C゙otrespondente.

The Evitors are
res pondents.
Our Dwellings.
Messrs. Editors :-Your correspondent, " F. G. W.," may be about right in the statement made in No. 4, present volume, that "two thirds of our dwelling houses are not put up" in a very workmanlike manner; but his field of observa-
tion must be quite limited, or he would not say that the tion must be quite limited, or he would not say that the "greatest deficiency is in the foundation supports."
As a rule, builders do not slight their work in those points where the mass of persons inexperienced in such matters could readily detect the fault. Many a poorly-built house is pronounced " built of the best materials, and in the best manner" by the pur
well when new.
well when new.
No builder, n
No builder, no matter how cheap a house he was erecting, could afford to allow the flooring to settle "three inches carrying down all the partitions with them, to save the very trifling expense of a few cheap supports. Such instances of "penny wise and pound foolish" economy must be rare.
Some of the real faults of our system of building are these:
The lumber is not seasoned. There is perbaps not a single The lumber is not seasoned. There is perbaps not a single instance in this country of a lumber yard where they "stick
up" the timber from which the house frames are made. It up" the timber from which the house frames are made. It to it, it is accidental, and not intentional. To make the best kind of a house, every piece of lumber in it except the laths should be perfectly dry. In what we call good houses those parts exposed to view are generally of good stock and properly season; but a dry frame is of more consequence than dry doors. The latter can be readily repaired or replaced, the former cannot. The timber used is too narrow. Every wooden house of medium size should have 2×6 outside stud ding, instead of 2×4 Instead of 2×6 and 2×8 flooring joists, they should be 2×10 and 2×12.
In those sections of our country where the dwellings are clapboarded, and the floors laid double, the covering boards and under floor should be every inch sound, free from knot holes, shakes, and waney edges. When laid they should be jointed to make tight work. As a rule, anything that will hold a nail, the "refuse" and all "odds and ends" are worked in ; and those parts, which, above all others, should be well done, are the poorest in the building. Our practice says : " No matter, it is out of sight." Why don't we have house made from seasoned lumber? Simply because we can't wait for it to dry, and don't want to pay the cost of drying.

When the occupants of a new house find the doors and windows "binding" and "sticking;" and the wood-work in various places showing large cracks, they generally denounce
the carpenter. He could not help it-the lumber was not the carpen
seasoned.
These are but three of the many defects in our American system of house-building; the temptation to mention other is great, but the fact that I have already trespassed too much upon your space restrains me. In most parts of our land we have the best building materials in the world, and plenty of skilled workmen, but we are in too great a hurry to build good houses.

Beta.

Steamboat speed.

Messrs. Editors:-The ocean, the North River, and the Sound, and the West's great arteries of commerce, the Mis sissippi and its tributaries, since the advent of the first com peting lines of steamboats, have ever been the scenes of the
most exciting and enthusiastic competition in the matter of most e
speed.
The desire to outstrip competitors has repeatedly attracted the attention of legislators, and penal enact ments have put an end to the dangers of constantly recurring races between
rival lines, until, become a dead letter from are, their whole some provisions are forgotten, their penalties disregarded, and the whole programme of transgression and threatened punishment is ăgain performed for the benefit of the community.
The Mississippi and its tributaries, affording, as they do, fitting opportunities for this species of emulation or opposi tion, lave grown to be proverbial throughout the world as steamboat race courses. To speak to an European at home of a Mississipi boat race brings to his mind at once a vivid picture in high colors, depicting horrible death or intense agony, the result of an act, which, to river men in America appears far less dangerous or reprehensible than the railway passenger system of the Continent, where escape from the car,
in case of danger, is impossible, save through the key in the in case of danger, is impossible, save through the key in the hands of the guard.
The question of the relative speed of rival boats has again broken out on the Western waters, in the late trial of speed between the RI. E. Lee, built at Louisville, and the Natcher, advertised race, no hand-bills, or "dodgers," but the fact was patent to every steamboat man from Pittsburgh to Cairo, and from St. Paul to the Gulf of Mesico, that a race was on the carpet, and as the day approached, the excitement became in tense, and thousands of dollars were deposited as guarantees of their faith by friends to the parties in the race.
Both boats were "light and loose ;" and preparations had been made for taking fuel without loss of time, from barges. The most combustible material in reach was procured, and everything done to insure victory by both parties. The telegraph wires worked day and night to post the friends of the contestants, and a general election could hardly have pro Ohio rivers.
Here is the result: The R. E. Lec mado the run from New Orleans to St. Louis in three days, eighteen hours, and four
teen minutes, beating the Natchez, in the race of 1,200 miles, only three hours and forty-four minutes.
For reference, let us look at the following comparative table of the speed of several fast boats of past years.
from new orleans to natchez-distance, 295 miles.

$\begin{array}{ll}\text { May, } & \text { 1851-Marnolia } \\ \text { 1853-A. L. Shotwel }\end{array}$
 -Southern Belle
 1853-Princess 1853-Eclipse
 1855-N
 $\begin{array}{ll}\text { June, } & \text { 1870-Natchez } \\ \text { Ju7, } & 1870-\mathrm{R} . \text { E. Lee }\end{array}$

 In the past twenty-six years, while almost every other branch of mechanical appliance has made giant strides toward perfection, the steamboat, either through ignorance or want of inducement, or something, has scarcely advanced at a snail's pace. The steam engine-the motive power-has kept pace with other advancement; but the boat still lags, and why? Is it not because the model, which is nearly the same why? Is it not because the model, which is nearly the sameto-day that it was a quarter of a century since, is faulty? In the fastest time of to-day there is, with all the modern improvements in machinery, a gain over the fastest time of 1844, of only two and a half hours in a run of two hundred and ninetyfive miles. Where does the trouble lie, and who will apply the remedy?
C. Haskins.

Sinking Valley

Messrs. Editors:--Sinking Valley, of Blair county, Pa. is situated between the Bush and Canoe Mountains, and is a continuation of Nittany Valley, Center County, Pa. It is about eight miles long, and from four to five miles wide in its widest parts. Sinking Valley took its name from the fact
that the water rises and sinks in the valley. We first find that the water rises and sinks in the valley. We first find
in it two sinks, which have been sounded to the depth of 130 feet without finding bottom. These sinks are about 30 feet apart, and it is supposed that they are connected at the bottom. The water in these sinks is fresh limestone spring water. The water rises above ground at a distance of a quarter of a mile, and flows about two or three rods, when it enters a cave, whose mouth is 30 feet wide and 10 feet high. This cave has been explored for about half a mile, at which point the rocks come close to the water, and here may be heard a sound like the falling of water.
One mile below the cave the water rises at the Arch Spring which is about 60 feet in diameter, and flows thro gh an arch of limestone rocks. The arch is 35 or 40 feet long, 10 or 12 feet wide, and from 5 to 6 feet above the water. This spring drives a saw mill, and a grist mill which has four run of stones.
Five rods below the mill the water sinks again, this time very gradually. It runs into a pool and never seems to gain any ground, but as fast as it comes it sinks to unknown regions. When the water is clear, the bottom can be seen cov-
ered with round sand stones, The water is only 3 to 4 feet deep where it sinks, and when very low it is only 10 or 12 inches deep. This water rises again on the other side of the Canoe Mountain, passes down a ravine, and empties into the Juniata river, at Water Street, Huntingdon county, Penn. Juniata river, at Water Street, Huntingdon county, Penn.
The proof that this is the same water is that when the saw The proof that this is the sawe water is that when the saw
mill at Arch Spring saws, sawdust rises on the stream on the ther side of Canoc Muuntain.
The rocks of Sinking Valley are the No. 2 formation, of Roger's first report, and Auroral of his final report, being the same formation which is known in New York as the Trenton and Black River limestone. An anticlinal axis runs through the valley, to the west of which the limestone dips under the Bush Mountain, and to the east under Canoc Mountain. The strata, next the auroral limestone, are schist or slate and Red River sandstone.
The auroral limestone in the valley varies from $\frac{1}{8}$ to $\frac{8}{4}$ mile in thickness, and a considerable amount of zinc and lead is found in it. These ores were discovered by the French, in 1750, or rather disclosed to them by the Indians, as they could always procure an albundance of lead almost pure. But
the Indians, true to their craft, kept the precise location of the Indians, true to the
the lead mines a secret.
The earliest account of any permanent settlers in the Val ley is in 1760 , and in 1763 quite a number took up their resi-
dence there, but without purchasing the lands. The attendence there, but without purchasing the lands. The atten tion of the Council was called to the existence of lead in Sink-
ing Valley, in a letter from Major General John Armstrong to President Wharton, dated Yorktown, Feb. 23, 1778 , in which he stated that Mr. Harman Husbands, a member of the Assembly for Penn., had some knowledge of a lead mine in Sinking Valley, and suggested that it should be seized and held by the State. The Council soon took the suggestion of eneral Armstrong, and resolved that General Daniel Rober deau, then a member of Congress, should go to Carlisle, and make the necessary arrangements. From this place he wrote
on the 17 th of April, 1778 , stating the great importance of going ahead, and asking for forces and $\$ 1,200 \cdot 00$, and some provisions. On April $23 d$, he wrote from Standing Stone now Huntingdon, and, after hard fighting, he arrived in Sinking Valley, April 27th, of the same year. Fort Roberdeau
was erected, and was supplied with some muskets and a pair was erected
It is uncertain how long the mines were carried on by the Government, but probably not longer than the fall of 1779. What the total yield of lead was during that time we canuot ascertain. There must have been seme kind of a hargain out lead, as lis letter of NG. 10,11779 to President Resis
demands payment for ten hundred pounds of lead, at six dollars per pound (Continental money). This epistle fixes nearly the time when General Roberdeau abandoned the mines. The miners attempted to carry on operations for themselves, but soon gave it up on account of the immense expense of mining and smelting the ore.
In the early part of the present century, the lower mines, near the little Juniata River, known now as the Pine Hill, were opened under the superintendence of Mr. Sinclair, but were owned by Messrs. Musser and Wells. Three deep shafts were sunk on the side of Pine Hill, and a drift in the side of the hill, some 300 feet long, 6 feet high, and 6 feet wide, was excavated. These works were very expensive, and not profitable.
In 1821,"the mines were"visited by some parties from Montgomery county, Pa., with the intention of working them, but they concluded not to make the attempt, as they could not manufacture the lead so as to compete with Galena mines.
In 1852, some enterprising New Yorkers prospected the In 1852, some enterprising New Yorkers prospected the
upper mines, and found what they supposed sufficient upper mines, and found what they supposed sufficient encouragement to go ahead and work them. They sunk several shafts, and found some ore, and a stock company was formed under the name of Sinking Valley Lead Mining Company. The stock figured among the bulls and bears of Wall street, New York, and considerable blowing was done about building extensive furnaces for smelting ; but suddenly, one fine day, the ore was played out.
In 1862, a stock company, under the name of Keystone Zinc Company, opened the mine on Pine Hill, and was successful in finding sufficient zinc and lead ore to justify them in building an oxide furnace at Birmingham, on the Blair in building an oxide furnace at Birmingham, on the Blair
county side of the river. The works were built in 1866 , under the superintendence of Mr. Nathan Bartlett. They onsisted of eight oxide furnaces.
In 1868 , four desulphurizing furnaces were put up under the superintendence of Mr. Ayer Bartlett, son of Mr. Nathan Bartlett. The following is a description of the working of the furnaces, and an analysis of the ore: The ore is put into a kiln, which somewhat resembles a lime kiln, where it is roasted, and the sulphuret of hydrogen is driven off, atter which it is crushed or ground. It is then taken to the desulphurizing furnaces which are three in number, each 18 inches in hight, 15 feet long, and 6 feet wide. The ore is first spread evenly over the floor of the upper oven, where it remainsseveral hours. It is then drawn down to the middle oven, and fresh ore is put on the upper one. From the middle oven it is drawn into the lower one, and the ore that is in the upper furnace is drawn into the middle one, while fresh ore is putinto the upper oven. The work of these ovens s to drive off the sulphur.
The ore is taken out of the lower oven, and mixed with 60 per cent of nut coal, and charged, through doors in the side, in to the oxide furnaces, which are 16 feet long and 8 feet wide. These oxide furnaces have perforated bottoms, to allow cold air to enter. The air is forced in by a blower The ore is heated to a white heat, and the zinc goes off in vapor, and carries the lead with it.

The fumes pass now into a cooling chamber, 10 feet long, 8 feet wide, and 30 feet high. From this they are drawn by an exhausting blower through a sheet mon pipe, 4 feet in diameter, and 50 feet in length, which opens into a room 30 feet long, 15 feet wide, and 25 feet high ; thence into the bag room, which has three rows of muslin bags. The horizontal bags are 80 feet long, and every six feet there are per pendicular bags which are 30 feet long. At the bottom are barrels to catch the oxide as it is precipitated. The oxide is now packed in barrels, and sent to Philadelphia to be ground into paint.
The oxide is of a beautiful snow-white color. The capacity of these works is 14 tuns of ore per day. The ore is the sul. phuret of zinc and lead, with sulphur, limestone, sand, and some "Black Jack." It yields 43 per cent of oxide, which contains 20 per cent of lead.

The works cover an acre of ground. In connection with the works there are five large lime kilns, which ship daily 600 bushels of lime to the Natrona Soda Works, Natrona
Hollidaysburg, Pa
Frank B. Isett, B. S. A.

Speed of Large Circular Saws
Messrs. Editors:-Noticing a communication in your paper from C. H. Crane, of Greenville, Ala., on the speed o arge circular saws, and fearing it might have a bad effec where they are not much used, I have thought it would be well to state some facts that I bave learned from long ex perience in setting up and running circular saw mills.
The highest speed they shoula ever run is 9,000 feet per minute, for the periphery of saws, unless hammered expressly for a higher velocity. I find that there are ten mills peeded too high for the power, where there is one speeded too low. This is especially the case with water mills run without governors. The speed of all water wheels is given their working velocity, or about three fourths of the speed they will attain when running free without load. Some saws will bear more speed than others, but, as they are generally ammered, 9,000 feet per minute, when not in the cut, give speed enough for the saws of water mills. Running at that rate, a 50 -inch saw, before it had got through a \log of fair size, would be found to make not far from 500 revolutions per minute.
I find most of the water mills in the country, where there is a limited supply of water, lack for power and are speeded oo high, and are, consequently, ruaning on light feed and bigy a small amount of business. In such cases it would be better to reduce the speed and carry more feed, doing a greater business with less wear of saw.

A 50 inch saw, with 26 teeth, if kept in good order, will about 1 inch long, of an inch in width, and 8 of an inch bear to run on two-inch feed in spruce or hemlock, and will cut nearly as smooth as if run on only one-inch feed, and will take but a littie more power. The timber here is spruce atid more logs than Mr. Crane, if not as many feet, and run out saw at a very muob lower speed.
A circular board mill, invented and patented by me (Lane Pitkin \& Brock, manufacturers), rinning near here, recently cut 307 spruce logs, 12 feet long, making 20,000 feet of $1 \frac{1}{2}$-incl plank, between the hours of $4 \frac{1}{2}$ oclock in the morning, and 7 o'clock in the evening. The mill used a 50 -inch saw, ran 500 turns per minu ${ }^{\dagger}$ e, and was driven by an engine, 13×24 cylinder,
93 revolutions per minute. The mill was operated by three 93 revolutions per minute. The mill was operated by three
men only-a sawyer, who runs the mill and sets the log, one man to take away loards and slabs, and one to assist in roll ing on, turning, and dogging the logs.
Montpelier, V .
Dennis Lane.

snake stones.

The power of the imagination to excite as well as to cure diseases of the human system has been experienced from the remotest generations, and a knowledge of this power is some times employed to advantage by intelligent physicians From it have also sprung some of the most absurd as well as remarkable delusions. Among these is the belief that certain charms or mysterious influences reside in various objects, an inate and inanimate. The Indian finds "a great medicine in peculiar stones and other grotesque things, which he use to heal all manner of distempers. These delusions are no confined to savage life, but exist among all civilized races, Hourishing best in communities where the exact science have made the least progress.
The socalled snake or mad stone belongs to the above medicine class. Some of its believers imagine that it is en dowed with supernatural qualities, by which it works won ders and distinguishes itself above all other pieces of rock in the universs. The most extravagant stories concerning these stones are annually published in the papers, many of them vouched for by the most respectable people.
Here is a communication sent to us by a lady from Wash ington, Ga.:
Messrs. Editors:-Most people have probably seen now and then in the newspapers accounts of certain magical pebbles or stones which are said to act as antidotes to animal virus, and nine out of ten readers, no oubt regard all such stories as mere inventions of some Bohemian Munchausen desirous of gaining notoriety for his paper, or as the ingenious advertising dodge of some enterprising quack bent upon fooling old women and swind ling ignorant people out of their mone.f. For my own part I confess I was, for a long time, inclined to look upon the existence of such talismans as little less apochryphal
than ancient traditions concerning the philosopher's stone than ancient traditions concerning the philosopher's stone;
and my incredulity, after arriving at years of discretion. was and my incredulity, after arriving at years of discretion. was
rather strengthened by the recollection of having heard from the negroes, during my childhood, marvelous tales of the healing wonders wrought by certain rare stones which they averred were occasionally found in the bellies of wery old stags. As the marvels related of these mad stones or snake stones, as they are called, were always associated in my mind ders of negro mythology and like them rested if I uistake not, mainly upon the authority of a little black urchin named Isaac, who used to enjoy bodily encounters with the devil, and see visions of red lions under the kitchen steps, it is not to be wondered at that my mature judgment was very chary of accepting newspaper accounts of a substance that seemed bulong altogethuer to Fableland
Of late years, however, my attention has been more seriously attracted toward the subject of these wonderful talismans by hearing of one in the possession of a Mr. Albert Gibson, of Columbia county, Georgia, a gentleman of wealth and respectability, who has never used his singular heirloom as a means for getting money, and therefore has had no reason for advertising or giving notoriety to its existence. As he is very generous, however, in allowing his neighbors to benefit
gratuitously by its healing powers, in case of snake bites or madd dogs, its light has not been altogether liiden under a bushel. Being the first "snake stone" I ever heard of which could boast "a local habitation and a name," it inspired some respect as well as curiosity, both of which increased as I continued to hear such authenticated accounts of un doubted cures performed by it upon persons infected with
animal poisons. Finally my interest became so much excited that I determined to write to a gentleman of higl standing in the county, a neighbor of Mr. Gibson's, for a full description of the wonder. As his account is very circumstantial and interesting, I give it entire, merely omitting such parts of the letter as relate to private or persona matters, and are therefore of no interest to the public. The writer is a gentleman of the highest integrity, as well as of a liberal education and extensive cirlture, and his word may the the letter
" Appling, Ga., June 25, 1870.
"Dear Miss - - - Yours of the 27th ult. was received by due course of mail, and should have been answered at once but for my inability to get an immediate sight of the colebrated snake stone.
"Mr. Gibson, the owner, never permits it to be carried from home, unless he goes with it. He brought it over once when I was absent,and it was not convenient for him to come xyain until to-day.
The name given to this celebrated talisman is, in my judgment, a solecism. It is, I think, a compound of unknown substances and quantities. In form it is a parallelogram,
about 1 inch long, of an inch in width, and 8 of an incl
thick, weighs 54 grains, and is very porous. The outware surface is of a whitish gray color, excent the side applied to wounds, which is a black irregular surface. When broken (as this hat beeti) the inner parts present a deep blue color, like indigo, which it resembles when pulverized. It has heen in the family of the presert possessor for more than a century and is said to have been brought from the East Indies. Some years ago, I saw in "Niles' Register" an account of a similar "If humand these two are the only ones I have ever heard of "If human testimony is to be believed, the effect upon animal ürts is wonderful indecd. The mode of application, if the bite be recent, is to apply the stone directly to the wound. If any considerable there has elapsed, and the wound healed, to scarify, and then apply the stone. In all cases it is immersed in tepid water. If there be any viras in the person, the stone adheres to the wound until the poison is extracted, or it becomes fully charged. It then drops off and by again immersing in warm water, it is
the virus may be seen exuding from the pores
"The applications are repeated until the stone refuses to dhere. It has neter falld in a single instance to effect a perfect cure. It is alike stiractose in snake bites and wound trom rabid animals, and has been applied in hundreds of
cases. Some years since a negro man was sent to MI . Gibson cases. Some years since a negro man was sent to Mr. Gibson
from the neighborhood of Columbus, who had been bitten by snake eleven weeks before. He came here with one of his limbs greatly enlarged, and was unable to walk, but in three days after the stone was applied, he was able to go into the leld and work as usual, and in a week was sent home perfect y well.
augusther of the late Judge Thomas, who now resides Augusta, was once bitten by a rabid dog, and this stone apphied soon thereafter to the wound ; he never experienced ten at the same time on the same plantation, became in few days rabid. I could mention numerous equally well attested cases
" No analysis has ever been made of this stone, as it is called
Mr. ©ibson has a small piece that was broken of some years ago, and says he intends to have it analyzed.

Very truly yours, ete.
"C. H. S."
It is to be hoped the owner of the renuarkable cariosity will carry out his intention of submitting the broken bit to a careful analysis. It is true that thus far the dissecting analysis of many precious stones, has led to no practical results of the nature anticipated by those deluded souls who spent heir lives in scarching after the philosopher's stone, and it is possible that an analysis of this "snake stone " might prove
equally futile-still the experiment is worth trying. Nor should the tradition regarding the existence of such in the stomachs of deer be wholly disregarded, since it seems not altogether certain that this remarkable substance is literally stone.
If the inhabitants of countries infest d with venomous insects and reptiles could be supplied with bracolets or seal rings possessing such magic virtue as antidotes to animal poison, rattlesnakes, cobras, and tarantulas would cease to things of terror ch literal sense at least, trimpe serpen seed of the woman. E.ZEY HAY. Washington
Erfect of tile Madstone.-A letter to the Bloomingto Pandagraphl stys: "Returning Liome from B3oomington last Saturday evening, I mot at Normal a gentlemun from Henry
county, on lis way from Lincoln, where he had beon with his daughter, aged eleven years, to have the socalled madstone appilied to hor foot for the bite of a mad dog, which was inficicitd on her last Sunday week. The stone was applicd at that during its applisation the wound, which, though severe, bad not been previously painful, becaune severely so, and a
stench almost unbearalie filled thé room. Whict taken off stench almost unbearable fillced the room. Whet talken off
the wound the stone was placed in water, on which a green the wound the stone was placed in water, on which a green
scum arosic, like that seen on the surface of stagmant pools."
Thie Mad Stone Delubion-Denthi from Hydiophobis. -Mr. John sayers, a laborer in the North Missouri Railroad -Mr. John Sayers, a laborer in the North Missouri Rairroad
car shop, died y ysterray morning, ot hydrophobia. $\Lambda \mathrm{s}$ the
facts connected wwith the unfortunate event possess a peculiar facts connceted with the unfortunate event possess a peculiar
interest at this season of the year, we give a brief narration of interest at this season of the year, we give a brief narration of
the circunnstances connected with the case : Sayers was a marthe circumstances connccted with the case : Sayers was a mar-
riced man thirty years of age, of a rolust and powerful frame, ricd man thirty years of age, of a robust and powerful frame,
and until rccently in very good health. On the $24 t h$ of May a little poodle doo belonging to him was fighting with another dog, when he attempted to separate them. In doing so near the thumb. Deceascd felt some pain from the injury. and went to a man in St. Charles who had what is known as a. "mad stone," and it was applied twice. The second time
it is said to have adhered twenty minutes. About twelve days aro Sayers accidently knocked the skin off the place on the hand where the cut had been, and soon after felt an acnto
 arm. IIis symptons subsequently were not altogether such as usually accompany hydrophobia. He was not violent or
wild, but exhibited a deadly aversion to water. He Hould not
drink it but was able to to tale some wine wild, but exhibited a dead ly aversion to water. He could not
drink it, but was able to take some wine. On Wednesday evening a change took place in his condition, and he said he
felt he was going to die. Λ medical gentleman saw him at 9 felt he was going to die. A medical gentien an saw him at 9
oclock, but he thought there was no danger then. For about an hour before his death, Sayers talked in an excited and inco-
herent manner. He dicd yesterday morning at half-past 2 herent manner. He dicdy yesterday morning at half-past 2,
and was buried in the afternoon. He leaves a wife and one child. The case is a sad one, and illustrates the horrible danger of a dog-bite in the summer season, and the necessity of
taking proper measures to prevent possible results when there is any reason to believe the dog mad. It further tends
to show that the virtues of the "mad stonc," in which so many believe, furnish but a poor gararantee of a cure, and if it helps to explode the humbuy and lead people to resort to the ony sate minasiures, cuting out the part and severe
cauterization, it will not have been entirely buarcin of fruits.-

Messers. Editan Undeserved Credit.
Tors :-In accrediting the invention of a dr. aock, described on page 384, last volume of the Scientific american, to an English source, you unintentionally, no doubt, did an American inventor injustice. I inclose you a copy of a patent obtained through your a gency July 6, 1869, for me. The following extract from the specification will show that the "English inventor" referred to has been eithe pirating my invention or has, without knowing it. reinvente it: "My invention relates to a new and improved method constructing coffer-dams for building piers and other sub marine structures, and in making the same convertible into other forms for raising sunken vessels. It consists in forming the cofferdann in two or more sections, the sides of which are partitioned off into water and air tight compartments, each scction having a removable side, and all the sides being provided with suitable tubes and other appliances for filling the compartments with either air or water at all times, whereby the section may be submerged or floated as may be desired. It also consists in so constructing the coffer-dam that it may be made (with two of its sections) to inclose a sunken vessel thereby affording means for raising the same
By inserting this communication you will do an act of just Willi
Williathaburg, N. Y.

Bartlett Lead and ozonc.

Messrs. Editors:-Your zorrespondent R. H. desires to know " how ozone can be productive of any one of the pecul iarities attributed to Bartlett lead in the article of July 16th, and how ozone exists in the compound.
The peculiarities there stated are that Bartleti lead, " when mixed with oil or spirits of turpentine, does not settle as other paints ; that a building painted with it bleaches whiter instead of turning yellow ; that when mixed and exposed to the air it thickens; and that it has a gloss unknown to any other pigment."
I suppose your correspondent knows what ozone is thought to be-that it is altered oxygen, in plain English. Oxygen may be altered by various canses ; electricity is one of these It has been pretty well settled that ozone is the bleaching principle of oxygen, or that oxygen altered to ozone will bleach; that in its prime state it will not. It is settl d among most chemists that the oxygen contained in the metal lic acids which form combinations with other metals and the alkalies is in the form of ozone. The article states Bartlett lead to be, in great measure, at least, a plumbate of zinc This being so, no one but a person bitterly prejudiced would deny the prescnce of ozone.
H. E. ©.

Destruction of Fish by Toads.

Messrs. Editors :-On the 410th page, last volume, of of your journal, is an article on the habits of the toad (Bufo calanita) in which the reader is left to conjecture much that might have been made intelligible in a few words. The toad never attacks any animal, not even a fish, in the sense argued by the writer of the article alluded to above; and it is only the male toad that attaches himself to fishes in the manne described, and only in that season of the year when the female deposits her spawn, the vivification of which depends on that habit of the male, a perversio. of which sometimes causes him to a tach himself to any moving object that comes within bis reach. This nay be verified in any pool of water where toads congregate in summer, in this country as well as n Europe.
It is a subject of curious reflection to find a habit essential to the continuation of one race of beings incidentally concerned in the destruction of another race
Mohawk, N. Y.
Christopher Jenkins.

Lowest Line of Perpetual snow.

Messis. Editors:-The lowest line of perpetual snow Known is at the Gulf of Penas, on the west coast of Patagonia, letitude 47° south ; that line is about 2,700 feet above the water.
The weather in this particular region is regarded as the most rugged and boisterous of the whole south portion of South America. It is seldou there is a bright and pleasant day during the year. Storns of wind, rain, or snow prevail, and the exception is their absence.

It ought to be known that the practice employed by some unsoldering the tops of fruit cans by means of heat, is at tended with danger. The Providence Press says that the following singular accident recently took place in the kitchen of a gentleman of that city: While the cook was getting dinner she placed a can of tomato soup upon the range to to warm, as she had been in the habit of doing, with live coals upon the little round cover in the top of the can for the purpose of melting the solder. Instead of the solder melting as usual, however, the can in a few moments exploded with a loud report, blowing a part of it across the room, scattering scalding soup in all directions, and over everything-ceiling, walls, and freshly-ironed clothes, and hurling live coals about the floor, and even as far off as upon a table on the opposite sido of the kitchen. The cook, who, fortunately, was not near
the range, and who was the only person in the room at the the range, and who was the only person in the room at the
moment, was severely scaldod in the face and upon the ncck and arms, by the flying soup.
The proper way to open such cans is to cut out the top. Our inventors have provided very simple and handy implements for this purpose.

