srembtir Ammerm

MUNN \& COMPANY, Editors and Proprietors

PUBLINHED WEEKLIY A)
N*. 3' PARE ROW (PARK RUTILDLNG NEFP YORA

VOL. XXIII., No. 20 . . [New Series.] . Tienty-fitth Fear
NEW YORK, SATURDAY, NOVEMBER 12, 1870.

To Advertisers

from 25,000 to 30,000 coples per week larger than any other journal of the same class in the
world. Indeed, there are but few papers whose weekly circulation equal that or the Sciextiric Ansitcas, which establishes the fact now generall well kiown, that of the country.

To Inventors.

For twenty-flve years the proprictors of this journalhave occupned the
leading position of Solicitors of American and Europ can Patents. Inven tors who contemplate taking out patentes should scud for the new Pamplile of Patent

RATING STEAM ENGINES

It scarcely needs any argument to convince an intelligen mind that all statements of fact are valuable only as they are definite. The present system of rating steam engines by horse-power is, however, as indefinite as can well be con ceived. When a manufacturer rates an engine at eigh horses' power or ten horses' power, he generally has in hi mind some general average of pressure in the boiler, and some regular speed of piston, but as both these factors are variable, his rating may be below or above what the engine will do in practice. Care is generally taken to rate engines below their capacity
The old tern, nominal horse-power, is still adhered to, par ticularly in rating marine engines, and though this gives some idea of the dimensions of the parts of a steam engine, it gives no idea of its real power
Of a surety this indefiniteness is a disgrace to so accurate a science as that of steam engineering, in which everything else is now reduced to the finest possible measurement; and there is not the slightest valid reason why it should exist a day longer. There need not, it seems to us, be any difficulty in agrveing upon some standard pressure and number of rev olutions, or, what is the same thing, speed of piston per min ate, at which the power should be computed. This would at once remove the uncertainty of which we complain as the power for higher or lower speeds and pressures would
then be easily determinable. then be easily determinable.
We suggest as a convenient standard of initial pressure in the cylinder sisty pounds, and one hurdred as a standard number of revolutions per minute. Engines could be then rated as to the number of revolutions above standard they could be run, and this, with the pressure the boiler can safely carry, would enable the purchaser to at once calculate the maximum power available with an engine of a given rating
There is alse no necessity for adherence to the horse-power as a unit. The foot-pound is the adopted unit of work in al nedern treatise s on physics, and the expression of the powe of engines in foet-pounds saves one division in the computa "actual horse pewer" should lecome obsolete ternis. For all
"a think it is time that nominal hors-powe" and "actual horse pewer" should become obsolete ternis. For all
scientific and practical purposes the foot-pound is by far the scientific and pract
most convenicnt.
These standards of measurement being once generally adopted, purchasers would have something tangible to guide them. There need ve no mistakes made, as is now oft 1 n the case, such as purchasing an ergine of to great capacity for the steam producing power of the boilcer designed to supply it, or the buying of engines of insufficient capacity to do the wight be demanded and given.

POWER OF PRIME MOTORS.

Perhaps in no department of mechanical practice are bunders more frequent than in the calculation of the power of prime movers necessary to perform the work of driving machinery. In our experience we have met with many such mistakes, and although these mistakes are not made by expert engineers, and though the proper method of procedure on the part of inexpert persons in erecting mills is to employ experts to make the proper calculations, an unwise par simony, or an ill-founded self-confidence, often leads such people to rely on themselves and the rule of thumb, in se lecting engines and water wheels, only to find in the end that a larger expense is necessary to rectify their mistakes than would have been necessary to a void them.
To determine the power necessary to drive a given number and variety of machines, it is first necessary to ascertain the power requisite to drive each to its maximum speed. Happily here we have a large amount of recorded experience to guide us with reference to those machines which have been much used ; but it often happens that machinery of an entirely new pattern is to be driven, and then boo
The dynamometer is the instrument relied upon for such experiments, and as thre are several in market which answer the purpose sufficiontly well, we shall not refer to any one in particular, but confine ourselves solely to a briet discussion of the principles upon which they, as a class, act to determine the two things they may be instrumental in determining namely, the power transmitted by rigid or flexible connector to different machines or sets of machines driven from a common shaft, and also the power required to drive any machinc or set of machinery.
Let it be remembered that the dynamometer only can mea ure power transmitted. Hence it cannot directly determin the power of a prime motor. It may do so, however, indi rectly, when such a motor is running at a regular speed, and transmitting its maximum of power througn the dynamome ter to shafting or other machinery, or exhausting this powe in overcoming the friction of a brake. The latter is an in tance of transmission of power and the conversion of wor into heat.
The dynamometer, of whatever style or construction, only ndicates static pressure, and the power transmitted through the instrument is estimated by multiplying this pressure in pounds by the nuinber of feet through which it is overcome
per minute. The product will be in the denomination of foot per minute. The product will be in the denomination of foot
pouuds per minute, which is reduced to horse power in divid pouuds per m
Mistakes are often made by those not accustomed to the use of dynamometers in confounding mere pressure with power It is orly a short time since we had quite a long argu'nen with an intelligent mechanic who asserted that a dynamome ter whose pointer indicated a heavy pressure on a slowly mov ing shaft, was driving more than one on a rapudly revolving shaft, the indication of which was much less. It was only ly the application of the aboverule, and a resum of mechanical power that we succeeded in convincing him that the rapidly revolving shaft was transmitting the greater
power, notwithstanding the lesser indication of the dynamoneter. There seems to be a difficulty in the minds of som in making and maintaining a clear distinction between press ure and power, and many make this ecror in thought who never make it in actual practice, their calculations being wade from prescribed rules and formulæ, which they use without mental analysis, and the full forc. of which they herefore fail to apprehend.
Brakes are merely instruments for taking off power from motors that it may be measured. The measurement is a complished by a lever and a weight, on the principle of th steelyard. The brakes gripping the shaft or pulley, as the ase may be, are tight ned till their resistance is sufficient t absorb the power so that the motor shall run at the require sperd. The weighted lever is used to hold the brakes, the
weight suspended therefrom being of sufficient magnitude to weight suspended therefrom being of sufficient magnitude to
keep the brakes from turning with the shaft. The weight in pounds multiplied into the leverage gives the number of pressure to which the shaft is submitted. This multiplied nte the distance in feet through which the pressure is over come per minute, is the number of foot-pounds the motor will aise per minute, which, divided by 33,000 , is its horse-power The measurement of power rests upon these few and sim ple principles. It nevertheless requires skill and experience o apply them in such a way as to secure accuracy, and it empquently advisable for those who lack skill
employ competent engineers for such work
hich cannot well be answered in our column duent querie rspondence of this kind. We trust we have now met thes nquiries by as full a response as is possible without going nto details, which would be a mere compilation from stand ard authoritios on this sulject

the people who attend fairs

We know of no place where men-and women-do con gregate in which one may study human nature to better ad vantage, or sce more phases of many sided individuality than t mechanical fairs. To make such a study both profitabl and amusing, however, one must have a broad sympathy or the feelings, and charity for the foibles of others, and een sense of the humorous, as well as power of philosophica analysis.
To enter one of these shows is to enter among a set of me who have, most of them, given birth to something which, in their opinion, is of great importance to mankind.
Some of them have good and sufficient grounds for this
belief. Such a belief is the parent of an enthusiasm which shows itself, in the features of each exhibitor, in his gestures in the adjustment of his dress, and in his speech. Enthusiasm born of conviction is a hard ghost to lay, and eo, though cavilers may object to this, or throw cold water on that, the ex hibitor, nothing daunted, rises superior to the occasion, and soars to the sublime hights of triumph at the first breath of praise.
See him as he stands waiting for the approach of some one who wishes to examine his device. Watch his eye kindle at the query, "How does it work?" With what expert haste he sets wheels and levers in motion and points out the action of each. Listen while he expatiates upon the advantages secured. See his lip curl in pitying contempt at the ignor ance which seems to doubt that any detail may prove insuff cient. Hear the outburst of eloquence with which weak ob jectors are utterly vanquished and driven ignominiously from the field. Surely if you please you may find something here which will reward your observation.
Then there is the man who objects to everything, whethe good, bad, or indifferent, and who always looks on the bad side. He is the dread of the exhibitors. In the middle of their most successful harangues, when credulous mincis ar just on the verge of full belief, and old women have had their teelings wrought up to the "du tell" point, this objec tor elbows himself into the crowd, and with a word brings down the enthusiasm of orator and audience to zero. A hot discussion results. Out comes the exhibitor's pocket-book and Mr. Objector is asked to name the extent to which he will back his statement, an invitation he rejects with much dignity. He is not a betring man. He objects to betting on principle, just as he ohjects to everything else, but he has spoiled the play, and the crowd disperses to other attractions. Then there is the large family of meddlers always to bo found in all places, but who always gather in force at fairs They must smell every flower, touch all the fruit, turn a least once every winch belonging to churn or washing ma chine, pull every rope-in short, apply inquisitive-we ar sorry to say sometimes acquisitive hands, to everything movable or immovable within the reach of their digits. The ace of a marble statuette must feel their caressing and be mirching touch. Beauties in paintings are pointed out by the ends of their perspiring fingers. Nothing is sacred from their profane handling, and wherever they pass, irate looks and impatient words of annoyance follow them. Yet their faces are full of sweetness. They admire equally all things; and fancy they are doing their utmost to mske all things as lovely and pleasant as possible.
Then, here and there, you shall note the aimless wanderer, lways of the male gender, with melancholy eyes and pen dant, overhanging eyebrows, thin, sallow, and dyspeptic who, with hands in pockets, strides slowly up and down, look ing at nothing, and almost unconscious of any external exist ence. What ever induced him to go to a fair? Give it up So have we. It is a conundrum too deep for our solving
And the sewing machine exhibitors. Ah! those men who send them here are shrewd old chaps, and know well enough hat a sewing machine never looks so well as when a pretty and intelligent woman sits behind it, eloquent in looks, in nimble fingers, in tidy and tasteful dress, as well as in words. It is astonishing, indeed, how many young and even old men are interested in sewing machines. One finds out this singular fact at tairs, who else might forever remain ignorant of it. And the pretty exhibitors are certainly the instruments for the elucidation of this fact, for it is never apparent in the or the elucidation of this fact, for it is never apparent in the
vicinity of a machine exbibited by a man. Being, therefore vicinity of a machine exhibited by a man. Being, therefore,
instruments for the discovery of fact, they ougit not to be instruments for the discovery of fact, they ougit not to be
excluded from notice in a review of a fair for a scientific jourexcluded from notice in a review of a fair for a scientific jour
nal. Far be it from us to exclude them. As an attractiv nal. Far be it from us to exclude them. As an attractio feature of a well-conducted fair they Mr. Greeley. We re ard the men who employ them as public benefactors, dc erving the gratitude and veneration of all who delight in fairs.
So we might go on, picking out and classifying character ad libitum, for whatever is lovely or hateful in human natcur onciliating or aggressive, high or low ; whatever is apmin and extreme ; whatever goes to make up the great current of humanity floating on towards the sea which will ultimately ngulf all, you shall find it at one of these fairs if you seck it. Try it once, dear reader, after you have gone the round of the machinery and the various other displays, and find yourself with an hour to spare that you can fill in this way Take our word for it, it will pay.

THE WORLD'S WORK, AND ITS MORAL NECESSITY

"In the sweat of thy brow shalt thou eat thy bread," wa a curse pronounced upon mankind for the original sin, if we are to accept the common orthodox interpretation of the mys tic history of Adam's fall. We have, however, a modern saying no less true, but the sentiment of which somewhat conflicts with the popular idea that the sentence of work was designed to be a curse, the import of which is, that the devil employs the idle. The evil of idleness is, lowever, a trite subject which we do not mean to discuss.
The present age is emphatically the working age. In no ther peried recorded in the history of man, was there eve ay approach to the amount of work now in progress. No only is mankind throughout the civilized world exerting all its powers of mind and muscle in work, but the stored up brute forces of nature are harnessed to the chariot of progress to an extent never before known. That there is a mora necessity for just the state of things which exists, is easily demonstrable
The moral necessity for work is perhaps most strongly indi

