There are no doubt plenty of machines that will turn out these spokes at an average rate of one thousand per day, an which can be afforded for less than the cost of one man's
labor for a single year. We are certain that machines are labor for a single year. We are certain that machines are
made which will turn out also from three to four hundred made which will turn out also from three to four hundred
hubs of this timber per day. Indeed, the Kaufman Star inhubs of this timber per day. Indeed, the Kaufman Star in-
forms us that a Northern firm offer to furnish spoke machines forms us that a Northern firm offer to furnish spoke machines
capable of making from twelve hundred to fifteen hundred capable of making from twelve hundred to fifteen hundred
spokes per day, for $\$ 250$ each, and machines at the same price spokes per day, for $\$$ foeach, and machines at the same price
that shall make from four hundred to four hundred and fifty hubs per day, each requiring only one attendant, and the two doing more work than one hundred men could do without machinery.
It is easy to see how the introduction of such machinery into the region described would enable these hubs and spokes to be made for shipment to all parts of the country at a re munerative price, or even to be exported.
But Texasis not alone in the possession of timber treasures Virginia, Georgia, North and South Carelina, and many othe parts of the Southern States also can boast of very large
tracts of valuable timber land, the most of which could be made to yield immense returns by the introduction of such
machinery as las been for years employed in the timbered machinery as bas been for years employed in the timbered
sections of the North. The cost of transportation after the raw material has been made into forms of increased value, is not materially more than for the shipment of the crude lumber, while it pays far better.
The manufacture of tubs, pails, chairs, sashes and blinds, and the great variety of wares which have made New England famous as a wood-working section, might, without doubt, be most advantageously carried on in the South, and our infor mation of some few factories of this kind, which are now running in Southern localities is such as to greatly encour age the establishment of others.

PARAFFINE INDUSTRY.

In the Paris Exhibition of 1855 was shown a block of par affine, with a few candles. Few visitors understood what it was, and no one could have anticipated the great extent to which the trade in this article would subsequently be pushed. The manufacture of paraffine candles has become an impor tant industry, and there are single establishments in Ger many capable of turning out 240,000 candles daily. In Eng. land and France the industry has reached vast proportions, and in this country it has no mean significance. Wagner estimates the production of parafine in Prussia alone for the
year 1870 at $11,000,000$ pounds. The brown coal of Qermany and the bog-head of Scotland and the Rangoon petroleum are particularly well adapted to the production of paraffine, while Bohemian and Austrian and other continental coals yield a very small quantity. The uses of parafine are many. As its meiting point is low it is proposed to employ it for the preservation of meat. Meat several times immersed in a bath of melted paraffine will keep for a long time, and when
wanted it is only necessary to melt off the adhering was-like wanted it is only necessary to melt off the adhering wax-like
coating to prepare it for cooking. For stoppers to acid botcoating to prepare it for cooking. For stoppers to acid bot-
tles, to coat paper for photographic and other uses as a lubritles, to coat paper for photographic and other uses, as a lubricator, for candles, as burning oil, to coat pinls, in the refinery
of alcohol and spirits, paraffine now finds ready use. It has also been employed for the adulteration of chocolate and candies; for the preservation of railroad timber; to saturate filter paper for certain purposes; to coat the sides of vessels in which hydrofluoric acid was to be kept; to preserve fruit from decay; for oil baths of constant temperature; to prevent the oxidation of the protoxides; to render fabrics water-
proof; as a substitute for wax in the manu facture of matches; proof; as a substitute for wax in the manufacture of matches;
as a disinfecting agent; asa varnish for leather, and for many other useful purposes. There are very few bodies that can attack or in any way decompose paraffine, and hence its great value in many chemical processes. Its use is likely to be further extended the more we become familiar with its properties, and it appears destined to assume an important position among our chemical industries.

CRaik's practical ambrican millwright and

In our column of "New Books and Publications" will be found the notice of a book under the above title which deserves more than the ordinary notice; not that it has no deficiencies, or that it is characterized by scientific style and method, but that it embodies the resulto of a long and varied experience
in the construction of various kinds of mills, an experience all in the construction of various kinds of mills, an experience all
the more valuable, as the author gives evidence in his pages the more valuable, as the author gives evidence in his pages
that he is one of the comparatively rare individuals who can observe with discrimination, and draw accurate inferences. Perhaps no department of engineering demands greater fertility of resources than mill construction. Hardly any two mills are alike in circumstances of position, available power, and character of soil, upon which their foundations must be placed. Dams, also, require andless variety of detail accordthey are erected. Varying heads of water, also, introduce they are erected. Varying heads of water, also, introduce
further complications. In all of these particulars, and in further complications. In all of these particulars, and in
many others, not specified, no amount of theoretical informamany others, not specified, no amount of theoretical informa-
tion can supply the lack of experimental knowledge; and next to such knowledge, personally acquired in practice, ranks that tersely and plainly communicated by such a man as the
author of this work. The aim has not been to produce a sciauthor of this work. The aim has not been to produce a sci-
entific treatise. The work is rather an embodiment of pracentific treatise. The work is rather an embodiment of prac-
tical results and tests of the various kinds of mill machinery under a wide range of circumstances, some of them " offering considerable difficulties and calling for great diversity of practice." The six chapters on water wheels are alone worth the price of the book. They however comprise only a comparatively small portion of the work which is a large octavo, filled
with practical information upon nearly every tepic connected that what a man or nation will not labor or fight to gain and with practical information upon nearly every topic connected that what a man or nation will not labor o
with the subject of mill building and running. The subjects ' guard when gained, shal' not be enjoyed.'
of wind mills, their construction and adaptation to our WestThe style of the work is such as any ind is treated at length. The style of the work is such as any mechanic may understand, all algebraic formula being avoided, and the rules being simplified to the utmost.
Mr. Craik mater
Mr. Craik makes a statement in his discussion of the transmission of motive power, which is not correct. He says, by a combination of jointed rods used to connect a series pumps with the water wheels which drove them, at the celebrated waterworks of Marli, near Paris, in France. Eightyabove the power which drove them, and half a mile azoay." In Prof. Barnard's report upon the Paris Universal Exposition, on page 132 , is an account of the successful transmission of power by Hirn's telodynamic cable, to a distance of nearly three and one eighth miles,at the mines of Falun, in Sweden
A short extract upon this subject, from the report alluded to A short extract upon this subject
was published in our last issue.
But such an error as this is of little importance when com pared to the great practical value of the work. In anothe part of the paper will be found an extract which is a fai sample of the plain, comprehensive character of the book which we can confidently recommend to all who are interested in mill building and milling.

THE MILLENNIUM, OR SOMETHING LIKE IT.
We have, in another column, noticed the fact that the American Association for the Advancement of Science is forced occasionally to listen to papers containing nothing but twaddle, and that this twadde, printed, redounds not to the honor of the Association at home or abroad.
Such, however, was not the character of the paper read by the well known scientist, thinker, and inventor of the "panatechner," Clinton Roosevelt, of this city. His paper discussed the question, "Ought a true science of national wealth ox excluded from the curriculum of on for the Advancement of Science?
If we may judge from the character of many of the papers read, the question as to whether anything should be excluded seems superfluous. But a superfluous question is often a
splendid thing to string words upon, especially if in the stringing, the elegancies and accuracies of congruity, pertinence, terseness, perspicuity, and logic, are not considered essential.
To discuss the momentous question propounded by Mr. Roosevelt, was by no means a difficult task to one so rich in
ideas, and so fertile and felicitous in diction. We were not present at the reading of his paper, but the report of it, published in the Times, gives evidence of its brilliant and exhaustive character. The assembled savans no doubt gave full expression to their delight when Mr. Roosevelt finished his paper. Being a polite set of men, they would not be likely to interrupt him by applause during the reading, however much the fullness of emotion might struggle for utterance. Mr. Roosevelt was willing to allow, according to the motion of Professor Agassiz, made at the last annual meeting of the Association, at Salem., Mass., that the system of politcal economy, as taught in our colleges and universities, embracing only production, distribution, exchange, and con-
sumption of articles having exchangeable values, is insuffisumption of articles having exchangeable values, is insuffi-
cient to embrace a true science of national wealth. In his view the science of national wealth consists of three orders and nine genera, without counting the species, varieties, etc. Surely the savans cannot refuse to seize upon a subject nvolving three orders, nine genera, and an indefinite number of species. Such a field as this to enter in upon and take possession of! A veritable scientific Caanan, flowing with philosophic milk and speculative honey, 'and bearing choice fruits of end less discussion and debate! Surely, they eac and all exclaimed in their hearts (being too polite
meeting), "Here's richness! Here's Richness!"
government by reason alone, have failed hitherto systems of government by reason alone, have failed hitherto to make peace on earth and good will to all, is that the will of man is
not governed or to be governed by the greatest motives, bu not governed or to be governed by the greatest motives, but
by the same general law that governs in physics; thus accepting the science of government as the science of motive powers. Motive powers are of two kinds, metaphysical and physical. And whereas, in physics motive powers operate directly as the substance, and inversely as the squares of the distances in space, in metaphysics motives govern the will of man in times. Thus men who verily believe in eternal re wards and punishments still give way to the present temptaions, and fear little practically, until death or the instrumen of punishment comes near. Thus, as in the State of Wis consin, the La Crosse and Milwaukee Railroad Company bribed all at once the Legislature, the Judiciary, and the Executive, and left the people as so many sheep without a
shepherd; so has it always been." As a specimen of much in little, we commend this passage as a model for very young students of English composition Much words and little sense is a style that pays well in modern literature, as most contributors to our magazine lit"There pal by the column.
"The same things, which, if left alone, are destructive to life and happiness, if removed, become beneficial in their proper places; as the offal of cities left to find its own level in the ported to the surrounding country and covered in the produces flowers, fruits, and cereals for the support of life and happiness; that there is a law of Providence under the higher law of absolute necessity in the nature of things;

This passage is copied verbatim from the Times' report. It doubtless means something, and if it were not too late, we would suggest that the Association should appoint a committee to ascertain the meaning, correct the grammar, and report at their next meeting whether it should be admitted into the curriculum of the Association, or not.
At the same time, Mr. Roosevelt's orders, genera, and species might also be distributed among the members-a priceless boon, since, according to that gifted thinker, they comprise " all that man can reasonably desire on earth, as useful or delightful to him"-a millennium, or something like M
Mr. Roosevelt is especially hard on the free-traders, putting them into the same category with " free-lovers" and "freeooters." We don't see how they are going to stand this violent attack, which, following Mr. Greeley's Tribune essays on political economy, is, like charging, after a battle, upon the dead and wounded-to say the least-ungallant of Mr. R. He might, indeed he might, have let the free-traders alone, and confined his remarks to the physical and metaphysical motors which run railways and legislatures. How easy it would have been to have pilloried Prince Erie on his metaphysical motors, Fisk's Opera House, Camp Jay Gould, and an unlimited grab from the pockets of the Erie stockhoiders, not to mention Fisk himself, the most metaphysical motor on this continent.
But we reluctlantly leave Mr. Roosevelt's paper, from the reading of which we have become better, wiser, and more able to grapple with the hard problems of social science. When in due time the transactions of the American Associa tion for the Advancement of Science shall appear, it will be demonstrated to the world that he who advanced it most during the year 1870, was Clinton Roosevelt, Scientist, Thinker, and Inventor of the Panatechner.

THE ANALYSIS OF MILK.

Dr. Chandler, of Columbia College, has recently been paying attention to the analysis of milk in connection with an examination of the milk vended in this city. The results of his examination having been published, the method adopted for the analysis of milk in so far as its adulteration by water is concerned, has met with criticism from the pen of Dr. A. E. Davies, in the Chemical News. As the short article of Dr. Davies not only gives the method employed by Dr. Chandler to ascertain the amount of adulteration by water, and the reasons why it is considered defective, but adds a method considered much more exact, we copy the $\$$ hole of it. The method is one that can be easily and generally applied, and will be found of use in the numerous cheese factories established during the past few years in this country.
Dr. Davies says:
"As to water being the only substance which is employed for adulterating milk, I perfectly agree with Dr. Chandler. Carbonate of soda and nitrate of potash are occasionally added, but only rarely, and in very small quantity. I have never met with chalk, sheep's brains, mucilage, sugar, etc., in any sample which I have analyzed.

Since water, then, appears to be practically the only substance fraudulently added to milk, it is a matter of the greatest importance that we should be able to detect the presence of added water, and to estimate, at least approximately, its mount. This (at least the presence of added water) Dr. Chandler considers may be done by taking the specific gravity of the milk and estimating the water it contains by evaporating a weighed sample to dryness. 'Pure milk,' he says, ' varies in specific gravity from 1.023 to 1.032 , water being represented by $1 \cdot 000$.' And, again, 'It is found that good milk generally has a specific gravity of from 1.029 to ${ }^{-032}$. In testing milk, the lower number is selected as a fair gravity for pure milk; and whenever the gravity falls much below this the milk may be considered as containing an excess of water, and consequently poor in quality or adulterated.'
"Now, according to my experiments, the specific gravity cannot be at all relied on as a test either of freedom from adulteration or of natural richness. I give a single example A sample of milk of known genuineness recentlyanalyzed by
me gave the following results: Casein, $4 \cdot 26$; fat $6 \cdot 26$; sugar me gave the following results : Casein, $4 \cdot 26$; fat $6 \cdot 26$; sugar,
$5 \cdot 13$; salts, $0 \cdot 60$; water, 83.75 ; cream (by the lactometer), 17 $5 \cdot 13$; salts, $0 \cdot 60$; water, $83 \cdot 75$; cream (by the lactometer), 17
per cent; specific gravity, $1 \cdot 0246$. It was, therefore, a very per cent; specific gravity, $1 \cdot 0246$. It was, therefore, a very excellent sample, and rich in all the solid constituents of
milk, especially butter, but bad it been judged by its specific gravity, it would have been put down as of very inferio quality. Besides, even supposing the specific gravity to be a eliable test of quality, it gives us no indication as to whether the milk is naturally poor or has been rendered so by the addition of water, and the test, in my opinion, is therefore worthless.
s to the estimation of the amount of water by evapora tion, Dr. Chandler says: 'A perfectly reliable method, though more laborious, is to actually determine the per centage of water in the milk, by evaporating a weighe quantity and carefully drying the residue at $212^{\circ} \mathrm{Fah}$. If a milk loses more than 88 per cent of water, leaving less than 12 per cent of solids, it may safely be pronounced to be adulterated.'
From this view, I totally dissent; the presence of 88 per cent of water is an indication of inferior quality, but is certainly no indication whatever that water has been purposely added. In milk of known purity, examined by Dr. Voelcker, as much as 90.70 per cent of water was found ; and this alone shows the untrustworthiness oì Dr. Chandler's test-at least ${ }_{r}$ as far as it refers to added water.
"It appears to me, that what is wanted is, not a test which will simply tell us whether or not the milk contains more than the normal quantity of water, without giving any indication whether the water has or bas not been added to the milk. If this were all, the estimation of the water, by evaporation, would accomplish it; but, what really is required, is a test which will slow if the milk has been purposely diluted with water, and, if so, what quantity of water has been added. Such a test, I believe, we have in the specific gravity of the serum, or liquid portion of the milk, from which the casein and fat have been removed by coagulating and straining. The gravity of this liquid I have found to be remarkably constant, ranging in that obtained from genuine remarkably constant, ranging, in that obtained from genuine milk, from 1.026 to 1.028 ; and, by carefully ascertaining the specific gravity of the serum of genuine milk diluted with various quantities of water, we may obtain a standard of
comparison which will enable us to say, within a few per comparison which will enable us to say, within a few per
cents, what quantity of water has been added to any sample cents, what quantity of water has been a,
of milk that may come under our notice."

divisibility of mater and size of chemical

 atoms.Atoms as indivisible material elements of unchangeable form, size, and weight, are a convenient hypothesis conceivable in so far as the properties above enunciated are concerned. But any attempt to conceive of them as they really are is futile. Even if we could by improvements in optical instruments render them visible and demonstrate their existence by actual sight there would still be inconceivable things about these seen atoms, differing, as they would, from all other things that we can see, and from each other, not only in size and weight, but in qualities, of which we can have no conception, but which are inferred to exist from the chemical comportment of the elements to each other.
A correspondent has asked in what solution is the extrem est division of matter apparent, and the nearest approxima tion to the size or bulk of the atom made. The first part of this query may be answered ; the second is unanswerable, because the size of neither the atomic or molecular intersticia spaces are yet determined, so that if we
a definite number of atoms were ningled with a given num-
. a definte number of atoms were nhould still lack data for any estimate of their relative size. Assuming them to be spheres with their sides in absolute contact, such a calculation might with theirsides in absolute contact, sacio altats which mat
be made, but all we know of the various states be made, but all we know of the various states whic
ter assumes teaches that they do not touch each other.
ter assumes teaches that they do not touch each other.
To answer even the first part of the query would, howe To answer even the first part of the query would, however
require much research. We shall content ourselves with require much research. e e shale come divisibility One three-hundred-and-sixty millionth of a grain of gold may be seen by the use of a microscope magnifying 500 diameters A grain of copper dissolved in nitric acid will, upon addition of ammonia, give a blue tint to 392 cubic incbes of water one three-hundred-and-ninety-two millionth of which may be seen by the aid of a microscope. The ammonia contained in a small drop of water may be detected though only on part in
mercury
Thompson, the celebrated physicist, has lately been perform ing a very interesting calculation with a view to determine approximately the size of atoms, the calculation being based upon the phenomenon of capillary attraction, the work per
formed in overcoming the contractile force of soap bubbies formed in overcoming the contractile force of soap bubbies, the kinetic theory of gases (first suggested by Bernouilli,and since worked out by Herapath, Joule, Clausius, and Maxwell) together with the laws of optical dynamics. As the result of these calculations, he concludes that the diameter of gas eous molecules, or atoms of elmentary gases, are not less than 0.0000000007942 of an inch. How much larger than this they may be, he does not tell us in numbers, but he does say that, if a drop of water slould be magnified to the size of the earth, and each molecule magnified in the same proportion the molecules would even then be smaller than cricket balls.

ENTERPRISING JOURNALISM.

The Atlantic Cable dispatch containing a full account o the great battle of Gravelotte sent to the New York Tribun and published in that paper on the 24th ult., is probably the longest and most costly dispatch ever sent over the transcontinental wires. It cost the Tribune $\$ 2,260$ in gold. As a specimen of enterprising journalism this is absolutely unprecedented, but it may be surpassed ere the war closes. The slow moving dailies of London and other foreign cities will stand wide-mouthed with astonishment at the absolute disregard of expense shown by their American cotemporaries in obtaining news. We doubt whether any of them eve paid as much for news
for this single dispatch.

$\$ 20,000$ BONUS FOR A NEW PRESS.

The circulation of the New York Sun has become so enormous that the publisher, Mr. I. W. England, finds it almost impossible to print the edition. Five presses are now em ployed for that purpose, but the utmost capacity of either is only equal to printing 17,000 copies per hour.
Mr. England wants a press that can strike off 40,000 copies per hour, printed on both sides, and he authorizes us to offer a bonus of $\$ 20,000$ for such a press-one that will do its work well. This question of more rapid printing is one that must engage the earnest attention of our inventors, and it seems that the tendency of the Sun is in that direction.
The School of Mines, of Columbia College, will re-open on Monday, Oct. 3. The announcement of Dean Chandler ap pears in our advertising columns.

scientific intelligence.

fuoride of sodium.
This valuable reagent can be made on a large scale by fusing 100 parts fluor spar, 140 parts of carbonate of lime, 200 parts of sulphate of soda, and an excess of carbon. The fluor spar is completely decomposed, all of the sulphur remains with the lime as sulphide of calcium, and the flux yields a colorless, pure solution.
The difficulty of obtaining a sufficient amount of material has prevented an extensive use of the fluoride of sodium, but now that it can be easily made it ought to attract more atten tion. It could be advantageously used for the resolution of many silicates, as it forms insoluble double salts with some of the sesquioxides, and in this way the soluble protoxides could be removed. Take, for example, the beryl, by treating it with fluoride of sodium, the aluminum would combine with the soda to form the insoluble double fluoride of aluminum and sodium (cryolite) while the glucina would be separated in an insoluble state.
Feldspar, treated in a similar way, would, no doubt, leave the potash in an available state, while the aluminum would form insoluble cryolite with the sodium. Fluoride of sodium would prove a valuable flux and reagent in the laboratory. platinizing glass.
R. Bottger recommends the following process: Pour rose mary oil upon the dry chloride of platinum in a porcelain dish, and knead it well until all parts are moistened ; then rub this up with five times its weight of lavender oil, and leave the liquid a short time to clarify. The objects to be platinized are to be thinly coated with the above preparation and afterwards heated for a few minutes in a muffle or over a Bunsen burner.
This recipe is much simpler than the one given by us some time ago, and can be easily tried by any one. In order to recover the platinum from defective or broken glass, moisten with hydrochloric acid, and touch the spot with a zinc rod, when the platinum will fall off in thin leaves.

writing ink.

According to R. Bottger, a very good copying ink can be prepared as follows: Pulverize 30 grammes of extract of Campeachy wood and 8 grammes of crystallized carbonate of soda, and pour on 250 cubic centimeters of distilled water, nd boil until the liquid has assumed a deep red color, and the extract is fully dissolved. Then remove the vessel from the fire, and add, with constant stirring, 30 grammes of gly-
cercin of specific gravity of $1-25$, and also 1 gramme of the cercin of specific gravity of $1 \cdot 25$, and also 1 gramme of the
yellow cliromate of potash, previously dissolved in a little yellow chromate of potash, previously dissolved in a little
water, and 8 grammes of finely-pulverized gum-arabic, also previously moistened with water, and the ink will then be ready for use. This preparation will keep indefinitely in well-stoppered bottles, and there is nothing in it to attack the pens. Manuscripts can be copied by it withous the aid of the press, by simply moistening the paper and using an iron knife or the thumb nail. The carbonate of soda prevents the gelatinizing of the ink, and the glycerin is a substitut for the sugar formerly employed.
to detect the age of handwriting.
Attempts have been made to invent a method for approximately determining the age of any writing. Iron inks suffer change in process of time, and become yellow, the organic constituents disappear, and the iron becomes more prominent. By moistening the writing with weak hydrochloric acid (1 acid, 12 water) if the ink is old only a faint copy can be obtained, and the newer the writing the plainer will be the opy.
In experiments made by Carre, handwriting 30 years old ave scarcely any impression-an authentic document from he year 1787 yielded mere traces. Soaking the paper in weak hydrochloric acid gives opposite results, as handwrit ing a few months or a few years old is at once removed by
the acid, while old ink has suffered such a chemical change the acid, while old ink has suffered such a chemical change
that the acid no longer acts upon it. After the experiment it is well to neutralize the acid by suspending the paper over a capsule containing sal ammoniac. The test appears to be only applicable to writing several years old, and is confined to iron inks.
to render paper water-tight.
The ammonia oxide of copper is a solvent for silk, paper nd cellulose. If its action be limited to a few moments it converts the surfaces into a gelatinous mass, and Scoffer proposes to employ this property to render the paper water
tight. If in the mill the endless sheet of paper is made to ass at a proper velocity through the ammonia copper solu tion, and is afterwards dried and pressed, the surfaces will be converted into a species of parchment, and will be watertight. The rate of speed for the rollers must be a matter of experiment.

hiquid glue.

Experience has shown that glue undergoes a chemical change when dried in the air, and its adhesive properties are decidedly deteriorated. To avoid this, says Prof. Wagner in his report for 1869, some of the manufacturers have intro-
duced a pure liquid glue in close packages, which is said to duced a pure liquid glue in close packages, which is said to
be superior to the dry article. It is prepared by digesting bones in a peculiarly constructed apparatus, and is sold ac cording to a fixed specific gravity, so that the purchaser does to 12 per cent. The price is also less than for dry glue. cement for tron and stone.
Glycerin and litharge stirred, to a paste, hardens rapidly, and makes a durable cement for iron upon iron, for two stone ment is insoluble, and is not attacked by strong acids.

hight and weight.

[Condensed from Nature]
One of the earliest efforts made to obtain anytbing like fised relation between hight and weight was that of Dr. Boyd, who weighed a certain number of inmates in Marylebone Workhouse. He took the hight and weight of 108 persons laboring under consumption, and found they measured 5 feet 7 inches, and weighed 90 pounds. He then measured and weighed 141 paupers who were not consumptive, and found that their average hight was 5 feet 3 inches, and that they weighed 134 pounds.
This subject attracted the attention of the late Dr. John Hutehineon, and he determined to take the hight and weight of all classes of persons in the community. In this way he collected the hight and weight of upwards of 5,000 persons. This list, however, included persons who exhibited themsel ves as giants and dwarfs, and other exceptional cases. He therefore reduced his instances to 2,650 persons, all of whom were men in the vigor and prime of life, and included sailors, firemen, policemen, soldiers, cricketers, draymen, gentlemen, paupers, and pugilists. This group of cases was intended to make one class as a set off against another, so as to get a fair average.
The following is the result of Dr. Hutchinson's observations:

Of course the result of these investigations of Dr. Hutchinson can only be considered as approximative, and he himself thought that a larger number of observations would lead to a more perfect law. The fact is, his observations are quite sufficient to establish all that we need, and to show that among a certain set of healthy men his estimate of weight and hight may be regarded as an approach to a healthy standard. It is only where considerable departures from the estimates given by Dr. Hutchinson take place that any particular case demands attention.
If the table is exanined, it will be seen that the increase in weight for every inch of hight is a little more than five pounds. In fact, allowing for any error in observation, we may say that Dr. Hutchinson's table is reducible to the law that for every inch of stature beyond 5 feet 1 inch, or sixty one inches, a healthy man increases five pounds for every inch in hight. If this deduction be accepted, we may very much simplify Dr. Hutchinson's table, and say that, as a rule, a man's weight increases at the rate of five pounds for every inch of hight, and this rule holds good for all practical purposes.
Although this law is approximately good for a certain number of cases, even above and below this table; it is prac tically found, and especially in the case of children and growing persons, that there is a wide difference of weight at hights below 5 feet.
Attention may also be drawn here to the fact that there will constantly occur in the community instances of persons where either the muscular or bony systems are excessively developed, and who consequently weigh more or less than their hight.
Dr. Chambers gives the hight and weight of certain cele brated prize-fighters, the result of Mr. Brent observations which makes it very obvious that in certain cases the great weight depends on muscular and osseous development.

The conclusion we come to with regard to these weighings measurings is that all ordinary departures from the aver age hight and weight of the body deduced from Dr. Hutchinson's tables are due either to an increase or decrease of the fatty matter or of the adipose tissue in the body. Thus, taking the composition of a human body weighing 154 pounds, and measuring 5 feet 8 inches, it will be found that it contain 12 pounds of fat. It is then mainly due to the diminution or increase of this substance that human beings weigh more o less than the standard weights given in the above table. It will be therefore here worth while to inquire what is the use of fat in the system, and what indications are afforded by the hight and weight of the human body for caution in diet and regimen.
The exact way in which fat is produced in the tissue of plants and animals is not known, but there is evidence to show that it is found very generally in the tissues of plants and especially in the seeds. Oil when used for commercial purposes is mostly obtained from the seeds of plants, as reen in castor oil, rape oil, linseed oil, cocoa-nut oil, palm oil, and hundred others. As it is found in the seeds of plants, so it is found in the eggs of animals. The embryo of all animals is developed in contact with oil, of which we have a familiar instance in the yelk of the egg of birds. It appears also that the muscular and other tissues grow under th., fostering in fluence of the adipose tissue.
Besides this primary influence on the growth of the body fat subserves many other purposes. In the first place it seems to be a reserve of material for producing muscular force when needed. Animals grow fat in summer, but as the supply of this material becomes scanty in winter

