modeled and new universities founded. Men were prepared for every department by previous study and careful training. There were schools for forestry, schools for intercommunica tion, schools for diplomacy, for trades, for mines, for teachers, for soldiers, for professions, for everything that modern civilization required. The highest places in the gift of the Govermment were open to competition to the lowest citizen, and any man of sufficient talent could aspire to become the rector of the university or the minister of state, and in many instances the highest places were filled with men of the humblest origin.
The first fruits of the seeds sewn by Von stein were a crop of men fully competent to fill every position of responsibility in the nation, and year after year thousands of able men have been at work raising the standard of knowledge and proficiency in every department until we come down to modern times and find a nation thoroughly drilled on every side, with the best scholers, the best soldiers, the best mechanics, the best citizens, the best officers of civil and nilitary affiars; in fact, a mation maintaining a thorough system of scientific adminis sration down to the most minute detail of public and private a flairs.
Those whoare intimately acquanted with the industries of
(icrmany are aware that such establishments as the iron Gicrmany are aware that such establishments as the iron founderies of hrupp, the salts works of Grueneberg, the ultramarine factorics of Nuremberg, and the great woolen and cotton mill: scattered orer the land, are conducted with the conspicuous in rerything relating to the Prussian armine In this we have the secrets of success, and a lesson for ou carefnl study and imitation. Scientific administration is what we need in public and private affairs, and we would do well to study the signs of the times and profit by its lesson.

## THE GREAT BRITISH PROBLEM

How to diffise intelligence over a thousand league of ocean is the difficult problem which Hazel has to grapple with in the story of "Foul Play." But this problem was actually solved by the reverend jack-at-all-trades, and hence was certainly not so profound as the one which has so long perplexed the cutire English nation, and which may be put as follows " Jow to diffuse intelligenee from the inside of an English railway coach to the guard at the end of the train."
The cord and leell with which erery American is familiar would not answer the purpose of frikly Jolm Bull, who could method of locting pung it erery now and then, ane the cxecution of such a feeble joke peculiarly easy to young and mischievons Britons.
Wany and diveres plans have been suggested by which the remoral of the difficulties attending such communication has been sought, but it is a harder knot to untie than communication betwern England and Franer across the Straits of Dover, and still remains, like the werpet ual motion, something whicll attracts the minds of inventors only to disappoint their hopes.

The Anerican syatem of admitting a considerable number of passengers to a single car does not find favor in the eyes of
Englishmen. The thing is too democratic, too leveling, to suit their taste. And though it would put an end to the practical jokes of bell pulling and cushion cutting, which setm the idiosyncrasy of youthful and sportive " Bulls," it is, for the reasons stated, a thing not to be thought of.
The peculiar features of the English passenger system have recently leen brought out in a strong light by a fight which occurred in a first-cla*s railway carriage between Car Quircy, a linen manufacturer, being the combatants. The Quirey, a linen manufacturer, being the combatants. The
Filectric Telegrephu rud Rairay Recien thus desmibes the

" Mr. Bell and Mr. Quirey were the sole occupants of a compartment in a first-class carriage lnmediately after the train left the Carlisle station on its southward journey it
scems that Mr. Bell accused Mr. Quirey of having stolen his scems that Mr. Bell accused Mr. Quirey of having stolen his
ticket. This the latter protested he liad not done, but not withstanding all the protestations of imnocence, Mr. Bell, in an excited manmer, rushed at his fellow-traveler, seized him by the throat with one hand, and, with the thumb and finger of the otherhand thrust up his nostrils, dragged him violently backwards and forwards in the carriage until Mr. Quirey's face was sadly, cut and bruised. In the course of the encoun-
ter Ir. Quirev's collar was torn from his neck, and thrown ter Mr. Quirev's collar was carn from whis neck, and thrown,
saturated with blool, on the carlpet, while the windows of the compartment were completely smashed. Passengers in the compartinent were completely smashec. Pasengers in the
adjoining compartments heard the cries for help, but, as it unfort unately happened, the passengers' signal was not work able, and Mir. Quirev had to struggle against the violent assaults of his excited adverary, who threatened to kill him,
for nearly half an hour, the time orcupied in traveling be for nearly half an hour, the time occupied in traveling be pulling up at Penrith station Mr. Quirey alighted, bruised, puling un at Penrith station Mr. Quirey alighted, bruised
bleeding, and much exhansted. Mr. Bell still charged his fellow traveler with laving committed a rolbery, and on both men being searched the ticket was found on the person of Bell himself. Mr. Quirey then preferred a charge of
assault against his assailant, who was taken loy the police assault against his assailant, who was taken ly the polic
and lockexl up in Penrith police station. About siv o'clock the morning a policeman who was on duty at the station the morning a policeman who was on duty at the station
looked into hise prisoner's cell and found him hanging over
the side of his bed with a deep gash in his throat, which had the side of his bed with a deep gash in his throat, which had
heen inilicted witl a penknife left in his possession. He was still.
"On loeing interrogated by Superintendent Fowler the pris. oner replicd, 'I would rather suffer death in this way than
that I should have been covered with such disgrace.' A med ical man speedily dressed the wound, which was a dangerou onc. On being brought before the magistrates the prisoner
wass sadly cast down. Ile was charged with the assault was sadly cast clown. Ife was clarged with the assault and also with comnitting suicide. He had apologized to Mr Quirey, and offered to pay any amount to himself or to any Quirey declined to do, remarking that it was his duty to the
public to prosecute, and the prisoner was committed for trial
on both charges, bail being accepted for his appearance,"
Truly it would seem that the pugnacity of Jolm Bull is carcely inferior to his sense of humor
The journal from which we gather the above statement suggests the electric telegraph as a means for conveying in telligence to the conductor. This might be better than an atmospheric railway, but have our English cousins ever
thought of a flying machine for this purpose ? If not, we thought of a flying machine for this purpose ? If not
throw out the lint as one that may lead to something.
THE FOREMANIZING PROCESS FOR PRESERVING TIM BER, THE VICTIMS OF ITS POISONOUS EFFECTS, AND THE SUITS AT LAW WHIC
TO RECOVER DAMAGES.
The use of the Foremanizing process by the St. Louis, Van dalia, Terre Haute, and Indianapolis Railroad in the prepara tion of timber for the erection of their depot at St. Louis, the poisoning of a large number of workmen employed on the work, and the death of four or five of the victims, are facts which have been already laid before our reader:
The process which has resulted in such a lamentable dis aster is the invention of Mr. B. S. Foreman, of Morrison, Ill The compound used to preserve the timber from decay consists of the following substances, in the proportions named:
one ounce of corrosive sublimate, six ounces of arsenic, and one ounce of corrosive sublimat
sisteen ounces of common salt.

The directions given for the preparation of the timber are given in a pamplet kindly sent us by a St. Louis correspon dent, the pampllet being published by B. S. Foreman \& Son of Morrison, Ill. The formula is as follows: "Take the lum ber while still green, and pile one layer on the ground, packing close; over this layer sprinkle evenly the dry powder, in ratio of twenty pounds of powder to every thousind fee powder in. Lay another layer in the same manner, sprimkle until the amount desired is prepared. Allow this to remain close packed until fermentation has taken place, when the close packed until fermentation has taken place, when the
lumber will be fully Foremanized, and from thenceforth free from shrinkege and practically seasoned. N. B.-To induce fermentation of timber a temperature of $45^{\circ} \mathrm{F}$. is indispensable."
'The effects of working timber prepared in this way were precisely what any one well versed in the nature of the poisonous materials employed would have expected. The men were attacked with blisters and sores. Edema arseni-
cel $i$ is and symptoms imperfectly described as resembling those of renereal disease (the Catter undoubtedly the result of ex posure by sitting upon the poisoned timber) mingled with the well-known symptoms of poisoning by corrosive sublimate were among the effects of the poisoning.
A pest mortem examination of one of the diseased workmen revealed the following facts: The stomach was found to be fearfully ulcerated, while the lungs and liver were nearly destroyed by abcesses, the right lung being one mass of cor ruption. The testimony showed that last spring the deceased had bcen engaged at work on the Yandalia railroad depot in East St. Louis, the timbers of which had been sprinkled with a white poisonous powder to render them non-combustible, the process being known as Foremanizing; that deceased inhaled this powder, and shortly broke out with ulcerous sores and blisters; experienced great difficulty in breathing; was taken with a chronic and painful diarrhea, and that he grad.
ually became weak and emaciated, and died as before stated. The became weak and emaciated, and that the condition of Smith's body pointed ummistakably to arsenic as the cause of death. The jury then unanimously rendered a verdict that Smith " came to his death by inhaling a poisonous composi tion used in building the freight depot of the Vandalia Rail road Company, at East St. Louis, Illinois, he being employed by the company as a laborer." Many of the surviving workmen are said to be permanently injured.
Eleven suits have been brought against the railroad com pany, laying damages at $\$ 2 \cdot 5,000$ each. The declaration of the parties asserts that the railroad company was bound to furnish them good timber to work with, but that instead they were compelled to work upon timber which had been
sprinkled with a poisonous powder. This substance they inhaled, alsorbed, and otherwise took into their systems, there by being injured in body to the amount for which the suits are brought.
The case is a somewhat peculiar one, and as it could only have originated either in willful rashmess or in culpable ig stances of the usual effects of well-known poisonous sub
lie damages for which they sue.
SCIENTIFIC INTELLIGENCE.
how blue without cyanide
A beautiful blue color can be prepared from iron without the aid of ferro-cyanide of potassium. Make a saturated solution of sulphate of iron (green vitriol) in water; convert $\frac{4}{3}$ this into the sulphate of the peroxide of iron by means of sulphuric and nitric acids, and then add the remaining $\frac{3}{7}$ to he original liquid. Concentrated sulphuric acid, cautiously poured in, to prevent too great heat, will occasion the forma tion of a blue precipitate, which is, however, soluble in water but if it be separated from the liquid and rubbed with phos phate of soda, a beautiful blue phosphate of iron is obtained which will resist the action of water, and can be used as paint.
The
The mixed hydrates of oxide and peroxide of iron are de prived of water, and prevented from forming higher oxides, by the acids and phosphate. The reaction works well in a
small way, and it remains to be seen how far it is capable of application on a large scale. If we can prepare a substitut
or Prussian blue without the use of poisonous cyanides it will be a real benefit to calico printers and color manufac

For experiments on explosive mixtures and on chloric acid very convenient salt is the chorate of baryta. This can now be oltained, accor ling to Brandau, in a very simple man ner. Commercial crystallized sulp hate of alumina, sulphuric acid, and chromate of potash in the ratio of one molecule of each of the two former to two of the latter, are cautiously mixed with water to the consistence of a thin paste, and warmed over a water bath, allowed to cool, and treated with alcohol in excess. Epon filtering and neutralizing with hy-
 drate of barya, pripa of sula of alumina are for tion. The alcohol is distilled off, and on evaporation crystals of pure chlorate of barium are formed. Care must be taken not to pour sulphuric acid upon the chlorate of potash alone, but to use the mixture of acid with the aluminum salt. The chlorate of baryta has no uses at present in the arts, but chloric acid. on account of its powerfally oxidizing properties is capable of extensive application, and the new salt of bary ta, aloove described, may be the means of affording it readily and economically.

## sew dee of tumgetate or sod.

Professor Somnenschein, of Berlin, has found that when rlux in thick solution is mixed with tungstate of soda, and hydrochloric acid is added, then is thrown down a compound of tungstic acid and glue, which, at from $86^{\circ}$ to $104^{\circ} \mathrm{F}$. is so elastic as to admit of being drawn ont into very thim slicets. On cooling this mass becomes solid and brittle, but, on being heated, it becomes again soft and plastic.
This material has been employed as a substitute for albumen in fixing aniline colors in calico printing, and it has been tried in tanning, but produces very hard and stiff leather. A the tungstic acid renders fabrics incombustible, its use in combination with glue in calico printing would be a valuable feature. How far it is applicable in the manufacture of paper and as a substitute for albumen in photography, re paper and as a sul
maims to be seen.

The tungstic glue may also have an application in the manfacture of billiatd-balls, buttons, knife handles, and in gen cral as a substitute for india-rubber. It is recommended as a lute and cement
adulteratjurs of commericidh ahticles.
Some calico of English manufacture was recently analyzed by a Swiss chemist and found to contain 2.5 per cent of the weight of the fiber of foreign substances, 5 per cent of which consisted of mineral matter. 'The calico was sold at a price below the value of the yarn it was made of
A sample of starch intended for calico dressing was forme o be adulterated with 16 per cent of gypum. Some black silk in France was weighted with chemicals that proved to be spontaneously combustible, and nearly set fire to a ware house in Paris. Paper is also notoriously loaded down with chalk, barytes, or clay, and to make the matter still more complicated, it is found that all of these articles are them selves adulterated, so that the microscope reveals adultera tions of adulterations in commercial matters just as it does of parasites living on other parasites, clown to the lowest or der of living beings. Little fleas have other fleas to bite 'em, and so on cad infinitum.

Explosive Power of Nitro-Glycerin.
We condense from the American Chemist the following pon the above subject
A measure containing one culic foot will hold r96 ounces of hasting powder, and $99 \% \cdot 1$ ounces of water; or, in other vords, the specific gravity of blasting powder, as it is used, is about 0.8 . This, of comrse, takes in the interstices, which are filled with air, but as we do not use the powder in a soli lump, this is, for practical purposes, the specific gravity of blasting powler. Now the specific gravity of nitro-glycerin is $1 \cdot 6$. Therefore, bulk for bulk, if the explosive power were the same in a given mass, as prepared for blasting, the nitroglycerin would have twice the power.
In reality the following are the volumes of gas generated by each respectively in explosion:
One volume of powder which is considered as most effecive, produces:

Therefore one volume becomes. . . . . . . . 2960 vols.
Of another kind of powder, which explodes with the gases a lower temperature, one volume produces

| Carbonic oxide. |  |
| :---: | :---: |
| Nitrogen. |  |
| One rolume beco |  |
| One volume of nitro- |  |
| Carbonic acid gas. |  |
| Water at $100^{\circ} \mathrm{C}$. |  |
| Oxygen. |  |
| Nitrogen | 236 |

These volumes are given at the temperature 0 deg. C.; at he temperature of explosion, they will be about five times greater, or about 10,607 times the original volume of the explosive, or about ten times as large a production of mixed gases for the nitro-glycerin as for the gunpowder which produces mixed gases in largest amount.
ancen times is claimed by the advocates of nitro ture of the explosion m must be greater than here assumed

## Cements.

Journal of Chemistry.
A Cement withstanding Water, Acids, Oilb, etc.Simple shellac, made up into sticks of the size of a lead pencil, is commonly sold for such cement. The objects to be cemented are first warmed till they melt the shellac brought in contact with them. This is very good to cement broken glass, porcelain, etc., especially as the objects are again ready
for use immediately when cold; but it is not adapted for for use immediately when cold; but it is not adapted for flexible objects, as it cracks, and also will not withstand heat or alcohol.
A Cement witistanding Heat and Alcohol.-Take the best kind of glue; pour on an equal quantity of water ; let it soak over night ; next morning melt it over a gentle heat, and add fine Paris white, or white lead ; mix well, and add a little acetic acid, carbolic acid, oil of cloves, or any other ethereal oil, to prevent putrefaction. This cement is also adapted for flexible objects, like leather. It will not withstand boiling water well, as this softens the glue.
a Cement withstanding Heat and Moisture.-Pure white lead, or zinc white, ground in oil, and used very thick, is an excellent cement for mending broken crockery ware; but it takes a very long time to harden. It is well to put the mended object in some store-room, and not to look after it for several weeks, or even months. It will then be found so firmly united that, if ever again broken, it will not part on the line of the former fracture

Coating for Outside Walis.-The following coating for rough brick walls is used by the U.S. Government for paint ing light-houses, and it effectually prevents moisture from striking through: Take of fresh Rosendale cement three parts, and of clean, fine sand one part ; mix with fresh water thoroughly. This gives a gray or granite color, dark or light, according to the color of the cement. If brick color is desired, add enough Venetian red to the mixture to produce the color. If a very light color is desired, lime may be used with the cement and sand. Care must be taken to have all the ingredients well mixed tegether. In applying the wash the wall must be wet with clean fresh water; then follow immediately with the cement wash. This prevents the bricks from absorbing the water from the wash too rapidly and gives time for the cement to set. The wash must be well stirred during the application. The mixture is to be made as thick as can be applied conveniently with a white wash brush. It is admirably suited for brick-work, fences, etc., but it cannot be used to advantage over paint or white wash.

## The Phenomena of Earthquakes

In earthquakes, says the People's Magazine, we see the con servative agency of fire called in to counteract the destructive agency of water. Wind and rain, heat and cold, are continually at work rending in pieces and grinding down the solid rock the disintegrated portions of the rock form the soil of the lowlands, and this in its turn is eaten away by running streams, swept down by heavy rains, to be carried by the riv ers and deposited in the sea. It is thus that the shallows and great river deltas are formed; and the materials so brought down are gradually, by the action of the waves, distributed over the bed of the ocean. This action, if suffered to continue without interruption, would in time level the highest mountain ranges; and in the place of a varied surface of land and water there would be a uniform shallow sea covering the whole earth. Here the working of fire steps in to counteract the destructive agency of water. It acts suddenly and with terrific force, and therefore it is more noted and more feared than the work which is done so silently and slowly, yet so irresistibly, by the gentle flow of rivers. Of one thing we are sure, that they are caused by the internal heat of the earth They usually occur in volcanic regions; they are frequently accompanied by volcanic eruptions; during their continuanc flames are said to burst from the earth, springs of boiling water rise from the soil, and new volcanoes have been raised as their result. We know that at a comparatively small depth below the surface of the glove there is a temperature very far exceeding anything which we experience at the surface. Whether we accept the hypothesis of a vast central fire, or consider that this heat is generated by chemical action or by electric currents, we know that there are stored up beweath our feet vast reservoirs of heat. What gases are store under pressure in the cavities of the earth we know not. But we know that the increased expansive force of an elastic fluid under a comparatively small increase of temperature would se sufficient to rend asunder the solid rock and produce the -ffects we see. Perhaps a fissure so opened may admit water to the heated nucleus, there to be instantly converted int steam with vast increase of volume. This exerting enormous pressure against the rocky walls of the cavity in which it is formed causes a wave of compression in the zone of the rock immediately surrounding it, and this wave is propagated on ward through the rock, just as a wave travels through water The confined fluid strikes the walls of its prison chamber a fierce blow, and this causes a shudder to run through the earth, which passes along the surface as a shock, whose in tensity is the only measure we have of the forces causing it
The Fise in the East River Bridge (Brooilyy) Cais-son.-The fire which recently took place in the East Rive Brooklyn Caisson, although at the time of its occurrence the dailies succeeded in making quite a sensation out of it, proves to have been nothing serious. The only damage worthy of notice was the delay consequent upon the flooding found necessary to extinguish the fire.

Senate Committee on Patents: Mr. Willey, Chairman, and Messrs. Ferry, Carpenter, Windom, and Hamilton.

How to Remit with Safety.
Drafts on New York, postal orders, checks on country banks, or money by express, are the safest means of remit banks, or money by express, are the safest means of remit-
ting. Registered letters are the next safest. Every post master is required to register a letter when requested, on the payment of a slight additional fce. Small remittances carefully folded upin the letter or prospectus, and inclosed in a well-sealed envelope, will come safely nine hundred and ninety-nine times in a thousand. Subscribers should be care ful to give the name of the State, as well as that of the Post office, in their address, when remitting.
Subscribers wishing their paper sent to a new addres should never forget to state at what Postoffice they now re ceive it.
Persons sending money sometimesomit to sign their letters Such omissions are annoying to us, and unfortunate for the sender.
Address all communications relative to subscriptions patent business, or articles for publication, to Munn \& Co. 37 Park Row, New York city.

## Vuicanized and Carbolized Rubber Hose

have been shown specimens of carbolized rubber goods manufactured by the Gutta-Percha and Rubber Manufactur ing Co., Nos. 9 and 11, Park Place, N. Y., under patent dated February 15, 1870, which in a comparison with another piece made in the same manner and of the same materials, but not carbolized, and stated to have been used under the same cir cumstances for the same length of time, shows that the car bolic acid exerts a remarkable preservative action not only on the layers of cloth, but seemingly on the rubber also. The uncarbolized rubber and cloth were in a rotten and damaged condition, while the carbolized was apparently as strong and sound as when new. The antiseptic and preservative quali ties of carbolic acid have long been well recognized, and it would seem that the use of it in the manufacture of rubber goods is one of its most recent but valuable applications.

## Postage.

The postage on the Scientific American by mail, within he United States, is five cents a quarter, payable at the offic where received.
The postage to Canada is required to be pre-paid by the publishers.
Twenty-five cents in addition to the subscription price should be sent with each name by all Canadians.

Improvement in Iron.-An English journal says that a a recent meeting of ironmasters in Birmingham, specimens were shown of purified iron and improved steel manufacture by Sherman's process, as it is called, after the name of the American inventor. Some samples of the steel tested at Chatham dockyard bore a tensile strain of seventy tuns to the any inch, and were at the same time more ductile than ny other specimens of the same strength. Common English rough iron by Sherman's method of trcatment can be con erted into bar steel equal in quality to the best Swedish; so tough and strong that a bar a half-inch quare bore a strain
of fifty-four tuns to the square inch. The process by which of fifty-four tuns to the square inch. The process by which
these results are produced is as yet a secret; but we believe these results are produced is as yet a secret; but we believ
that the conversion takes place while the iron is in the pud dling furnace.
Many beneficial uses have been found for carbolicacid, and naturalists now find that by washing out with it the inside of birds which they have not immediate time to skin and stuff, the birds may be kept a week or more in a sound and flexible condition. During the prevalence of the kine pest carbolic acid was largely used as a disinfectant; and farmers have discovered that the "ticks" which infest sheep and lambs can be killed by dipping the animals in a bath of the acid diluted with water. Great care should be observed not to make the solution too strong, as there is danger that the animals might be killed off along with the tick.

Patents.-During the year ending September 30, 1870, there were filled in the Patent Office 19,411 applications for patents, 3,374 caveats, and 160 applications for the extension of patents; 13,622 patents, including reissues and designs, were issued, 11,094 tended, and 1,089 allowed, but not issued by reason of the non-payment of the final fees. The receipts of the office during the fiscal year were $\$ 13,630,429$ in excess of its expenditures.

In accordance with a long established rule, all subscriptions erminating with this volume will be discontinued at that ime. We trust that all our subscribers will not only renew but that they may find it convenient to induce some of their neighbors to become subscribers. We intend to give our readers full measure and running over, in return for thei subscriptions.
Agents throughout the United States are urged to canvass heir districts, and to facilitate them in their good work w will, on application, supply specimen numbers to show to manufacturers, mechanics, inventors, and all who are at all interested in the spread of popular science.
Money.-In order to guard against the possibility of loss through the mails, we advise our subscribers to send their money either in postal money-orders, bank checks, or drafts.
Subscribers who wish to have their volumes bound can send them to this office. The charge for binding is $\$ 1.50 \mathrm{per}$ volumes will be sent as soon as they are bound.

## SCIENTIFIC AMERICAN <br> 1871. <br> Spectal Club Premium.

A New Volume of this journal will commence on the first of January next. Any person sending us yearly clubs for en or more copies will be entitled to reccive, free of postage or express charge, one copy of the celebrated engraving MEN OF PROGRESS," for every teu names
This large and splendid Steel Plate Engraving is one of the finest art works of the day, possessing a rare and peculiar value orer ordinary pictures, by reason of the life-like ac curacy of the personages it represents. The scene of the pic ture is laid in the great hall of the Patent Office, at Washing ton. The grouping is spirited and artistic. Among the persons represented are the following eminent inventors:
S. F. B. MORSE,...

TRUS H. McCORMIC
Thos. blanchard,...
SamuEl COLT,..
charles goodyenr,
REDERICK E. SICKles, henry burden JAMES BOGARDUS
osepil Sattox
ETER COOPER,
sainh jennings


|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

........Inventor of Fast Pintings-Presse fom the depths of poverty, and by their wonderful discov eries, conferred incalculable bencfits upen the human race entitling them to rank among it,s greatest benefactors. It is but fitting that the remembrance of their achievements, and the honored forms of their persons, as they lived and walked mong us, should be perpetuated be the highe.t skill of art The picture, which is three feet long and two feet high forms an enduring and desirable object for the adormment of the parlor. It was engraved by the celebrated Jomin Sintain, from a large painting by Sciussede, and all the portrait were taken from life. Every lover of Science and Progres should enjoy its possession. Single copies of the Engraving $\$ 9$; Three copies, $\$ 2.5$.
One copy of the Scientific Aneriche for one year, and copy of the Engraving, will be sent to any address on receipt of $\$ 10$.

MUNN \& CO.,
3i Park low, New York City

## TIMELY SUGGESTIONS

Every Employer shonld present his workmen and appen ices with a subscription to the Schentific Ameriecis for the

Every Mechanic and Artisan whose cmployer does no take the Scievtieic Avericat. should solicit him to subscril) for $18 \% 1$
Now is the time for old subscribers whose sulsecriptions pire with the year, to renew

Now is the time for new subscribers to send $\$ 3$ and com mence with the new year

Now is the time for forming clubs for the new year
It will pay any one to invest $\$ 3$ for himself, lis sons, or his workmen, for one yrar's subscription to the Scientific Americin.
It is easy for any one to gret ten subscribers at $\$ 2.50$ cach and for his trouble obtain the splendid large steel plate en raving worth $\$ 10$
It is easy for any old subscriber to get a new one to join in taking the paper.

It is no more trouble to remit $\$ 6$ for two subscribers than $\$ 3$ for one
If any mechanic whom you ask to subscribe savs he can not afford it, tell him he cannot afford not to.
If any one wishes specimens of the paper to examine be ore subscribing, tell him to write to the publishers and they will checrfully mail them.
If any one wishes an illuminated Calendar for 18:1, to hang in his office or shop, he can have it sent free on sending reguest to this office.
If handsome illuminated posters ancl prospectuses are wanted to assist in obtaining subscribers, send to the publish rs of this paper.
It is the intention of the publishers of the Scievitiric Ameirican to make the paper next year better and handsome han any previous year during the last guarter century it has een published.

It is the intention of the publishers to illustrate by superb engravings all new and practical inventions and discov eries that may be developed during the ycar.

For terms to Clubs, see special premium notice given

