sCiENTIFIC U8E OF THE IMAQIMATION.

John Tydalal, LL.D.,F.F.R.S., before the Brit

I trust, Mr. Prefident, that you-whom untoward circumstances have made a biologist, but who still keep alive you sympathy with that class of inquiries which nature intended rou to puraue and adorn-will excuse me to your brethren if 1 say that some of them seem to form an inadequate estimate of the distance which separates the microscopic from the molecular limit, and that, as a consequence, they sometime enploy a phraseology which is calculated to mislead.
Wben, for example, the contents of a cell are described as perfectly homogeneous, as absolutely structureless, because the microscope fails to distinguish any atructure, then I think he microscope begins to play a mischievous part. A littl consideration will make it plain to all of you that the microscope can have no voice in the real question of germ structure. Distilled water is more perfectly homogeneous than the conterts of any posaible organic germ. What causes the liquid to cease contracting at $39^{\circ} \mathrm{F}$., and to grow bigger until it freezes? It is a structural process of which the microscope can take no note, nor is it likely to do o by any conceivable extension of its powers. Place this distilled water in the field of an electro-magnet, and bring a nicroscope to bear upon it. Will any change be observed when the magnet is excited? Absolutely none; and stil profound and complex changes have occurred.
First of all, the particles of water are rendered diamagnet ically polar; and secondly, in virtue of the structure im pressed upon it by the magnetic strain of its molecules, the liquid twists a ray of light in a fashion perfectly determinate both as to quantity and direction. It would be immensel interesting to both you and me if one here present, who has brought his brilliant imagination to bear upon this subject conld make us see as he sees the entangled molecular pro eesees involved in the rotation of the plane of polarization by magnetic force. While dealing with this question he lived a world of matter and of motion to which the microscop has no passport, and in which it can offer no aid. The cases n which similar conditions hold are simply numberless Have the diamond, the amethyst, and the countless othe crystals formed in the laboratories of nature and of man no structure? Assuredly they have, but what can the microscope make of it? Nothing. It cannot be too distinctly borne in mind that between the microscopic limit and the true mole cular limit there is room for infinite permutations and combi nations. It is in this region that the poles of the atoms are arranged, that tendency is given to their powers, so tha when these poles aud powers have free action and proper germ and atterwards the complete organism. This first marahaling of the atoms on which all subsequent action depends bafles a keener power than that of the microscope. Through pure excess of complexity, and long before observation can have any voice in the matter, the most highly trained intel ect, the most refined and diecipltped imagination, retires in bewilderment from the contemplation of the problem. W are struck dumb by an astonishment which no microscop can relieve, doubting not only the power of our instrnment but even whether we ourselves possess the 'intellectual ele ments which will ever enable us to grapple with the ulti mate structural energies of nature.
But the speculative faculty, of which imagination forms so large a part, will nevertheless wander into regions where the hope of certainty would seem to be entirely shut out We think that though the detailed analysis may be, and may ever remain, beyond us, general notions may be attain able. At all events, it is plain that beyond the present out posts of microscopic inquiry lies an immense field for the ex acise of the imagination. It is only, however, the privil ged spirits who know how to use their liberty without abus ing it, who are able to surround imagination by the firm rontiers of reason, that are likely to work with any profit here. But freedom to them is of such paramount impo tance that, tor the sake of securing it, a good deal of wild ness on the part of weaker brethren may be overlooked. In more senses thau oue Mr. Darwin has drawn hearily upon the scientific tolerance of his age. He has drawn heavily upon time in his development of species, and he has drawn alventurously upon matter in his theory of pangenesis. Ac conding to this theory, a germ already microscopic is a world of minor germs. Not only is the organism as a whnle wrapped up in the germ, but every organ of the organisn las there its special seed.
This, I say, is an adventurous draft on the power of matter to divid \dagger itself and distribute its forces. But, unless we are ferfiectly sure that he is overstnpping the bounds of reason,
thnt he is unwittingly sinning against observed fact or that he is unwittingly sinning against observed fact or
demonstrated Inw-for a mind like that of Darwin can never demonstrated Inw-for a mind like that of Darwin can never
sin wittingly againat pither fact or law-we ought, I think, sin wittingly againgt either fact or law-we ought, I think be the least dnubt in the matter, it ought to be given in avor of the freedom of such a wind. To it a vast positility is tn itsolf a dynamic power, though the posibility may ever be drama upon.
It givem me $\boldsymbol{q}^{1 / 2}$ arare to think that the facts and reasoning of this diceo:rns tend rather thwards the jastification of Mr Darwin than to warda his conderonation, that they tend rathe: o augment than to diminieh the cubic space demanded by his sonring speculator; for thay seem to show the perfec competence of matter and force, as regards divisibility and
distribution, to bear the beaviest strain that he has bitherto distribution, to bear t
imposed apon thrm.
In the case of Mr. Darwin, abservation, imagination, and eason c mbined liave sun back with wonderful aggacity and
success over a certain length of the line of biological sucession. Guided by analogy, in his "Origin of Species" he placed as the root of life a primordial germ, from which h conceived the amazing richness and variety of the life that
now is upon the earth's surface might be deduced. If this now is upon the earth's surface might be deduced. If this
were true it would not be final. The human imagination would infallibly look behind the germ, and inquire into the history of its genesis.
Certainty is here hopeless, but the materials for an opinion may be attainable. In this dim twilight of speculation the nquirer welcomes every gleam, and seeks to augment his light by indirect incidences. He studies the methods of ature in the ages and the worlds within his reach, in order o shape the course of imagilation in the antecedent ages and worlds. And though the certainty possessed by experimental inquiry is here shut out, the imagination is not laft ntirely without guidance. From the examination of the olar system, Kant and Laplace came to the conclusion that its various bories once formed parts of the same undislocated mass; that matter in a nebulous form preceded matter in a condensation followed, planets were detached, and that finall he chief portion of the fiery cloud reached, by self compression, the magnitude and density of our sun. The arth itself offers evidence of a fiery origin; and in our day the hypotheris of Kant and Laplace receives the independen oubtances to be common to the earth and sun. Acceptin some such view of the construction of our system as probe ble, a desire immediately arises to connect the present life of ur planet with the past. We wish to know something of ur remotest ancestry.
On its first detachment from the central mass, life, as w nderstand it, could hardly have been present on the earth How then did it come there? The thing to be encouraged ere is a reverent freedom-a freedom preceded by the bard discipline whish checks licentiousness in speculation-while
the thing to be repressed, loth in science and out of it, is dogmatism. And here I am in the hands of the meetingwilling to end, but ready to go on. I have no right to in trude upon you, unasked, the unformed notions which are foating like clouds or gathering to more solid consistency n the modern speculative scientific mind. But if you wish me to speak plainly, honestly, and undisputatiously, I am willing to do so. On the present occasion
Tou are ordalned to call, and I to come

Two views, then, offer themselves to us. Life was present potentially in matter when in the nebulous form, and was unfolded from it by the way of natural development, or it is principle inserted into matter at a later date. With regar the question of time, the views of men have cbanged r arkably in our day and generation; and must any as re gards courage also, and a manful willingness to engage in open con
ree clergy er England-at all events the clergy of London -have nerve enough to listen to the strongest views which
any one amongst us would care to utter ; and they invite, i hey do not challenge, men of the most decided opinions to state and stand by those opinions in open court. No theory apsets them. Let the most destructive hypothesis be stated only in the language current among gentlemen, and they look it in the face. They forego alike the thunders of heaven and the terrors of the other place, smiting the theory, i they do not like it, with honest secular strength. In fact the greatest cowards of the present day are not to be fo mong the clergy, but within the pale of science itself.
Two or three years ago in an ancient London collegeclerical institution-1 heard a very remarkable lecture by a
very remarkable man. Three or four hundred clergymen were present at the lecture. The orator began with the civilization of Egypt in the time of Joseph ; pointing out tha he very perfect organization of the kingdom. and th oossession of chariots, in one of which Joseph rode, indicated long antecedent period of civilization. He then passed on to the mud of the Nile, its rate of augmentation, its presen hickness, and the remain of buman handiwork found herein; thence to the rocks which bound the Nile valley, and which team with organic remains. Thus in his own clear and admirable way he caused the idea of the world' age to expand itself indefinitely before the mind of hi audience, and he contrasted this with the age usually as igned to the world.
During his discourse he seemed to be swimming against stream; he manifestly thought that he was opposing general conviction. He expected resistance; so did I. Bat was all a mistake ; there was no adverse current, no oppos ing conviction, no resistanoe, merely here and there a hal talk. The meeting agreed with all that had been said re garding the antiquity of the earth and of its life. They had indeed, known it all long ago, and they good-humored rallied the lecturer for coming amongst them with so stale story. It was quite plain that this large body of clergymer who were, I should say, the finest samples of their class, ha entirely given up the ancient landmarks, and transporte the conception of life's origin to an indefinitely distant past. In fact, clergymen, if I might be allowed a parenthesis to ay so, have as strong a leaning towards scientific truth a tharmen, only the resistance to this bent-a resistance du education-is generally stronger in their case than in thers. They do not lack the positive element, namely, th ove of truth, but the negative element, the fear of erro preponderates.
The strength of an electric current is determined by two
things-the electro-motive force, and the resistance that force has to overcome. A fraction, with the former a umerator and the latter as denominator, expresses the cur rent-strength. The "current-strength" of the clergy owards science may also be expressed by making the pos tive element just referred to the numerator, and the negativ one the denominator of a fraction. The numerator is no ero nor is it even small, but the denominator is large; and hence the current strength is such as we find it to be. Slow ess of conception, even open hostility, may be thus accoun d for. They are for the most part errors of judgment, and not sins against truth. To most of us it may appear very imple, but to a few of us it appears transcendently wonder ul, that in all classes of society truth should have this power and fascination. From the countless modification that life has undergone through natural selection and the ntegration of infinitesimal steps, emerges finally the grand esult that the strength of trutb is greater than the strength f error, and that we have only to make the truth clear to he world to gain the world to our side. Probably no one onders more at this result than the propounder of the law of natural selection himself. Reverting to an old acquaint nce of ours, it would seem, on purely scientific grounds, a a Veracity were at the heart of things; as if, after ages of atent working, it had finally unfolded itself in the life of man ; as if it were still destined to unfold itself, growing in girth, throwing out stronger branches and thicker leaves, and tending more and more by its overshadowing presence o starve the weeds of error from the intellectual soil.
But this is parenthetical ; and the gist of our present inquiry regarding the introduction of life is this: Does it belong to what we call matter, or is it an independent principle inserted into matter at some suitable epoch-say when the physical conditions becoune such as to permit of the development of life? Let us put the question with all the rev renee due to a faith aad culture in which we all were cradled-a faith and culture, moreover, which are the unde niable historic antecedents of our present enlightenment. I say, let us put the question reverently, but let us also put it learly and definitely
There are the strougest grounds for believing that during certain period of its bistory the earth was not, nor was it it to le, the theater of life. Whether this was ever a nelju lous period, or merely a molten period, does not much mat ter; and if we revert to the nebulous condition, it is because the probabilities are really on its side. Our question is this Did creative energy pause until the nebulous matter had ondensed, until tie earth had been detached, until the sola fire had so far withdrawn from the earth's vicinity as to per mit a crust to gather round the planet? Did it wait unti he air was isolated, until the seas were formed, until evapo ration, condensation, and the descent of rain bad begun, unti the eroding forces of the atmosphere had weathered and de composed the molten rocks so as to form soils, until the sun' rays had become so tempered by distance and by waste as to be chemically fit for the densupoeitions necessary to vegeta ble life? Having waited through those mons until the proper conditions had set in, did it send the fiat forth, "Let ife be !"? These questions define a hypothesis not without its difficulties, but the dignity of which was demonstrated by he nobleness of the men whom it sustained.
Modern scientific thouglot is called upon to decide between this hypothesis and another; and public thought generally will afterwards be called upon to do the same. You may however, rest secure in the belief that the hypothesis just sketched can never be stormed, and that it is sure, if it yield at all, to yield to a prolonged siege. To gain new territory modern argument requires more time than modern arms though both of them move with greater rapidity than of ore
But however the convictions of individuals here and there may be infiuenced, the process must be slow and secula which commends the rival hypothesis of natural evolution to he public mind. For what are the core and essence of thi ypothesis? Strip it naked and you stand face to face with the notion that not alone the more ignoble forms of animal cular or animal life, not alone the nobler forms of the hors and Jion, not alone the exquisite and wonderful mechanism of the human body, but that the human mind itself-emo tion, intellect, will, and all their phenomena-were onc latent in a fiery cloud. Surely the mere statement of such a notion is more than a refutation. But the hypothesis would probably go even further than this. Many who hold it would probably assent to the position that at the presen moment all our philosophy, all our poetry, all our science and all our art-Plato, Shakespeare, Newton, and Raphaelare potential in the fires of the sun.
We long to learn something of our origin. If the evolu ion bypothesis be correct, even this unsatisfied jearning must have come to us across the ages whieh separate the un onscious primeval mist from the consciousness of today. do not think that any holder of the evolution hypothesis ould say that I overstate it or overstrain it in ans war. merely strip it of all vaguedess, and bring before you uncluthed
Surely these notions represent an absurdity too monstrous to be entertained by any sane mind. Let us, however, give them fair play. Let us steady ourselves in front of the hypothesis, and, dismissing all terror and excitement from our minds, let us look firmly into it with the bard, sharp ey of intellect alone. Why are these nutions alsurd, and why should sanity reject them? The law of relativity, of whic we have previously spoken, may find its application here These evolution notions are absurd, monstrous, and fit onily
for the intellectual gibbet in relation to the ideas concerning
matter which were drilled into us when young. Spirit and matter have ever been presented to us in the rudest contrast, the one as all noble, the other as all vile. But is this correct? Does it represent what our mightiest spiritual teacher would call the eternal fact of the univeree? Upon the answer to this question all depends.
Supposing, instead of having the foregoing antithesis of spirit and matter presented to our youthful minds, wo had been taught to regard them as equally worthy and equally wonderful; to consider them, in fact, as two opposite facts o the self-same mystery. Supposing that in youth we bad been impregnated with the notion of the poet Goethe, instead of the notion of the poet Young, looking at matter, not as bruta matter, but as " the living garment of God ;" do you nut think that under these altered circumstances the law of relativity might have had an outcome difierent from its present one? Is it not probable that our repugnance to the idea of primeval union between spirit and matter might be considerably abated? Without this total revolution of the notions now prevalent the evolution hypothesis must stand condemned; but in many profoundly thoughtful minds such a revolution has already taken place. 'They degrade neithor member of the mysterious duality referred to; but they exalt one of them from its abasement, and repeal the divorce litherto existing becween botb. In substance, if not in words, their position as regards spirit and matter is:
God hath joined together let not man pur asunder."

I have inus led you to the outer rim of speculative science for beyond the nelula scientific thought has nevar ventured nitherto, and have tried to state that which I considered ought, in fairness, to be outspoken. I do not think this evo lution hypothesis is to be flouted away contemptuously; I do not think it is to be dr-nounced as wick-d. It is to be brought before the bar of disciplined reason, and there justified or condemned. Let us hearken to those who wisely support it and to those who wisely oppose it ; and let us tolerate those and they are many, who foolishly try to do either of theee thing.

The only thing out of place in the discussion is dogmatism on either side. Fear not the evolution hypothesis. Steady yourselves in its presence upon that faith in the ultimate ti iumph of truth whicb was expressed by old Gamaliel when he said: "If it be of God, se cannot overthrow it ; if it be of man, it will come to nought." Under the fierce light of scientific inquiry this hypothesis is sure to be dissipated if it possess not a core of truth. Trust me. its existence as an hypothesis in the mind is quite compatible with the simultan eous existence of all those virtues to which the term Christian has been applied. It does not solve-it does not profess to solve-the ultimate mystery of this universe. It leaves in fact that mystery untouched. At bottom it does nothing
more than "transport the conception of life's origin to an in definitely distant past."
For, granting the nebala and its potential life, the ques For, granting the nebala and its potential life, the ques-
tion, whence came they? would still romain to baffle and brtion, whence came they? would still remain to baffle and br-
wilder us. And with regard to the ages of forgetfulness wilder us. And with regard to the ages of forgetfulness
which he between the unconscious life of the nebula and the which he between the unconscious life of the nebula and the
conscious life of the earth, it is but an extension of that forgetconscious life of the earth, it is but an extension of that forget-
fulness which preceded the birth of us all. Those who hold the doctrine of evolution are by no means ignorant of the uncertainty of their data, and they yield no more to it than a pro visional assent. They regard the nebular bypothesis as probable, and in the utter absence of any evidence to prove the act illegal, they extend the method of nature from the present into the past. Here the observed uniformity o nature is their only guide. Within the long range of physical inquiry they have never discerned in nature the insertion of caprice. Throughout this range the laws of physical and intellectual continuity have run side by side. Having thus determined the elements of their curve in this world of observation and experiment, they prolong that curve into an
antecedent world, and accept as probable the unbroken sequence of development from the nebula to the present time.
You never hear the really philosophicel defenders of the doctrine of uniformity speaking of impassiblities in nature They never say, what they are constantly charged with say ing, that it is impossible for the builder of the universe to alter His work. Their business is not with the possible, but the actual ; not with a world which might be, but with a world which is. This they explore with a courage not an mixed with reverence, and according to methods which like the quality of a tree, are tested by their fruits. They have but one desire-to know the truth. They have but one fear -to believe a lie. And if they know the strength of science and rely upon it with unswerving trust, they also know the limits beyond which science ceases to be strong. They best know that questions offer themselves to thonght which science, as now prosecuted, has not even the tendency to solve. They keep such questions open, and will not tolerate any unlawful limitation of the horizon of their souls. 'They have as little fellowship with the atheist who says there is no God as with the theist who professes to know the mind of God.
"Two things," said Immanuel Kant, "fill me with awo: man." And in his bours of health and atrenthand sanity when the stroke of action has ceased sind the pause of reflec tion has set in, the scientific investigator finds bimself orer shadowed by the same owe. Breaking contact with the shadowed by the same owe. Breaking contact with the
hampering details of earth, it associates him with a power hampering details of earth, it associates him with a power
which gives fulness and tone to his existence, but which he can neither analyze nor comprehend.
Cou. Frshers, Ex-Commissioner of Patents, has returned to the practice of law at Cincinatti.

notes and maxims abodt health.

 br De. dio Lewis.Gluttony counts one hundred victims where drunkenness ounts one.
To regulate bealth we must regulate diet.
Certain kinds of food feed the fatand leave the muscles and brain to starve. Certain other foods feed the muscles exclusively, and certain others the brain. A large part of the food of Americans is composed of white flour, sugar, and butter. People who try to live upon such stuff gradually starve to death.
There is a gentleman in Boston who has amassed an imnense fortune. His carriage is the finest in the neighbor hood, and he wastes money lavishly; but his face is the picture of despair. Life is a torture to him, becanse he is ner vous and dyspeptic. Half the rich men and women belong to the category of the miserable; they cannot digest their dinners.
The common notion that our health and life depend upon a mysterious Providence is downright infidelity. A child gots out of a hot room with naked arms and legs in pursuit of its daily supply of poisoned candies, and then dies of croup. Is that a mysterious Providence? If a man indulges himself until he gets the gout, and the disease attacks his heart ond kills him, is his death a mystery?
The coason that the American people are such dyspeptics
is that they eat and drink so much, and eat and drink so fast
Tho teeth will not decay if they are kept clean. A toothbrush is a good thing, but one good toothpick is worth an armful of toothbrushes. There is a gentleman now living in New York city who has three beautiful front teeth which he purchased from the mouth of an Irishman. His own were removed and instantly Patrick's were transferred.
The process of digestion begins in the mouth and ends in the lungs. The mouth grinds the food; the lungs supply the oxygen which
and useful blood.
Dr. Lewis once attended the lecture of a Thomsonian docto who explained the use of mercury as follows.
"And now do you know how marcury produces the, rbeu matiz? I'll tell you exactly how marcury produces the rheu matiz. You see marcury has a great many sharp pints, and them sharp pints go straight in the flesh, and when the mus cles rub over them sharp pints it scratches, and that's the rheumatiz."
Many people imagine themselves afflicled with serious diseases when they are only suffering from dyspepsia. A dyspeptic patient always despairs; a consumptive alway hopes.
John Abernethy was the greatest man the medical profession has produced in modern times. Perhaps no other man has contributed so much to temperance in eating as he.

To make the best bread that can be made of wheat, obtain good wheat and grind it without boiting; mix it with cold water until it is as thick as can be well beaten with a spoon after it is thoroughly beaten down, put it into a large iron pan, composed of many little ones, which must first be made
hot; put it then quickly into a hot oven, and bake it rapidly hot ; put it
Indian com makes excellent nourishment. It contains a large amount of oil, has remarkable fattening qualities, and s likewise remarkable as a heat producer. Rice keeps its consumers fat, but it lacks the elements which feed the muscles and brain.
Potatoes, both Irish and sweet, are very poor food for brain and muscle.
Of meats, the best for heat and fat are pork, mutton, lamb beef, and veal; for muscle, beef, veal, mutton, lamb, and pork; for brain and nerve, beef, veal, mutton, lamb, and pork.
In cold weather, fat meat, butter, and the like will keep the body warm ; and in warm weather milk, egga, bran-bread and summer vegetables will keep it cool.
There is no difflculty in a poor man's having meat for his family every day. Take, for example, what is called a shank of beef. The very best can be bought for a fraction of what the dearest parts cost. A single pound cooked in a stew with dry bits of bread will make a meal foran entire family.
The Greek and Roman armies ate but once a day.
The common impression that tomatoes are the healthiest of all vegetables is a mistake. If eaten at all, it should be with great moderation, and never raw. Tomatoes have sometimes produced salivation. Dr. Lewis knew a young woman Pies and cakes are poisonous.
Pies and cakes are poisonous.
To healthy persons mineral waters are not wholesome.
Corsets are most injurious to digestion. Their use finally results in an immense and very ugly protuberance of the bdomen.
Light and sunshine are indispensable to health, and great urative agents in disease.
Those who suffer from heartburn, shonld avoid soups, drink nothing at meals, say "No, thank you," to pies and cakes, and go withoüt supper
If you wish to live to eighty-five in the fall enjoyment of all your faculties, go to bed at 9 o'clock, and eat t wice a day a moderate quantity of plan food.
The native American requires more sleep than the average European. Nine or ten hours' sieep in a single night is very benticial. Thin Yan
betwefn five and six.
In a girl's achool whieh Dr. Lewis conducted with great success at Lexington, Massachusetts, the health rules were as success
follows:
"To go to bed at half-past eight every ovening, to rise early
in the morning and take a walk, to walk a second time dur ing the day, to eat only twice a day plain nourishing food, to wear no corsets, to exercise twice a day halt an hour in gymnastics, and to dance an hour for about three times a week. The gymnastic exercises proved invaluable; but the nine hours in bed were still more so."
The word biliousness is a sort of respectful cover for pig. gishness. People are not bilious who eat what they should. Weakness of the stomach is a protection against other maladies. So dyspepsia is the safety valve, and mas be spoken of as one of the sources of longevity.
People who are fat can easily be reduced by reãucing their food and giving them more exercise. Sach persons must not sleep too much. Long sleep fattens. Thin people, on thr contrary, should sleep a great deal.

Military Chemistry.

There is one deparment in the British service which has been of the most essential service ever since its ϵ tablish ment, viz., the Department of Chemistry. It was, says the Public Ledger, formed during the Crimean war, at the suggestion of the illustrious Faraday, to check the frauds of the contractors for army supplies at that time. The Minister of War allotted to it a large space in Woolwich Areenal, fitted up with laboratories, prorided with every species of appa ratus, with fine balances for estimating results, with the most powerful microscopes, with machinery for analyzing most powerful microscopes, with machinery for analyzing
gases, with photographic studios, etc., etc., all of which were gases, with photographic studios, etc., etc., all of which were
placed under the control of a distinguished professor of placed under the control of a distinguished professor of
chemistry and half a dozen well skilled practical assistants, whose time is fully employed in a variety of matters, and just now, especially, in testing metal for the manuficture o guns and projectiles, in examining the elements of gunpow der, in analyzing the stores and food of the soldier, and in many other experiments of a similar kind.
It is somewhat surprising that such an establishment was not founded long ago, familiar as all the world is with th, tricks of contractors in times of public necessity, as during : war. It is a melancholy fact that there should exist a clas. of men who bave no scruple in sacrificing, not merely the bealth and lives of their fellow men, but the very safety and existence of their country, in order that they may mak. money out of its necessitien.
We need only turn our eyes to France at the present ma ment for a sample of what these men are capable of. What French contractors bave done lately, English contractors dict during the Crimean war, and American contractors did dur ing our civil war. The guilt seems to be characteristic o. the class generally, and not of any one nation in particular But the good effects of such an institation as the British Mil itary Department of Chemistry were shown in the recent Abyssinian war, when out of a large number of articles sup plied to the troops none were complained of, for they bal previously been tested by the Department.
The rule now is, that when tenders are sent in for supply ing stores to the army, the contractors are bound to forward at the same time, spacimens of the material they intend t. supply. These samples are carefully tested in the chemicai department, and the firm that offers the most suitable arti cles at the Jowest prices receives an order to supply th. goods. Subsequently, when these are sent in, a further ex amination takes place to ascertain whether they are equal 11. the samples first submitted, and only if this proves to be thit case are the stores accepted and paid for.
The number and variety of the articles operated upoo is extraordinary. Almost all the belongings of the soldier pas-; in one way or other under the eyes of these cisemical detec tives. The cloth of his coat, the thread with which it i: sewn, the gold lace, the accoutrements, are all tested, anc: the buttons he wears must be covered with a filn of meta. sufficiently strong to withstand the action of the acid which the chemist applies to them. The bruad, milk, flour, biscuit preserved meat, vegetables, fruit, etc., of his rations ar periodically sent to Woolwich to be tested, and it is said that the system has been so rigorously applied throughout the service that, even at remote stations, flagrant cases of frauci re now rare.
Considerable pains are taken to provide wholesome drink ing water in barracks, and a very large portion of the work of the chemical department is devoted to this point. Speci mens of the water used at the military stations abroad as well as at home are forwarded to the arsenal for analysis, ani eports as to its qualities, together with advice to the com manding officers, are sent to the different stations. Barrack and equipment stores are not forgotten. Soap, candles, oils coal, coke, emery dust, varnish, blacking, paper hangings, and all kinds of paint are analyzed carefully in order to pre vent the injurious action of arsonic, lead, and other doisonous metals. Soap, in particular, is always severely tested, in eason of the facility with which it may be adultesated, and because it is used in such large quantities.
Very great vigilance is also exercised over camp equipage the making of the canvas uninflammable and onfavorable to the formation of mildew, the perfecting of the india-rnibber coating for the ground sheets on which tive soldier spreads his blankets, and other like cares also occupy the depart ment. The services it has rendered are immense. The condition of the modern soldirr is very different from that of the soldier of even half a ceutury ago, when he was looked upon as little better than "food for powder."

The war is effecting the tobacco trade of this codntry adersely, France and Germany being tho largent consumess o arope, and with England requiring, during the year ended June 30, 1870, $186,000,000$ pounds of leaf tobacco, $2,064,000$
cigars, and 20,181 pounds of snuff

