Sombitic smentim

MUNN \& COMPANY, Editors and Proprietors

ublished weekly at
NO. 3% PART ROW (PARE BUILDING), NEWF YORK
C. B. MUNN. S. F. WALES, A. E. BEACH.

vol.. XXiII., No. 10 . . [New Series.] . . Twenty-fifth Year.
NEW YORK, SATURDAY, SEPTEMBER 3, 1870

Contents:

The circulation of the Scientific American is from 25,000 to 30,00 copies per week larger than any other journal of the same class in th world. Indeed, there are but few papers whose weekly circulation equals
that of the Scimstific American, which establishes the fact now generally well known, that this iournal is one of the very best advertising medium in the country

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF science.
The Troy meeting commenced on the 17th of August, and closed on the 24th. It was a gratifying success ; the proceed ings were harmonious, dignified, and vigorous; many of the papers read are valuable.
The attendance was respectable, and all parts of the country were represented. But many familiar faces wer not to be seen. Death has made sad havoc among the old men. Henry is in Europe; Agassiz and Peirce were kept away by sickness. There was, however, a crowd of earnest young men, of whom we name as examples the Salem naturalists, and Cope, Pickering, Hitchcock, Young, and Storer who are ready (and who will, perhaps, some day be able) to take their places. Of course there were clap-trap, private axgrinding, and speeches for Buncombe, and yet probably no more than at former meetings.
The Association is indeed one of the most important of liv ing agencies for the advancement of science in America. It list of members comprises nearly all the American names which are istinguished in scientific literature. It brings together harmoniously the members of all our other learned bodies, and thus it represents the science of the whole continent. The Association is a national institution, and it asks for the sympathy of all the friends of progress.
It is to us a very gratifying fact that the Association is respected and honored by the people at large. At the presen time there is no other annual peripatetic convention which is so much invited, prepared for, talked about, and hospitably entertained ; and all this notwithstanding its proceeding are as unintelligible as reek to most of its kind friends. are as unintelligible as reek to most of its kind friends. No with neglect or distaste for scientific pursuits. If America with neglect or distaste for scientific pursuits. If America is
behind other nations in scientific advancement it cannot be behind other nations in scientific advancement it cannot be
because our scientific laborers need the stimulus of sympathy and appreciation.
As an example of how kindly the Association is treated w may mention some interesting facts about the Troy meeting The citizens of Troy contributed $\$ 10,000$ to defray the ex penses of the entertainment. Hotels, private houses, and public buildings were freely opened for the use of the Asso ciation, and the members were honored as if they were guest of the whole population. Elegant receptions were given at the houses of the Mayor and of other leading citizens. The Association in a body, at the invitation of the Troy local committee, went in a special train to enjoy the elegancies of Saratoga, and, at the invitation of the State Department of Education and in a steamer chartered by citizens of Alban visited the Capital.
The Association is, then, a very respectable society, and receives the hearty homage of the people. The people surel contribute fully their part in the cause of science. Should not their liberality and hospitality be a stimulus to stil greater exertion on the part of the Association? Does the Association o

ttended to?

Because we respect the Association so highly, we desire o see it improved if possible, and it is for the same reaso
we see its defects. In some respects it is better than it was before the war ; it is more in earnest, and it has more workers ; and in other respects it has sadly changed. There are lately more trashy papers, and especially papers which are made big with padding from encyclopedias and old almanacs. Perhaps it is impracticable to prevent such papers being offered, but there surely may be some way of keeping them out of the printed transactions. The printing of some of these papers recently, has made the Association an object of ridicule all over the world. Why not try to pr vent such a thing happening again. A little quackery, boring, or axgrinding, which lasts only during a meeting, is perhaps best to be endured, but print it in the transactions and it is a disgrace for all time.

THE ST. LOUIS BRIDGE

The bridge now in process of erection across the Mississippi at St. Louis, is one of the wonders of the age. It is to be a tubular, cast steel, arch bridge, supported by the abutments and two piers; the latter are 515 feet apart, and 497 feet each from its nearest abutment, making three spans of about 500 feet each. Its greatest span is the same as that of the Kuilenburg bridge over the Leck, an arm of the Rhine, in Holland. Thomas Telforơ's suspension bridge across the Menai Straits, in the northwestern part of Wales, has a span of 570 feet The Victoria tubular iron bridge of Montreal, exceeds this greatly in length, being 6,600 feet ($1 \frac{4}{4}$ miles), but it rests upon 24 piers, and its spans are only 275 feet. The Suspension Bridge at Niagara spans 821 feet, and is 245 feet above the water. The East River Bridge will span 1,600 feet, at a hight midway of 130 feet.

But the novel method of the construction of this bridge in some particulars, renders it especially worthy of note. The piers are sunk in the following manner: The masonry is commenced at the surface of the water, upon an inverted ellipti cal-shaped caisson, 80 feet long by 40 wide-the dimensions of the pier. This is closed at the top and open at the bottom, with its lower part larger than the upper, to facilitate its pas sage through the sand after it reaches the bed of the river It would be very much like building the pier upon the bottom of an inverted wash-tub, of the same size and shape as the caisson. The caisson is filled with air, like a diving bell, and the mass of masonry which constantly accumulates upon it is borne up by the confined air, and, as the caisson descends the pressure of the water condenses the air so that the wate rises considerably within it, just as when an inverted tumble is pressed down into a vessel of water. To prevent this and give greater buoyancy to the mass, air is forced into the cais son through a vertical passage in the masonry by a powerful steam pump. The caisson with its superstructure of masonry must be sunk to the rock bed of the river, because the deposi of sand above it-which at one pier is 79 feet deep-in times
of flood and freshet, is scoured away to a great depth, if not of flood and freshet, is scoured away to a great depth, if not
to the rock itself. When the caisson reaches the river bed, the sand within it must be removed. This is done by a cur rent of water that is forced down, by a tube, through the ma sonry, into the caisson and then up again to the surface; and as it takes its upward course the sand is shoveled into it through a contrivance for the purpose, and carried to the sur face in the form of muddy water by the ascending current and poured out into the river. Here it causes a bank of sand to accumulate which sometimes rises to the surface of the water Workmen are needed in this caisson of condensed air, below the bed of the river, to shovel the sand and do other necessary work. These pass down by means of a circular stairway in another vertical passage-there being five in all-through the center of the pier, and are admitted into the caisso through an air-lock or chamber, with an air-tight door on the apper and lower sides. Into this chamber, after the men have passed the upper door, the condensed air is gradually admit ted till it is as dense in the lock as in the caisson below. They experience here very peculiar sensations, among whic are, a burdensome pressure upon the whole system and es pecially upon the drum of the ear, and a great increase of heat in the system, because condensed air has a smaller capacity or heat than in its ordinary state. In passing out, of course he order of proceeding and of sensation is reversed. The fom from the unusual atmospheric pressure, which sometime from the injuries here received. When the caisson has reached the bed rock, the rock which "dips" towards the Illinois shore, is leveled off with concrete; then the caisson and the passages in the pier are filled with concrete, and the solid pien ests upon a foundation of limestone rock. Two piers have been sunk in this manner and are now above the surface of the water ; the last will be similarly sunk this fall.
The manner of testing the steel which will form the arches of the superstructure is also very interes"ing. This is done by means of a massive machine which acts by hydrostatic power. By its use the power of the steel to resist both compression and tension is accurately determined. It is a well one square inch of liquid surface that a given pressure upon every inch of that surface. This instrument is so constructed that the surface where the power is exerted is to the surface of the piston where the power is applied as 1 to 100 ; hence the exertion of one pound of power produces a compressing or tensile force of 100 pound s. Any change in the length of the steel to be tested, even to the 20,000 th of an inch, it is said can be detected. This change is indicated by a mirror, which graduated arc, 25 fest distant, to a telescope situated in the arc. Through this the observer looks and records the contin aed changes of the steel by the varied pressure to which it is
subjected. Every piece is tested until its limit of elasticity is is, until it has become so compressed that it will ected to a force of 100 tun

A WANT IN LOCOMOTIVE ENGINEERING

We this week saw in an English paper a controversy in egard to the speed of a train in rounding a curve, it being charged that a "driver," as our British cousins style a man who runs a locomotive, was in the habit of taking a particular train around a curve above the standard speed of forty miles an hour, for which the curves are calculated, thus en dangering the safety of passengers.
This question of speed always comes up when accidents occur, and as yet no adequate means have been adopted whereby the precise speed of a locomotive engine at any given point of its rumning can be so recorded as to rettle such questions beyond dispute.
Such an instrument would be a boon to engineers who run locomotives, and who are, in our opinion, much more often unjustly than justly blamed for undue and improper speed on occasion of accidents.
The problem is not a difficult one to solve. We once, as a matter of personal amusement, designed an instrument on the principle of the ball governor which would do it perfectly The balls, instead of being hung on pivoted arms, slid out on horizontal arms against scale-springs of definite power, as they revolved by motion derived from one of the truck wheels. In doing this they raised a tracing point along the side of a vertical cylinder revolving by clock-work, making a mark of given hight for a given speed, rising with increased speed, and falling as the velocity of the locomotive decreased Vertical lines on the surface of the cylinder represented hours and five minute divisions, and the position of the pointer between these lines might easily be computed for any less time than five minutes.
The general principle of this device is simply the conver sion of rotary motion into pressure, and taking a diagram of the pressure at different points of motion, as is done with the steam indicator.
Doubtless inventors might greatly simplify this device, or it may be, adopting a different principle, succeed in devising something much better.
In these days of accurate measurement in everything per taining to the use of steam it seems a little singular that a matter of such importance, in a scientific as well as a legal point of view, should have been so long overlooked
In legal actions arising from accidents on railways the corporations are always placed at a disadvantage before juries, the latter al ways being inclined to sympathize with indi viduals rather than with the companies, who, it is thought can better afford to pay, than the individual can afford tos fai to recover the damages he claims.
The witnesses, also, are, many of them, totally incompetent to judge of the question of speed, and are mostly liable ent to judge of the question of speed, and are mostly liable have described, or some other calculated to effect the same have described, or some other calculated to effect the same
object, would obviate all disagreements of this character, and object, would obviate all disagreements of this character, and
thus prove valuable to the corporations, as well as to thos who hold the responsible posts of engineers.

THE SOUTHERN DEMAND FOR MACHINERY.

We find in the columns of the Kaufman (Texas) Star, an article calling attention to the changed condition of the South and the pressing need of employing machinery to make up the existing deficiency in labor. That the minds of the mos enterprising of the people are fully aroused to this need is vident from the many communications we receive in rela tion to it, and also from the fact that a very respecta ble beginning in manufacturing has been already made in some of the States
The article alluded to gives some facts relative to the sec ion of the State-Karfman County-in which the journa bove named is published.
These facts, as significant of the great want of machinery in various parts of the South, and that immense development which may be expected from its introduction, will be of in erest to our mechanical readers, especially those engaged in he manufacture of wood-working machines.
This section is, like many other Southern sections, wel tocked with valuable timber. The Bois d'arc fork of the Trinity River passes through the county, and the bottom ands constitute one vast forest of bois d'arc trees, two mile wide, and fifty miles long. These trees here attain to a iameter of from two to three feet
The journal referred to states that this timber is the most durable in the world. It says: "We will venture the asser ion that no living man ever saw the symptom of decay in this remarkable timber. The running gear of a wagon that has been in constant use over twenty years, is before us as w write this ariicle, and yet the wood works are, to all appear ance, as sound as when turned out of the shop. There is an oil in the wood which fills up the pores and prevents either air or water from affecting it. No one can tell how long it will last, even when exposed to the weather. A rewar might be offered in vain, for a decayed particle of this timber It is not affected by the rays of the sun, and hence it neve hrinks. A carriage wheel made of bois d'arc will run until he tire is worn out, without having to set it. But the great est evidence of the superior quality of this wood, for wagon and carriages, may be estimated from the fact that a rough home-made bois arc wagon is worth about double the bes Northern-made wagon.
To make by hand twenty-four spokes of this timber has also considered a day's work

