NEW CAPITOL FOR THE STATE OF NEW YORK.

I'he site of the building at Albany illustrated in our present number is very commanding, being 170 ft .above the level of the Hudson, aud has an urea of ten acres. It is bounded on the south by State strect, and on the north by Washing ton avenue, 100 fect in width. The land falling off rapidly t the north, south, and cast, this building with its high walle, still higher pavilions, turreis, and towers, will be seen to advantage. In tho exterior composition of the design there is a gencral adherence to the style of the pavilions o the New Louvre, of the Hítel de Ville of Paris, and the Maison de Commerce recently erected in the city of $\mathrm{L}_{\text {cyone }}$. Tho errace which forms the grand approach to the cast or princi ,al front will form a striking feature.
The exterior is 290 feet long north and south, and 390 foet
great inequalities in the hights of the various walls, and the distribution of the enormously heavy fire-proof Q.ors, wird roofs sometimes laden with deep snows, will bring very uuciual weights upon the parts of the foundation adjaccut 10 cuck other, and without great care they would settle un. equally and crack the walle, as is so frequently seen in mod ern private, and even many public buildings. The stone foundation of the walls commences on concrete, and is made of large blocks of closecut limestone of from t wo to six tuns weight, laid in regular courses, the first one nearly the width until the wall is contracted to the width necessary to supyort the superatructure, arranged so that they will affird an equal bearing on each side of the line of the centre of gravity of the walls and the weights which they are to sustai!. The work
will rise enough faster than the rear to keep it like a portion of an arch, and have the cob-work, when inished, fit the rafters; that is, the iarow tier of figes at the brast stould apport the ratterancar the wh, while the smaller tier at the etar should support them near tlio midale, and the lower cends of the rafters rest upou the rock or boiton. It will tee seen hat a breastwo:k, so constricteti, is Iike a portion of ath arch or circle, of which the foot of the raftar is the couter, and he front of the breastwork the circumference; and the more weight is put upou it the strongor and more solid it becomes Care must be taken not to carry it tiso high, or steep, for the congth of rafter (or radius), an in that case the force of water behind might slide it away in a body
If logs are conveniemt, this may be covared with them, like rafters, touching each other, taking care to fit, them well and fink the cracis each orber, takinn onfe hit than well and

CAPITOL OF THE STATE OF NEW YORK

east and west. The floor immediately above the level of the Commissioners, Mesers. Hamilton, Harris, John V. W. Pruyn, |places, is good to chink these eracks, as it grows and increases plateau of the terrace will be entered through the porticos on O. B. Latham, James S. Thayer, Alonzo B. Cornell, William Wabhington avenwe and State atreet, and through the carri- Λ. Rice, James Terwilliger, and John T. Hulson. The archiGe entrance under the portico of thet egat front The first or main entrance-Hoor will be reached by a flight of steps on the cast froat leading to the logga, or hall of entrance, occupying 4 arem of 60 fcet by 74 feet, and $2 \overline{3}$ feet in hight
Communicating directly with this hall are two grand stair cases, which form the principal means of communication with the second and most important floor. On the left of this hall are a suite of rooms for the use of the Governor and his secretaries, and military staff. On the right are rooms for the Secretary of State, Attorney eneral, with corridor fading to the Court of Ar peals.
On the second or principal floorwill be placed the Senate and nssembly chambers, and the State library, all of which (in elevation) will occupy two storics, making 48 feet of higlut Rooms for the committees and other purposes will also be placed ou this floor. The Senate Chamber will be 75 foet by feet on the foor, with a fallery on three sides of 20 feet in width. The Assembly Chamber will be 92 feet by 75 fect cn the floor, surrounded by a similar gallery, which in both chambers largely increases the areas of the upper portion 'he library will occupy the whole of the east front of these wo stories, and will be 288 feet long and 54 feet wide. This will be the most attractive room in the building. Its large arca and lofty proportions, its view towards the north, cust, and south, overlooking the eity, and briugring in the valley of the Hudson and its wes.ern slopes for miles in each direction, will nake it a favorite place of resort at all seasons of the year the main tower is $6 f$ feet scuare, and about 320 feet in hight In the center of the building will be an open court 197 feet by 22 feet. This court will be an attractive feature, being treatod in tise same manner as the exterior fronta, and will no doubt altimately have its fountains and be surrounded with atatu ary. The entire structure will weigh 150,000 tuns; but the
paces, is grod to chink these eracks, as it grows and increases such a place, instead of washing sul. Cedar bark, poundit but hatte graveling to maxe inght, as the mesiure of the
water forces the packing down int the seame formed by the round logs, where it is not easy to wash it out, or diaplace it round logs, where it
Such a dam is cheap, strongr, and durabie, where there is a constant supply of water; bat on furall streams iiable to dry up in summer, and allow the logss to dry, and heat, and check, they very boon rot, and are theretore not to in recommended for such a situation.-Practical ikillucright aned Mrilder:

Henry Ward seccher on Interest.
No blister draws sharper than tho interest does. Of all industrice none is comparable tothat of interest. It wotik all day end night, in fair weather and foul. It has no mound in its footsteps, but travels fast. it gnalws at a man's sub. stance with invisible terth. It hinds industry with its film, as a fly is bound in a spidef's wob. Debts roll a kian over and over, binding hand and foot, and lesting him hang upon the fatal mesh until the long-legged interest devoure him There is but one thing on a farm like it, and that is the Can ada thistle, which swarms new plants every time you break is roots, whose blossoms are proific, and cvery thewer the futier of a million secds. Every leaf is un awl, every branch a spear, and every plant like a platoon of bayomete, and a field of them like an armed hose. Thr whole plant is a tormen and vegetable curse. And yet a farmer liad better make bi creat.

IT is said that fu good way to polish plaster of Paris castings it is coat there with melted white wax, and then place then before a fire until the wax is aboorved; a considerable polisa can then be obtained by friction.

Improved spring Bed.

The production of a spring beả which should afford no haunt for vermin, an ? which should be perfectly easy and accommodating to the form, distributing the pressure eqnally over the entire surface, and which should at the same time be far more portable than the spring beds hitherto used, has been the object sought in the invention shown in our engraving.
It is claimed that all these objects have been attained in this device, and that it comprises all the desirable features of such beds with none of their defects. We think after a per sonal trial of this bed in our own residence, that these claims are fully substantiated.

The principle of construction adopted is the connection of all the springs togetber, so that no one can be compressed without at the same time drawing upon the others. This is accomplished by making four abrupt bends in the upper and lower convolutions of cacl spring, as shown, and connecting these bend by links, as indicated in the engraving.
The springs are attached at the bottom to a series of slats, as shown in the engraving, and are left entirely uncovered. In use a mattress is laid upnn the springs, and when it is desired to move the bed, or pack it for transpor tation, the slats and springs may be rolled up together as easily as a mattress and corded together so as to be very compact.
These mattresses are on exhibition at the Fair of the American Institute. For further information address David S. Mallory, manu facturer, 385 Main street, Poughkeepsie, N.Y.

Manufacture of Porthand cement Portland cement was introduced to public notice under a patent by an Englishman nearly fifty years ago ; and we have hitherto possessed a partial monopoly in its production, inasmuch as we have fortunately inexhaustible beds of thes raw material from which it is made, and an abundant supply of tuel necessary for their economical manufacture. It is strange that under these condicions Freuch engineers should have obtained the start of their professional confreres in this country, and that they should have been the first to demonstrate by experiscuts, and subsequently by the erection of magnificent harbor works on their seaboard, the valuable properties of this ex cellent constructive material. We may date the extensive employment of Portland cement in England from the commencement of the inetropolitan main-drainage works. During the last fifteen years the manufacture of Portland cement has
gone on steadily increasing, until at the present day we find gone on steadily increasing, until at the present day we find that little short of 400,000 tuns per annum are made in the county of Kent-the conter of cement manufacture-irrespective of the productions of many minor factories in different parts of the country.
The chemistry of the setting of Portland cement is by n means se well understood as it ought to be. There is no doubt, however, that, like the indraulic lime and natura cements, it is, chemically speaking, a double silicate of lime and alumina; silicic acid is generated by the hydration o the cement, and forms insoluble salts with the lime and alumina bases. It is a curious fact that Portlaud cimert hardens more rapidly when salt water is employed. Accord ing to Sch weitzer, 1.000 grains of sea-water in the English Channel contain 27060 grains of chloride of sodium; soluble silica has a known preference for alkaline bases, and it i not improbable, when the cement is hydrated with sea-water,
that the chloride of sodium is decomposed, the silicic acid of the cement con, bining with the sodium and oxygen of the water, and forming thereby a silicate of soda, or a species of crude glass.
Portland cement is of two classes, which, for the sake of distinction, may be termed "Engineers'" cument and "Plasterers'" cement. The former is the more costly; it is usually described by manutacturers as " best heavy teste d"; it weighs from 1121 bs. to 1201 bs. to the bushel, is slow setting, and of great strength: the latter is a licht cement, quich setting, and of inferior strength when compared with the other. It must be understood that our remarks apply exclusively to Engineers'" cement
Portland cement is made from chalk and alluvial clay ; the factories on the banks of the Thames use white chalk, those on the Medway gray chalk; the latter is probably preferable, inasmuch as it contains large quantities of silicious matter. Mr. Read, in his treatise on "Portland Cement," says that "the present and safest proportions, provided both chalk and clay are selected free from sand, are four parts of chalk from
the Medway (gray), or theee paris of Thawes (white), with the Medway (gray), or three paris of Thames (white), with one of clay by measure." These materials are placed in mills
of :imple construction, each havin a circular pan $6 \mathrm{c}^{2}$ in diameter and 2 t . decp, in which two "edge runners" 4 ft . 6 in . in diameter, are $\mathrm{k} \in \mathrm{pt}$ continually going; a contstant stream of water flows into the pan, and as the "edre runners" revolve, the chalk and clay are thoroughly ground, and, being thus cowerted into a fluid state, they filter through a band of fine brass-wire gauze fixed to the side of the pan, and flow through wooden "launders" into tanks or settling reservirs. One washmill will feed four tanks, cark of which is about 100 ft . long, 40 ft . broad, and 4it. deer. When one of these has been filled in the manner just described the same process is applied to the others in succession. About threy weeks after the tanks are filled the whole of the materials will be precipitated, the clear water being
drained off in the mean time through a small weir in the manufacture since Mr. Grant's experiments were made brick side of the tank; the residuum is a plastic misture of the consistency of "putty," and not much unlike it in color. The next process is to convey this precipitate from the tank
to the "drying floors" to the "drying floors," over which it is spread in a layer about 6 in . thick ; each floor is 40 ft . by 30 ft .; it consists of an outer skin of boiler plates resting on a series of brick ovens and flues. The object of this arrangement is to render the plates sufficiently hot to ffiect the rapid desiccation of the water from the superincumbent layer, a process generally accomplished in about twelve hours. The materials having thus been thoroughly dried are ready for conveyance to the kilns. The "charge" consists of alternate layers of coke and raw materials, the burning generally occupying thirty-six hours. When the contents of the kiln becomes sufficiently

IMPROVED SPRING BED.

now assumed that form-are drawn and removed to a floor where the larger pieces are broken, and the whole of the burntmaterials are then conveyed to the hoppers of the rinding mills, where, passing under rapidly revolving horiontal burr-stones, they are ground into an almost impalpa be powder. The cement issues from the mill at a tempera ture of about 160°, and the now manufactured material is wheeled away, and placed in a layer from 2 tt . to 3 ft . thick over the floor of a cool shed; it is subsequently packed in casks or sacks for conveyance from the works. The essential conditions for the manufacture of good Portland are: 1. The chalk and clay should be thoroughly mixed in the wash mills, and the fluid materials delivered by "launders" over the entire area of the settling tanks. 2. The contents of the kilns ought to be burnt equally throughout. 3. The burn waterials sloould be ground very fine. 4. After coming from the mill the cement should be spread over the floor of a shed and allowed to remain there for at least a fortuight previously to being packed into casks or sacks.
The strength of Portland cement increases as its specifi gravity increases; the tensile tests are usually made with hriquettes the standard size for the neck being $1 \frac{1}{2} \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$. and it mast be understood that all experiments referred to have reference to the weight necessary to sever $2 \frac{1}{4}$ square nches of neat cement.
It appears from Mr. Grant's valuable paper, read before the Institution of Civil Enginecrs in December, 1865, that Port and cement gains from 20 to 30 per cent in strength by set ing under water; it is usual, therefore, to place the best bri quettes in watcr, after gaging, and to allow them to remain there until they are to be tested. The following table ha been compiled from a recent series of experiments; it show the average tensile strength of Portland cement as compare with the natural cements; the test blocks were of standar size of $2 \frac{2}{4}$ square inches, and placed in water as before de scribed:

The Builders' Trade Cireuldar vouchers for the accuracy of hese figures.
Mr. Grant's tajles show conclusively that the strength of gaged Portland cement increases with age; from his experi ments it appears that the breaking weight of rest blocks, one week old, one year old, and two years old, are as $1,1^{\circ} 5$, and 62. The ultimate maximum tensile strength has not a yet been ascertained; experiments are, however, being con ducted periodicaly with a view to deternine this importan point. Mr. Grant gives the average tensile strength of cement weighing 1191bs to the bushel as 777 lbs ., whereas we nive it as 1,0241 bs., the excess of the breaking weight as re-
corded by us may probably be accounted for by

Portland cement now forms an important item in the list f our manutactures, but even now its valuable properties are ot as fully appreciated as they deserve to be.-Eng. Mech'ic

Correspondeme.

The Eiditors ar resuondents

Balancing Cylinders, pulleys, and Rumner Mill

Messrs. Editors:-I see in the Scientific american of Sept. 3d, page 148, present volume, W. ©. Jacobi and J. G. F., are trying to instruct C. E. M. how to balance his cylinde or shaft and pulleys. But either one of the parties does not give C. E. M. the right plan to balance a cylinder perfectly although they both have a pretty rood idea although they both have a pretty good idea of ience in balancing machine cylinders and ner millstones.
To balance a pivot millstone true is some thing very nice to do, and no one that does not understand it will ever get them right unless he does it by accident. No cylinder can ever be balanced perfectly trae after being once built and finished, if long. If it is a narrow or thin wheel, it can be balanced true, providing its axles and everything else are done in workmanlike manner. But a long cylinder must be built and balanced all at the sarue time. For instance: you want to build a cylinder two feet long, with a spindle three feet long, so as to allow bearings on each side, with two heads for staves to be fastened on to form a drum ; or it may be longer or shorter, with more or less head. The first thing to be done is to turn up the spindle true just as it ought to be for the purpose intended. Then make the heads, bore, and finish them just as they ought to be. Then have your balancing bars right, and put on the first head you want to go on the spindle, exactly in its proper place, and fasten it then lay the spindle on the balancing bars and balance the head perfectly. Then put on the next head and balance as before, and so on till you get everything on. In this way every head wheel or pulley gets balanced separately Then I will warrant you this spindle and head will run in balance at any speed. It will be both in running and standing balance. The nest thing is, if you want to make a drum of this, to mate all the thing is, if as you want them, all ready to be fastened on the heads, whether iron or wood. If they are to have any attachmentslike spikes as a thrasher cylinder, the spikes should all be put in,and every thing finished just as they must be. To balance these staves I have two horizontal points, like lathe centers, very fine and sharp, just strong enough to bear the weight of the staves I then find the middle of the stave lengthwise and the middle sidewise, and insert a scribing awl, if of wood, or a center punch, if of iron. I then put them in the balancing machine, with the points in these holes; one of the points is worked like a lathe, with screw, ba kwards aud forwards to admit the center. By this means I find the heavy and light ends of each stave, then add on to the light end till they balance end wise. I don't care whether they are all of a weight or not after they are all balanced in this way. I fasten them all on cylinder heads as they are to be; I then lay the cylinder on the balancing bars, find the heavy side for standing balance and whatever it takes to put it in standing balance, I divide it all along on the light side in three or four different parts, rom end to end. Then the cylinder will be in running and s anding balance. A drum or cylinder built and balanced in this way cannot help running steady.

The pivot millstone is the hardest ma chine to balance of any, and next in or er of difficulty is the wide-cast band pul ev, with one set of arms. See the mill stone in Fig. 1. If the tone was swinging on the point of the spindle, as shown, and there was a heavy block put in at a, the stone would hang down at that point while standing; but if you should run the stone up to its proper speed, the heavy block at x will draw that side up on a line with the cock-head. A millstone left in this way will never grind well, and the most of nillers, to remedy this, will put in weight at B, to put the stone in standing balance, which is entirely wrong, it only puts them that much mor out of running balance, and helps the heavy block to draw on a line with the cock-head and make the face wabble the greatest of all faults, sure to produce bad grinding. The right way is to find the heavy side of the stone atanding. as shown in the engraving. If is heary on one side he point of betweer. he point of cock head and the face of the tone. If the stone if built right and the irons put in the cen-
ter, I always find what
 weight it will take to put the stone in standing balance by laying iron at B; then I fasten that much on the stone, at c

