modeled and new universities founded. Men were prepared for every department by previous study and careful training. There were schools for forestry, schools for intercommunica tion, schools for diplomacy, for trades, for mines, for teachers, for soldiers, for professions, for everything that modern civilization required. The highest places in the gift of the Govermment were open to competition to the lowest citizen, and any man of sufficient talent could aspire to become the rector of the university or the minister of state, and in many instances the highest places were filled with men of the humblest origin.
The first fruits of the seeds sewn by Von stein were a crop of men fully competent to fill every position of responsibility in the nation, and year after year thousands of able men have been at work raising the standard of knowledge and proficiency in every department until we come down to modern times and find a nation thoroughly drilled on every side, with the best scholers, the best soldiers, the best mechanics, the best citizens, the best officers of civil and nilitary affiars; in fact, a mation maintaining a thorough system of scientific adminissration down to the most minute detail of public and private a flairs.
Those whoare intimately acquanted with the industries of
(icrmany are aware that such establishments as the iron Gicrmany are aware that such establishments as the iron founderies of hrupp, the salts works of Grueneberg, the ultramarine factorics of Nuremberg, and the great woolen and cotton mill: scattered orer the land, are conducted with the conspicuous in rerything relating to the Prussian armine In this we have the secrets of success, and a lesson for ou carefnl study and imitation. Scientific administration is what we need in public and private affairs, and we would do well to study the signs of the times and profit by its lesson.

THE GREAT BRITISH PROBLEM

How to diffise intelligence over a thousand league of ocean is the difficult problem which Hazel has to grapple with in the story of "Foul Play." But this problem was actually solved by the reverend jack-at-all-trades, and hence was certainly not so profound as the one which has so long perplexed the cutire English nation, and which may be put as follows " Jow to diffuse intelligence from the inside of an English railway coath to the guard at the end of the train."
The cord and lell with which erery American is familiar would not answer the purpose of frikly Jolm Bull, who could method of locting punng it erery now and then, and the cxecution of such a feeble joke peculiarly easy to young and mischievons Britons.
Wany and diveres plans have been suggested by which the remoral of the difficulties attending such communication has been sought, but it is a harder knot to untie than communication betwern England and Franer across the Straits of Dover, and still remains, like the werpet ual motion, something whicll attracts the minds of inventors only to disappoint their hopes.

The Anerican syintem of admitting a considerable number of passengers to a single car does not find favor in the eyes of
Englishmen. The thing is too democratic, too leveling, to suit their taste. And though it would put an end to the practical jokes of bell pulling and cushion cutting, which seem the idios yncrasy of youthful and sportive " Bulls," it is, for the reasons stated, a thing not to be thought of.
The peculiar features of the English passenger system lave recently been brought out in a strong light by a fight which occurred in a first-class railway carriage between Car Quircy, a linen manufacturer, being the combatants. The Quirey, a linen manufacturer, being the combatants. The
Filectric Telegreph rund Rairay Recien thus desmibes the Slectric Telegrepil "
" mill" and its origin
" Mr. Bell and Mr. Quirey were the sole occupants of a compartment in a first-class carriage lnmediately after the train left the Carlisle station on its southward journey it
scems that Mr. Bell accused Mr. Quirey of having stolen his scems that Mr. Bell accused Mr. Quirey of having stolen his
ticket. This the latter protested he liad not done, but not withstanding all the protestations of imnocence, Mr. Bell, in an excited manmer, rushed at his fellow-traveler, seized him by the throat with one hand, and, with the thumb and finger of the otherhand thrust up his nostrils, dragged him violently backwards and forwards in the carriage until Mr. Quirey's face was sadly, cut and bruised. In the course of the encoun-
ter Ir. Quirev's collar was torn from his neck, and thrown ter Mr. Quirev's collar was carn from whis neck, and thrown,
saturated with blool, on the carlpet, while the windows of the compartment were completely smashed. Passengers in the compartinent were completely smashec. Pasengers in the
adjoining compartments heard the cries for help, but, as it unfort unately happened, the passengers' signal was not work able, and Mir. Quirev had to struggle against the violent assaults of his excited adverary, who threatened to kill him,
for nearly half an hour, the time orcupied in traveling be for nearly half an hour, the time occupied in traveling be pulling up at Penrith station Mr. Quirey alighted, bruised, puling up at Penrith station Mr. Quirey alighted, bruised
bleeding, and much exhansted. Mr. Bell still charged his fellow traveler with laving committed a rolbery, and on both men being searched the ticket was found on the person of Bell himself. Mr. Quirey then preferred a charge of
assault against his assailant, who was taken loy the police assault against his assailant, who was taken ly the polic
and lockexl up in Penrith police station. About siv o'clock the morning a policeman who was on duty at the station the morning a policeman who was on duty at the station
looked into hise prisoner's cell and found him hanging over
the side of his bed with a deep gash in his throat, which had the side of his bed with a deep gash in his throat, which had
heen inilicted witl a penknife left in his possession. He was still.
"On loeing interrogated by Superintendent Fowler the pris. oner replicd, 'I would rather suffer death in this way than
that I should have been covered with such disgrace.' A med ical man speedily dressed the wound, which was a dangerou onc. On being brought before the magistrates the prisoner
wass sadly cast down. Ile was charged with the assault was sadly cast clown. Ife was clarged with the assault and also with comnitting suicide. He had apologized to Mr Quirey, and offered to pay any amount to himself or to any Quirey declined to do, remarking that it was his duty to the
public to prosecute, and the prisoner was committed for trial
on both charges, bail being accepted for his appearance,"
Truly it would seem that the pugnacity of Joln Bull is arcely inferior to his sense of humor
The journal from which we gather the above statement suggests the electric telegraph as a means for conveying in telligence to the conductor. This might be better than an atmospheric railway, but have our English cousins ever thought of a flying machine for this purpose ? If not, we throw out the hint as one that may lead to something.
THE FOREMANIZING PROCESS FOR PRESERVING TIM BER, THE VICTIMS OF ITS POISONOUS EFFECTS, AND
THE SUITS AT LAW WHICH HAVE BEEN INSTITUTED THE SUITS AT LAW WHIC
TO RECOVER DAMAGES.
The use of the Foremanizing process by the St. Louis, Van dalia, Terre Haute, and Indianapolis Railroad in the prepara tion of timber for the erection of their depot at St. Louis, the poisoning of a large number of workmen employed on the work, and the death of four or five of the victims, are facts which have been already laid before our reader:
The process which has resulted in such a lamentable dis aster is the invention of Mr. B. S. Foreman, of Morrison, Ill The compound used to preserve the timber from decay consists of the following substances, in the proportions named:
one ounce of corrosive sublimate, six ounces of arsenic, and one ounce of corrosive sublimat
sisteen ounces of common salt.

The directions given for the preparation of the timber are given in a pamplet kindly sent us by a St. Louis correspon dent, the pampllet being published by B. S. Foreman \& Son of Morrison, Ill. The formula is as follows: "Take the lum ber while still green, and pile one layer on the ground, packing close; over this layer sprinkle evenly the dry powder, in the ratio of twenty pounds of powder to every thousand feet of lumber. Lay another layer in the same manner, sprinkle powder in the same proportion, and continue the operation powter in the same proportion, and continue the operation
until the amount desired is prepared. Allow this to remain close packed until fermentation has taken place, when the lumber will be fully Foremanized, and from thenceforth free from shrinkege and practically seasoned. N. B.-To induce fermentation of timber a temperature of $45^{\circ} \mathrm{F}$. is indispensable."
'The effects of working timber prepared in this way were precisely what any one well versed in the nature of the poisonous materials employed would have expected. The menl were attacked with blisters and sores. Edema arsenicolis and symptoms imperfectly described as resembling those of renereal disease (the fatter undoubtedly the result of exposure by sitting upon the poisoned timber) mingled with the well-known symptoms of poisoning by corrosive subli mate were among the effects of the poisoning.
A pest mortem examination of one of the diseased workmen revealed the following facts: The stomach was found to be fearfully ulcerated, while the lungs and liver were nearly destroyed by abcesses, the right lung being one mass of cor ruption. The testimony showed that last spring the deceased had bcen engaged at work on the Yandalia railroad depot in East St. Louis, the timbers of which had been sprinkled with a white poisonous powder to render them non-combustible, the process being known as Foremanizing; that deceased inhaled this powder, and shortly broke out with ulcerous sores and blisters; experienced great difficulty in breathing; was taken with a chronic and painful diarrhea, and that he gradually became weak and emaciated, and died as before stated. The examining physicians testified that the condition of Smith's body pointed ummistakably to arsenic as the cause of death. The jury then unanimously rendered a verdict that Smith " came to his death by inhaling a poisonous composi tion used in building the freight depot of the Vandalia Rail road Company, at East St. Louis, Illinois, he being employed by the company as a laborer." Many of the surviving workmen are said to be permanently injured.
Eleven suits have been brought against the railroad com pany, laying damages at $\$ 2 \cdot 5,000$ each. The declaration of the parties asserts that the railroad company was bound to furnish them good timber to work with, but that instead they were compelled to work upon timber which had been
sprinkled with a poisonous powder. This substance they inhaled, alsorbed, and otherwise took into their systems, there by being injured in body to the amount for which the suits are brought.
The case is a somewhat peculiar one, and as it could only have originated either in willful rashmess or in culpable ig stances of the usual effects of well-known poisonous sub
lie damages for which they sue.
SCIENTIFIC INTELLIGENCE.

RON BLUE WITIIOUT CYANIDE

A beautiful blue color can be prepared from iron without the aid of ferro-cyanide of potassium. Make a saturated solution of sulphate of iron (green vitriol) in water; convert $\frac{4}{3}$ f this into the sulphate of the peroxide of iron by means of ulphuric and nitric acids, and then add the remaining $\frac{3}{7}$ to he original liquid. Concentrated sulphuric acid, cautiously poured in, to prevent too great heat, will occasion the forma tion of a blue precipitate, which is, however, soluble in water but if it be separated from the liquid and rubbed with phos phate of soda, a beautiful blue phosphate of iron is obtained which will resist the action of water, and can be used as paint.
The
The mixed hydrates of oxide and peroxide of iron are de prived of water, and prevented from forming higher oxides, by the acids and phosphate. The reaction works well in a
small way, and it remains to be seen low far it is capable of application on a large scale. If we can prepare a substitut
fr Prussian blue without the use of poisonous cyanides it will be a real benefit to calico printers and color manufac

For experiments on explosive mixtures and on chloric acid, very convemient salt is the chlorate of baryta. This can now be oltained, accor ling to Brandau, in a very simple man ner. Commercial crystallized sulphate of alumina, sulphuric acid, and chromate of potash in the ratio of one molecule of each of the two former to two of the latter, are cautiously mixed with water to the consistence of a thin paste, and warmed over a water loath, allowed to cool and treated with alcohol in excess. Epon filtering and neutralizing with hydrate of baryta, precipitates of sulphate of baryta and hydrate
 of alumina are formed and are chans in solution. The alcolol is distilled off, and on evaporation crystals of pure chlorate of barium are formed. Care must be taken
not to pour sulphuric acid upon the chlorate of potash alone, not to pour sulphuric acid upon the chlorate of potash alone,
but to use the mixture of acid with the aluminum salt. The but to use the mixture of acid with the aluminum salt. The
chlorate of baryta has no uses at present in the arts, but chlorate of baryta has no uses at present in the arts, but
chloric acid. on account of its powerfully oxidizing properties is capable of extensive application, and the new salt of bary ta, aloove described, may be the means of affording it readily and economically.

sew dee of tumgetate or sod.

Professor Somnenschein, of Berlin, has found that when rlux in thick solution is mixed with tungstate of soda, and hydrochloric acid is added, then is thrown down a compound of tungstic acid and glue, which, at from 86° to $104^{\circ} \mathrm{F}$. is so elastic as to admit of being drawn ont into very thim slicets. On cooling this mass becomes solid and brittle, but, on being heated, it becomes again soft and plastic.
This material has been employed as a substitute for albumen in fixing aniline colors in calico printing, and it has been tried in tanning, but produces very hard and stiff leather. As the tungstic acid renders fabrics incombustible, its use in combination with glue in calico printing would be a valuable feature. How far it is applicable in the manufacture of paper and as a substitute for albumen in photography, re paper and as a

The tungstic glue may also have an application in the manfacture of billiard-balls, buttons, knife handles, and in gen cral as a substitute for india-rubler. It is recommended as a lute and cement
adulteratjurs of commericind ahticles.
Some calico of English manufacture was recently analyzed by a Swiss chemist and found to contain 2.5 per cent of the weight of the fiber of foreign substances, 5 per cent of which consisted of mineral matter. The calico was sold at a price below the value of the yarn it was made of
A sample of starch intended for calico (lressing was found o be adulterated with 16 per cent of gypsum. Some llack silk in France was weighted with chemicals that proved to be spontaneously combustible, and nearly set fire to a ware house in Paris. Paper is also notoriously loaded down with chalk, barytes, or clay, and to make the matter still more complicated, it is found that all of these articles are them selves adulterated, so that the microscope reveals adultera tions of adulterations in commercial matters just as it does of parasites living on other parasites, clown to the lowest or der of living beings. Little fleas lave other fleas to bite'em, and so on cad infinitum.

Explosive Power of Nitro-Glycerin.

We condense from the American Chemist the following pon the above subject
A measure containing one culsic foot will hold r9G ounces of hasting powder, and $99 \% \cdot 1$ ounces of water; or, in other words, the specific gravity of blasting powder, as it is used, is about $0 \cdot 8$. This, of comse, takes in the interstices, whichare filled with air, but as we lo not use the powder in a soli lump, this is, for practical purposes, the specific gravity of blasting powler. Now the specific gravity of nitro-glycerin is $1 \cdot 6$. Therefore, bulk for bulk, if the explosive power were the same in a given mass, as prepared for blasting, the nitroglycerin would have twice the power.
In reality the following are the volumes of gas generated by each respectively in explosion:
One volume of powder which is considered as most effecive, produces:

Therefore one volume becomes. 2960 vols.
Of another kind of powder, which explodes with the gases a lower temperature, one volume produces

Carbonic oxide.	391 vols.
Nitrogen.	66 vols .
One volume beco	457 vols.
One volume of nitro-	
Carbonic acid gas.	469 vols.
Water at $100^{\circ} \mathrm{C}$.	554 vols.
Oxygen.	39 vols .
Nitrogen	236 vols.

These volumes are given at the temperature 0 deg. C. at the temperature of explosion, they will be about five times greater, or about 10,607 times the original volume of the explosive, or about ten times as large a production of mixed gases for the nitro-glycerin as for the gunpowder which produces mixed gases in largest amount.
ancer thirteen times is claimed by the advocates of nitro glycerin. If this is so, the discrepancy between the temper
ture of the explosion must be greater than here assumed.

