding his time, he dragged one leg out f the pile shorter than the other.
The occurrence of marine shells in a burial depository, especially of the varie i ss pyrula and oliva, four or five hnndred miles from the ulf and that portion of the Southern coast where the mollusks exist, bears upon the question of migration and tribal intercourse, and the commercial value of these articles. Obtained from a distance and regarded as precious commodities, they were used in exchange, for the material of ornaments, and for choice utensils Only two or hree of these shells have been found in a perfect condition, but defective ones are frequent, with fragments, " cuttings," and varioas trinkets made out of them-such as ornamental pins, needles, crosses, buttons, amulets, engrav d plates, and beads. From one of the specimens recovered from the mound sepulchre, the spire and columella had been removed leaving a hollow utensil. It would have been suitable for water vessel, but for a hole in the bottom, which had furnished a button-shaped ornament, or piece of money, which was found with the relic, and exactly corresponded to the orifice. The twirled end of the shell, however, had been improved for a handle by shallow cavities, one on the inside slanting from the middle longitudinal line, and one crossing that line at right angles on the convex side, so as to be fitted to the thumb and fore finger of the left hand, suggest ing a use of the implement as a shield, or a mask held before the face. Adair speaks of large shells in use by the Indians of his time (1735), suspended about the neck for shields, and egarded as badges of priestly dignity.
A trench was dug on the east side of the mound, nearly corresponding in dimensions to the one on the west side, mak ing the length of the whole excavation, including the central cavity, thirty-two feet.
In the last opening, eight skeletons were exhumed; the mode of burial was the same throughout. The only article of value recovered was a curiously wrought pipe of stone having a "figure head" representing the human face, which I have put down in a list of " articles stolen," and which the hief can describe better than the writer. After filling up all the gaps, and levelling the surface to suit the taste of the
proprietor, we closed our labors on the mound in the Bent.
Of the skulls collected, it is sufficient to say that the belong to the "short heads," the length and breadth having in the mounds of Tennessee.
Of stone implements I speciíy an ar of serpentine, ten inches long, two thick, and four broad, having plain sides and a straight edge ground down on both of the flat faces latchets ("tomahawhs") of green stone flint, and diorite,
from five to eight inches long, with rounded faces and sides, contracted to an edge at one end, and to a flat heel at the other; a wedge of black slate, seven inches long and half an inch thick, of a square finish on the faces and sides and at the heel, which was diminished two inches, as compared with the length of the edge; hatchets with a serrated edge at each end, plane on both sides, convex on one face and flat on the other.
With one skeleton was deposited a " set of tools," eight in number, of the species of rock before mentioned, varying in length from two to eight inches. Their peculiarity consists in a variety of shapes-no two being precisely alike-and in their fitness to various uses, such as carving, hacking, par ing, and grooving. The smallest of them, having a square finish, was held by the thumb and two fingers, and is suita ble for cutting lines and figures in wood and shells. Speci mens of this art were furnished from the mound. The larg est number might serve for hatchets, chisels, and gouges One had been ground in the form of a cylinder five inches long and an inch thick, and then cut an inch on two sides to an edge, and worked into a handle with a round bead, from the center of the elliptical faces. It might be used for chipping wood and stone. One answered the purpose of a cold chisel; another was somewhat similar, but had a hollow face reduced to a curved edge for grooving. These polished instruments, wrought with much care, seemed intended for use by the hand rather than for insertion in a handle or socket by the hand rather than for insertion in a handle or socket,
or attachment to a shaft by means of a strap or withe. Only one was perforated. The drilling through granite, quartz, and diorite, without the use of metal, was a severe labor even for savage patience. A long knife of silex, with a wrought handle, lance heads, leaf shaped, of the same mate rial, of beautiful workmanship, arrow pcints of fine finish urnished, with others before mentioned, an assortment o arms. Soveral flint points, though only an inch long, were curved like a cimeter, and used probably as flaying instruments. True disks, of various mineral substances, from an nch to five inches in diameter, having convex faces, complete the list of stone implements. Those of bone comprise several like hollow chisels, sharpened at one end, and pierced hrough one face, near the other extremity, so as to be fas tened to a handle; these were used for dressing skins. One was formed like a poniard, with a worked hilt. With these may be connected arr.w heads and sharp pointed weapons of the worked antlers of the stag, and tusks of the wild hoar. Of ornaments, I noticed pins used for dressing the hair made of the columns of large sea shells. The head is generally round, sometimes oval, from an eighth to a half of an inch in diameter, retaining the diagonal groove of the pillar rom which it is made. The sterns vary in length from one o six inches. It would be tedious even to classif.v ornamen al beads and buttons of shell work, such as are usually found in the mounds. These trinkets are perforated, and, in addition to their being articles of dress, were used probably as " wampum," the currency of the recent Indians.
A miscellaneous collection includes a hematite stone, wrought in the shape of a cup weighing half a pound; when rubbed or ground it furnished the war paint of the savages also the extremity of a copper tube, two inches long; needles in bone and shell, from an inch to six inches long, with grooves round the head, to serve the purpose of eyes; and plates of mica. The use of mica plates, which are found of arge size in some of the Western mounds, has excited some inquiry. Of a certain thickness, they make good mirrors Beside their use for ornamental purposes, they were proba bly looking-glasses of the beauties of the stone age. There was also found a pipe of soap stone, having a stem five inches long, and a bowl with a broad brim, like a Quaker's hat.

Of earthenware, there was an endless variety of fragments of the usual black, grey, or red compressed clay, mixed with pulverized shells or stones. One kind I have never seen de scribed. The sherds had a red coating on both sides, an eighth of an inch in thickness, evidently not a paint or a glaze The red coloring might have come from the pottery being burnt in the open air, instead of baked in a furnace, were no the layer of uniform thickness and of homogeneous paste unlike the material of the vessel, which was a gray mixture of clay and particles of shells.

I give the above memoranda to the general fund of infor mation, touching a subject that invites inquiry on account of its novelty and ethnological importance. Every examina tion of the monumental remains of the ancient Americans brings to light some new feature in structure or type of rudimental art. And since archæology has become a science, investigators, for half a century, may be looking about for the complete the system auspiciously introduced by th antiquarians of Northern Europe, and advanced in our own Americana) the researches of Caleb Atwater (Archaogia to knowledge, especially Squier and Davis. Rambler.

A Small Water Wheel-There is in the town of Meriden, Conn., a Leffel double turbine wheel, running under 240 feet fall and driving a manufactory. It uses only about onehalf of a square inch of water, and runs at the marvelous speed of 3,000 revolutions per minute, or 50 revolutions per second, which is by far the most rapid rate of motion ever imparted to a water wheel. This is, also, beyond comparison the greatest fall applied to the propulsion of a wheel in America. The wheel at Meriden is of every diminuteive size, scarcely exceeding in dimensions the old-fashioned "turnip" watches which our grandfathers used to carry in their capacious vest pockets. The complete success of this herl has attracted much attention and affords further evidence of the wide range of adaptability of the Leffel turbine.

