Speed of Circular Saws and Saw Mills.
Messrs. Editors :-Under the above heading, on page 51 current volume, appears an article from C. H. Crane, stating the amount of lumber cut with a circular saw 66 inches in diameter, running 800 revolutions per minute. As I am filing a circular saw in Messrs. Holt \& Balcom's mill, in this city, I thought I would send you the amount of lumber cut in this mill the last week in July, sawing six days and six nights, the mill inside being in charge of Mr. Nichola Emery.
I will give a short description of the mill, which has one stock gang, 26 saws, $24-\mathrm{in}$. stroke, one slabbing gang, six teen saws, $28-\mathrm{in}$. stroke, one large circular saw, one splitting saw, one gang edger with four saws, and one single edge behind the circular. There are five boilers, 42 in . diameter 22 ft . long, two $16-\mathrm{in}$. flues in each. Engine, $24-\mathrm{in}$. cylinder 32 -in. stroke, runs 70 revolutions per minute. All the saws are driven by friction pulleys, belts running from coun ter-shafts to saw arbors of edger saws, etc. Each gang has a driving pulley on main shaft of wood $10 \frac{1}{2} \mathrm{ft}$. diameter, 30 in . face, the driver pulleys on gang crank shalts are of iron 4 ft . diameter, and 30 -in. face, making the gangs run over 180 revolutions per minute
The circular has a driving pulley of wood 11 ft . in diame ter, 30 -in. face, and two counter shafts, one front and one back of main pulley, with an iron pulley on each, 4 ft . dia meter, $30-\mathrm{in}$. face, making a double friction on a belt connect ing the two counter-shafts. The large belt pulley on coun-ter-shaft is 9 ft . diameter, and pulley on saw arbor, 30 in . dia meter, which would make the saw run 693 revolutions per minute, has a $14-\mathrm{in}$. double belt.
The circular machine was built by Stearns, Clark \& Co., at Erie, Pa . The caw arbor is 4 in . diameter, and saw collars 5 in. diameter. The saws are 60 in . diameter. No. 5 gage in center of saw, and No. 8 gage on rim, and made by the American Saw Co., Trenton, N. J., with Emerson's paten movable teeth.
The feed we carry with these saws is from 1 to $5 \frac{1}{2}$ in., ac cording to the nature of the wood that it is cutting-our feed averages over $4 \frac{1}{2}$ inches to one turn of the saw. I have seen them cut 6 inches to one turn.
Each large saw has 32 teeth. There is an overhead saw 34 in. diameter. They will cut 7 boards, 16 ft . long, per minute, or 6 boards 18 in . wide, or 4 boards, 24 inches wide, and 16 ft . long, per minute. I have seen them saw a log, making 20 cuts, 16 ft . long, and turn the $\log 4$ times on the carriage in 3 m nutes, all strips 1 in . thick and 6 in . wide. The logs that wire sawed during the week were not picked logs, but taken out of the

## in. to 40 in . diameter

By the following table, which was taken from the tally board for the week, will be seen the number of logs that wa sawed on the gangs, and also those saw orcular, and the number of feet they measured


There were 4,538 logs cut ; over three fourths being 16 ft . rest being 12 and 14 ft . long. Between 6,000 and 7,000 of 2 by 6 were saved on the circular, all the rest were what we call strips, 1 in . thick, and 6 in . wide. There were 150,000 laths
cut in the same time with one bolting, and one lath saw only cut in the same time with
running in the day time.
The day hour commences at 6 A.M., and ends at 6 P.M., $\frac{1}{2}$ hour for dinner leaves $11 \frac{1}{2}$ hours. Night tour from 6:30 P.M to $5: 30$ A.M., $\frac{1}{2}$ hour at midnight for supper, leaving $10 \frac{1}{2}$ hours. The circular lost $3 \frac{9}{4}$ hours' time in all on Monday, Tuesday and Thursday nights. Gangs lost about two hours' time.

I leave it for the readers of the Scientific American to say if this equals the sawing done by C. H. Crane.
We could cut 50,000 feet stuff the same dimensions as that Oconto Wis $\qquad$
Poison ©ak.
Messrs. Editors:-I notive in your issue of the 13th, an article from a writer in the Entomologist, who was suffering from the effects of a vine commoly known as poison ivy. The poison ivy of this country is entirely different in appearanc from the poison oak common to the Pacific coast.
The poison oak grows there in the form of a small oak bush, often attaining a hight of four or five feet, and in some cases, has long, slender, vine-like branches. Its poison is much stronger than that of ivy, and will yield to no treat ment that I am aware of but iodide of potassa. In the very worst cases of poison oak it gives immediate relief, as I have witnessed and experienced.
Any physician or druggist can put up a prescription in proper quantities.

Anson Searls.

## Moon Fallacy.

Messrs. Editors:-I have seen several articles in your paper in regard to cutting timber by " moon signs." More than forty years ago, I cut, for a number of years, at different times in the year, considerable second-growth white beech for plane stocks, which I think is the worst wood known to preserve sound (or keep from getting "dozy," as we used to call it). After trying many moony experiments, summer and winter, I came to this conclusion, that the true secret was to cut the
timber when there was the least possible amount of sap in of the laws of mechanics to fulfill the conditions of ascent and timber when there was the least possible amount of sap in of the laws of mechanics to fulfill the conditions of ascent and the body of the tree-say the coldest weather in the winter propulsion, pro
or the warmest in summer-June or February, when the sap our machine.
is in the tops or in the roots of the tree. Every tree I cut fter the sap began to start in the spring was sure to "doze," antil Jane, when I found it safe to cut again.
G. W. Hildieth.

Lockport, N. Y.

## racking of wan

o Prevent Cracking of Wagon Hubs in Seasoning Messrs. Editors :-In answer to your correspondent E.
H. H., of Md., who finds dificulty in the cracking of wagon hubs made from "black gum," I have to say that from sat sfactory investigations made with the vapor oi coal-tar wagon hubs and stock can be perfectly insured against crack ing, shrinking, and swelling, in any climate.
The apparatus is very simple. Take a common "try pot," such as is used by whalers, or a farmer's large boiling kettle ; fit to it a wooden cover, to fasten with small screw bolts or clamps to the rim to be vapor tight. A piece of one-inch gas pipe screwed into the cover serves to convey the vapor of tho coal tar from this extemporized still to a larg ${ }_{3}$ cask, which nay be set upon one head, as a receptacle for the huhs. The ill pipe is led to the bottom of the cask, which is then filled with hubs, and a cover fitted over all, to be vapor tigbt, with a small safety vallve arrangment to regulate the pressure.
The kettle is then filled with refuse matter frow the gas works The kettle is then filled with refuse matter frow the gas works or crude coal tar, the cover secured, a fire lighted under the kettle, and shortly the hot lighter vapors penetrate the mass of hubs at a temperature of about $200^{\circ}$ to $220^{\circ}$ Fah. The hubs are effectually and gradually heatea, so that all the watery particles are expelled from the wood in steam and re placed by the light vapors of the hydrocarbon oil. Subse quently the heavier oils are distilled over and fill the pores of the wood. The process is finished in about twelve hours, and you have a hub that will stand anywhere short of a fire. A few experiments will satisfy ary one of the efficacy of this treatment. One of the products of this distillation is carbolic acid-the best known antiseptic-and the hubs will be found strongly impreguated with the peculiar smell of this well known agent.

A large establishment would of course have a more perf ct pparatus, but the above will serve to prove its value at smal San Francisco, Cal

Pacific.

## Seasoning Hubs.

Messrs. Editors :-If E. H. H., of Md., will bore his hubs immediately after they are turned, and paint, (as soon a possible atter turning) the entire outside with any kind of paint which will effectually prevent the moisture encaping through the outside surface, then give them time to season the moisture in the process of seasoning will escape through the aperture bored to receive the asle while the surface will be held intact. When well seasoned, mortice for the spokes and drive them in immediately; by doing so he will avoid the aracking of which he complains.
A. Gregg, M. D.

Indianapolis, Ind.

Messrs. Editors:-I have been much pleasrd and instructed by the able articles appearing in your columns, on various characters of insect life, by Prof. Day, of Columbia College. Some of us, less learned in the homes and lives of the bugs and worins, would be glad to have him tell whence comes and whither gows the new and intensely disgusting worm which has, within a few years back, begun to attack the ailanthus trees
H. E. C.

Brooklyn, N. Y.
[These worms are those commonly called the ailanthus silk worm. They were, we believe, brought from France here by somebody as an experiment. Residents of Brooklyn no doub wish the experiment bad never been tried.-Eds.

## [For the Scientifc American.] TRUE THEORY OF FLYING.

The world seems to have concluded that the cycle of inven tions is complete-that the telegraph has taken the last and topmost place; and that men must be satisfied with the great time and labor saved which they now possess.
But the Duke of Argyle, and a few other brave spirits, think differently, and are spending time and money in en deavoring to obtain for us the art of flying, which has so ong bid defiance to human skill.
The writer has been deeply interested in the subject, and perhaps his conclusions may be of service to those who are xperimenting upon the art. They are as follows :
1st. No successful flying machine can be constructed, which depends for its support in the air, upon the balloon principle-that is, which requires a bag full of gas for its hotation in the atmosphere. Because, the surface of resistance increases as rapidly as the propelling power is increased -greater weight of engine, etc, requiring greater size of balloon for its support in air. Because this plan has been tried both in New York and San Francisco without a shadow of success. Because it is in direct contravention of the method of nature. Every bird weighs so many pounds or ounces voirdupois, and the heavier the bird, as a general rule, the nore powerful and swift the flight.
2 d . The future flying machine must be constructed upon some mechanical principles analogous to those which obtain n nature. Looking at these we find two prime requisites st. A mechanical contrivance adapted to supporting and propelling the flying creature. 2d. A tremendous muscular cult to imitate the wings of a bird, with sufficient observance

A system of properly-balanced and adjustable vanes, inclined on the principle of the propeller-screw will raise a flying vessel in air, and propel her in any direction. Bat the driving power must be enormous in proportion to the weight of machinery-just as the pectoral muscles of the bird are far more powerful than those of any non-flying animal; or, as far as I am informed, than any other muscles whatever, in proportion to their weight.
The whole question is then-What can we find analogous to the driving power of the wings of a bird? What power is there in nature which we can lay hold on and turn to our uses, which, nevertheless, needs no cumbersome boiler, no heavy fuel, and no complicated, and therefore weighty ma chinery-all and each of which are death to the flying machine theory
Let us look at the known agents which we employ in propelling our machines.
There is steam. It requires no argument to show that its power is inadequate to carrying the necessary weirht of ma chinery, etc., in air. Electricity is probably weaker that Eteam, under these conditions, in its present mode of use.
Either the power required must be concontrated burfor tarcing, and deposited in the mashine in the shape of a compressed spring, or a cylinder full ot' condensed air, or we must get some new agent, as yet untried, which will give tremendous power without weight in as great proportion as in the known eng ne.
The compressed spring or condensed air plan maydo for short flights. The writer however, las not much faith in either, and has not the present ability to test them by exper imenis.

But we have an agent sufficiently powerful and perhaps suffici-ntly governable, which will drive our llying inaching for us with abundant force. Either gaupowder, dynamit ; or the fulminates, have sufficient strength, with comparatively no weight. Witness the flight of a five- unudred pound shell for miles, at an elevation of thousands of feet, driven by a few pounds of powder! Consider the number of horse-powers involved in this exhibition of strength, and calculate the weight of the steam engine, its boilers, and fu $:$, which should accomplish such a result! 'There is no quastion aboat our having the power, bu' have we not too much ? More than is controllable by human ingenuity?
The flying machine of the future does not need to draw upon these terrible forces to their full extent. Gunpowder ad all explosives have limits to their power and are gov rned by laws, and can probably be used as propelling agents ith a safety greater than that of the steam engine
They are the only known agents which are, in their great wer and small weight, analogous to the muscles of the bird How this power is to be applied and rogulated could soon be ascertained by ingenious aud educated engineers. Perhape it would be well to have a cylinder in which successive explo sions should preserve a constant and high pressure, which, by proper machinery, would drive the propelling fans.
Or, if a fulminatie is obtainable which condenses to an in significant amount of liquid immediately after explosion, a pair of iron hinges, as it were, which would expand and contract with great force by these successive explosions and con d-nsations, might furnish the desired means of applying the power.
The rocket is a proof of the power of powder to carry ves ls through the air. It is the rudest form of flying machine and when the genius of man is fully directed to economizing and guiding the great power which is the cause of the rock et's flight, we will have a speedy, practical, and safe flying vehicle which will astonish the world by its simplicity and tardy discovery.
Af w misconcoptions on the subject may be spoken of. It is generally supposed that a flying machine must be a peril ous means of travel. This is not so. If one were constructed on the principle spoken of in this paper, there would be no necessity of its travelling high in the air. A few feet above the ground would suffice, and many known appliances couid be added, which would render a fall innocuous. The lower side could be arranged with powerful spiral springs, which would make a concussion harmless, or a system of parachutes could be devised by which passengers could descend to the ground with safety.
Arguing from the aualogues of nature, as we find that the largest fish far exceed in size the largest bird, so science will fiud itself compelled by laws, at present unknown, to lim:t the size of flying, machines to some such ratio with steamers, as obtains between bird and fish. If the largest bird is only one-tenth the length and general dimensions (not meaning bulk) of the largest fisu, so, considering the largest steamers to 500 feet in length, which they will probably not suc cessfully exceed, we can expect Hying machines, perhaps fifty feet in lencth. As the speed of the bird is swifter than that of the fish, so we can look for a greater speed in air, by the we rules, than in wa the fling machine in fure will go to Europe in two days, and with greater safety and comgo to Europe in two days, and with
for than the present mode of transit.

They will be swifter, easy of construction, and will come into universal use, though they will be more expensive than other conveyances. Speed and conceatrated fuel mean ex pense. As rapidly as the magnetic telegraph, when once in vented, overspreal the globe, so rapidly will every county and town adopt the new invention of the new future, the luoplites of traveling convenience.

He who strikes out a new path in art, science, or litera. ture, secures for himself persecution.

