first question be, "Are you happy?" With what breathless suspense shall we await the answer, and if it should be-asit is quite probable it might be-" No P" how gratified we shall all feel that the benevolence of the Creator has not left this world alone in its misery. It would almost make this planet explode with envy should the reply be "Yes."

macfie the irREPRESSIBLE UPON Patent law.

Even the London Spectator, which supports Mr. Macfie in his opposition to the patent laws, gives that irrepressible gen tleman littlecredit for akill in argument, and acknowledges that very much of what he has said only tends to show defects in the present English system of patents, rather than any good reason for its abolition.
Not content with making absurd arguments and illogical speeches, Mr. Macfie has collected into a volume, speeches, papers, and expressions of opinion, which he no doubt considers as " squelchers," but which sensible, sober thinkers are prone to denominate as the most unmitigated bosh.
The only logical conclusion to which this gentleman's arguments tend, is one which he is too shortsighted himself to see, namely, the utter renunciation of individual rights to the possession of property, be the same patent rights, copyrights, or anything else that men are now able to procure for themselves by virtue of genius, tact, and industry.
In that Utopian state of society for which some long, and fewer hope, when every man shall live solely for the good of all men, when land, clattels, wives, and children shall become common property; when all selifishness shall be done away, and each shall prefer to see his neighbor enjoy, rather than to enjoy the fruit of his labor himself, Mr. Macfie would find the principles he advocates precisely the thing.
To suppose, however, that in the existing state of human society men will consent to relinquish their rights to property in thought, or the results of their mental toil, and allow a distinction to be made between these.rights, and those by which they hold the resurts of physical toil, is to suppose them on the average, to be as incapable of drawing a logical conclusion as Mr. Macfie himself; a state of general imbecility we are unprepared to admit. Of course everybody would be free if there were no laws of any kind. We should then have free trade, free stealing, free murder, free starvation, and a host of other freedoms which men have thought it wise to resign for another kind of freedom, i.e., freedom to go and come unmolested, to accumulate wealth, and toimprove their bodily and moral condition.
In Mr. Macfie's code carried out logically to its conclusion, A may plant and cultivate a hill of potatoes, which, as soon as he has dug them, all the other letters of the alphabet may seize and appropriate, provided there is enough to go around. True, A is compensated for his loss by the right to invade the onion patch of any other letter, and devour turnips wherever he finds them growing. Thus we get back to the old original savage game of grab. It will not take long for B to find out that he is stronger than A or C ; nor long for A and C to find that their chances for either potatoes, onions, or turnips, are small ahd slim when B is around
No man would get pay for anything he might do, but would live, if he lived at all, by stealing; unless, as we said above, each would work for all, and uniform distribution were secured, a thing which even the early Christians found difficult, as we learn from "Acts" the widows were neglected in the daily distribution.
We believe in neither Mr. Macfie nor his logic, and the logic of the Spectator is little better when it says:
"One of the most serious considerations with regard to the Patent Laws is that they are already being removed in other countries, and that the competition to which our manufac turers will thus be exposed must embarrass them in their business, while reducing the value of patented inventions. Mr. Macfie gives us a message from Count Bismarck to the North German Parliament, recommending the total abolition of patents throughout the new Confederation. The Second Chamber in the Netherlands passed a similar resolution by 49 ayes to 8 noes. It has already beenfound in some remarkable instances that countries restricted by pater unimpeded M. Cheralier tells M. Chevalier tells
steel to Prussia, and that the French makers of velvet suffer steel to Prussia, and that the French makers of velvet suffer
in like manner from Prussian competition. The history of in like manner from Prussian competition. The history of
the aniline dyes discovered by Professor Hofman, but patented by others, teaches the samelesson. French manufacturers who had to pay $£ 40$ a kilogramme for what cost only £12 out of France, flocked by shoals from their own country and set up new factories in Switzerland and Belgium. The danger to every trade which is weighted by patent restric tions becomes the more formidable as those restrictions are removed in other States."
Let England adopt a wise protective system, and the policy of other European nations in regard to patents need not trouble her.

Uses of Milica.

Recently scales of mica have been used for spectacles and in optical instruments. The chief use in this country is in connection with stoves, and it is now quite an article of com. merce, especially in New England. Many furnace doors are now supplied with small holes closed with mica, which serve as windows to enable the engineer to see the state of the fire without letting in a blast of cold air by opening the door Many varieties of mica abound in curious markings, which have attracted the attention of microscopists as affording Bome clue to the true origin of this stone. Mica is one of the
constituents of granite, and contains potash, and sometimes constituents of granite, and contains potash, and sometimes
lithia and other alkalies. Stove dealers are the chief consumlithia and other alk
ers of this article!

patent rights in congress.

Our readers will probably recollect-as we noticed it at the time -that President Grant's first veto was that of a bill to extend the patent of Rollin White, the inventor of the Smith \& Wesson revolver. We have never had a doubt that the veto was a righteous one.
In the House of
In the House of Representatives on Wednesday, Jane 22, the bill was reconsidered, General Butler supporting its passage over the veto of the President; whereupon Mr. Farnsworth accused General Butler of having received $\$ 2,000$ for his support of the measure. General Butler retorted that the charge was false, malicious, and infamous, and stated that the $\$ 2,000$ received by him were counsel fees, received in a case tried before the Supreme Court, the brief in which cost him four weeks' work. He considered the
The Joint Committee eas an will the public.
The Joint Committee on Retrenchment lately directed to investigate settlements by the Navy Department of contracts
made by Isherwood, Chief of the Bureau of Steam Engineermade by Isherwood, Chief of the Bureau of Steam Engineer-
ing under the last administration, for steam machinery, held ing under the last administration, for steam machinery, held
a meeting on the evening of the 22d June. No witnesses a meeting on the evening of the 22 d June. No witnesses
were examined, but the Hon. William E. Chandler was present by invitation, and in reply to a question he stated that he knew nothing personally of the settlements, but acted as the counsel of Henry W. Gardiner and others, in their efforts to defeat an extension of the Corliss patent and in the preparation of papers placed before the House Appropriation Committe, to defgat an appropriation to pay Corliss' certificate, given by G. W. King, the present head of the Steam Engineering Bureau, in settlement of contracts with the Corliss Steam Engine Company, of Providence, R. I. This Company had contracts unfinished when the present administration came into power. A settlement was made, by which engines began were left unfished, the Department agreeing to pay some $\$ 250,000$.

USES OF FLDOR SPAR.

In an article on fluor spar as a flux, Vol. XXII., page 288, we stated that in the manufacture of iron, "the proper proportion is about 50 pounds to 100 pounds pig iron, or 40 pounds to 100 pounds spiegel iron." In both of these cases portion 50 pounds fluor spar to 11,000 pounds pig iron, or 40 pounds to 11,000 pounds spiegel iron.

FLIOR SPAR IN GLASS MANUFACTCRE.
E. Richters, in Waldenburg, Germany, states that the substitution of fluor sparfor lime in the manufacture of glass stitution of fluor sparfor lime in the manufacture of glass
allows of a great reduction in the amount of glanber salt, allows of a great reduction in the amount of
and greatly promotes the melting of the frit.
As the result of numerous experiments conducted on a large scale, he found that with the same consumption of fuel
and similar length of time, the amount of glauber salt re and similar length of time, the amount of glauber salt required could be diminished one half by substituting fluor spar which had previously leen pulverized and calcined for the lime usually employed.
In countries where fluor spar can be had in abundance, its introduction into glass manufacture would appear to offer many important advantages. The following are the propor tions taken :

Glauber salts
Manganese.
Glass frit.

With lim
.116 .40 l
$.15 \cdot 55$
.8 .00
.300
.200
.
A Warning to Thieves.
The Journal of Commerce notices with astonishment that bank officere, who pay such large sums for safety vaults, burglar-proof locks, steel-lined chests, and all the other very proper protections against robbery, neglect to add one of Holmes' Electric Alarms. With this, well arranged, a gong might be set ringing on the first opening of the door or window of a hanking house, making sufficient noise to waken a whole village. Mr. E. Holmes, whose office is at No. 7 Mur ray street, showed us recently a large gong that he had ar ranged especially for bank alarms. Some banks in this city are protected in this manner. It is well worth the attention of those interested, and we write solely for their benefit from our own knowledge and experience, without any solicitation from the owners of that invention.

\vec{A} New Use for Oxygen.

We are informed by M. Widemann, who is connected with the works of the New York Oxygen Gas Company, that the use of oxygen in renewing and increasing the flow of oil in petroleum wells, has been so successful that a regular trade has sprung up in oxygen gas for this purpose. The gas is injected in to the wells through tubes, and mingling with the hydrocarbon vapors, forms an explosive mixture which, when ignited, completely opens seams which have become clogged, and thus renews the flow.

Compressed Fitii Offal for Mandre.-In a recent arti cle upon the uses of codfish the compressed offal was spoken highly of as a manure. Mr. W. F. Rickard, F. C. S., former ly of London, writes us from Leviathan Mine, Cal., that he is the inventor of the process therein described as French. He fur therwrites that the compreszed offal does not decompose by exposure to the air. Samples which had been lying about his London office four years have been found perfectly hard and sweet, proving thereby that the article may be exposed in bulk without the cost of packages.

Coceroaches can be destroyed by using smooth-glazed china bowls, partially filled with molasses and water. Set the bowls against something by which the insects can get in they will not be able to get out.

patent office affairs.

The business of the Patent Office is now in a flourishing condition, and the present is a favorable time to enter applications. Inventors will find the Scientific American Patent AgENCY ready to attend to the prosecution of claims with the greatest dispatch. By reference to our register, we find that we havemade upwards of twenty-four thousand preliminary examinations into the novelty of alleged new inventions. This great experience, together with the fact that a large proportion of all the business with the Patent Office, for the past twenty years, has been conducted through this Agency, suggests to inventors the surest and best means to secure their rights.
We give opinions free, and all we require is a rough ketch and description of the invention.
Inventions patented through this Agency receive notice in he Scientific American.
MODELS.-In order to apply for a patent the law requires that a model shall be furnished, not over a foot in any of its dimensions, neatly and substantially made. Send the model by express, prepaid, addressed to Munn \& Co., 3^{7} Park Row, New York, together with a description of the operation and merits of the invention.
Caveats.-Whenever an inventor is engaged in working out a new improvement, and is fearful that some other party may anticipate him in applying for a patent, it is desirable, under such circumstances, to file a caveat, which is good for one year, and, during that time, will operate to prevent the issue of a patent to other parties for the same invention. The nature of a caveat is fully explained in our pampllet, which we mail free of charge.
European Patents.-Probably three-fourths of all the patents taken by American citizens in Europe have been secured through the Scientific American Patent Agency. Inventors should be careful to put their cases in the hands of responsible agents, as in England, for example, the first introducer can take the patent, and the rightful inventor has no remedy. We have recently issued a new edition of our Synopsis of European Patent Laws.
All communications and inquiries addressed to Munn \& Co, respecting patent business, are considered as strictly confidential.

THE REPORT OF COL. W. A. ROEBLING, CHIEF ENGI-

The Superintendent and the Chief Engineer of the N. Y. Bridge Company, who have in charge the erection of the great suspension bridge over the East River between New York and Brooklyn, have made their reports. That of the Superintendent, Mr. W. C. Kingsley, pertaining chiefly to the financial matters, we shall pass without special notice. That of Col. Roebling, however, is so interesting and instructive and the work is of such importance, that we make room for nearly the whole of his report, omitting only some introduc tory matter.
surveys.
The general line, known as the Park route, had before been determined, line having been simpls traced upon the largest and best maps procurable of both cities.
in June, 1869. One single air line run through over the, tops of the houses from the City Hall, in New York, to St. Ann's church,in Brooklyn, at once showed a discrepancy of more tha fifteenf eet betweenit and the line laid down on the maps. Several center lines were run on trial,each a little
further to the east on the Brooklyn side and more to the west on the Chat ham street, New York-side, until one was found that was satisfactory. In the location of bridges some attention is paid to the difficulties likely to beflincorred in getting foundations for piers, in making approaches, etc., but here such consideration had to be ignored, and the towers and anchorages placed wherever the exigencies of the case brought them. The char
ter fixed the terminus on the Brooklyn side in the square on the ter fixed the terminus on the Brooklyn side in the square on the corner of
Sands and Fulton streets, etc., and on the New York side it was desirable to bring it as nearly as possible to the corner of Nassau and Chathan streets. The foundations of the Brooklyn tower threatened to encroach upon one of the main slips of the Fulton Ferry unless kept far enough to the east, but by doing so the New York tower unavoidably occupied one
of thesilipsof the Roosevelt street ferry. Any further movement to the ast would bring the approach over Prospect street to a point where no ead room was left between the grade of the street and the bridge crossing Other difficulties true in regard to North William street.
Other difficulties summed up showed that no changefrom astraight line was admisible. The center timbering establ'shed a minute and detailed urvey. Since then the Brooklyn foundation has
In August, 1869 , I was appointed Chief Engineer. At the frst meeting ot the Board of Directors, in September, 1869, the Execative Committee wer empowered to proceed with the foundation of the Brooklyn Tower, and to complete the? same up to high-water mark. Mr. Horatio Allen was ap pointed Consulting Engineer, and Mr. Wm. C. Kingsleg, General Superin
tendent. To Messrs. Webb and Bell the contract to built the caisson wa $\begin{aligned} & \text { tendent } \\ & \text { given. }\end{aligned}$

fer brooklyn foundation.

In the meantime a boring made in 1867 showed gneiss rock at a depth of 5 feet below high water. The strata penetrated consisted in the frst frap surface filing through alternate layers of hard pan and boulder wasso compact that the bore hole stood without tubing for weeks. No necessity existed, therefore, for going down to rock; a depth of about 50 feet would suffice. But the great desideratum to be attained was a uniform character of the soil over the whole space of the foundation whatever the depth might be. It is well known that the drift formation of Long Island presents a great variety of strata in comparativels short diagonal distances
Within a hundred or two fcet on either side of this foundation, there is no
 in the centerl of our foundation the depth of water was only a few feet
the existing ferry slip had been blasted out at a arreat expense, and to drive
an iron-shod pile even two feet into that mate an iron-shod pile even two feet into that material was the work of hours.
This hard material, however, occapied only a part of the foundation, which comprises an area of 17,000 square feet. One third of the area towards the east was much softer in character; to meet the requirements of the case a
heavy solid timber foundation was decided upon, of sumficient thiekness to heavy solid timber foundation was decided upon, of sufficient thiekness t
act as a beam, and having the requisite mass to insure a uniform settling The importance of a uniform foundation becomes evident at a glance uhe we consider the size of the tower, weighing 85,000 tuns, with a hight of three hundredfeet above the foundation upon which the permanent press-
ure is 4% tuns per square foot. In addilion, the buoyancy of the timber ure is 4\%/3 tuns per square foot. In addilion, the buogancy of the timbe
enables us to dspense with the screws ordinarily used in towing enables
caisoon.
In regard to durability, it is well known that timber immersed in sal water is imperishable, and to protect it against worms it is merely neces-
sary to siuk it beneath the river bed. It at once suggested itself to make the timber platform asaras

catboon.

This has been done by making the roof of the caisson a solid mass of tim-
ber, of fifteen feet in thickness. The object and purposes of a caisson in ber, of fifteen feet in thickness. The object and purposes of a caisson in
sinking a pneumatic foundation is too well known to need any description here; it is merely a diving-bell: on a vast scale. It may well be said that since the unparalleled achievement of Captain Eads, at St. Louis, the
caisson has become a household word among American eugiueers. The caisson of the East River Bridge is a large inverted vessel resting bottom upwards, with strong sides. Into this air is forced, under
sufflient pressure to drive out the water. Eutrance is had to the larg
 for fllifug up the air chamber.
The dimensions of the caisson are rectangular; length, 168 feet, width, 102
feet, hight 9 feet 6 inches. Thicknees of roof, 5 feet. The sides form a V feet, hight 9 feet 6 inches. Thickness of roof, 5 feet. The sides form a V Theinnerslope of the V hasan angle of 45 degrees. The lowest part o the slope is tormed by a semi-circular section casting, protected by a sheet
of boiler plate, which extends up three feet each side. A heavy oak sill rests on the casting, and it consists of a stick nearly two feet square. Th courses are heading courses. The whole mass is thoroughly bolted togeth
colt and er by drift bolts, screw bolts, and wood-screwbolts. In addition there are heavy angle ironsuniting the V to the roof. At the corners the courses of
timber are halved into each other, and strapped together for further se timber are halved into each other, and strapped together for further se-
curity. The roof is composed of ive coursee of twelve-inch square yellow pine sticks, laid close together, bolted side ways and vertically, and having
a set of heavy bolts running through the five courses. The outer edge o the caisson has a batter inward of one far ten to facilitate its descent int the ground.
To make th
depth of six inches, inside and out, and in addition a vast sheet of tin unbroken throughout, extends over the whole caisson, between the fourth side is further protected by abeeting of fellow pine. The space between the timbers was flled with hot pitch. As air under pressure of forty or fifty pounds will penetrate wood with ease, the inside of the air chamber
was coated with an air.tight varnish, made of resin, minhaden oil, and Was coated with an air-tight varnish, made of resin, minhaden oil, and
Spanish brown. The air-tightness up to the present time is quite satisfacSpanish bro
tory, and on
water out.

water ou

principally from Georgia and Florida, and much of it was so pitchy that the sticks would not fioat. The average specific gravity of all the timber wa 48 degrees per cubic foot. Every bolt hole is bored with a large drift to the iron work of the water-sharts, air-lock shafts, and supply shafts wa aker, of Brooklyn.
plate, properlystiffin in plate, properly stiffened by angle irous, and well secured to the caisson.
They are seven feet by six feet six inches, and are open above and below, the lower edge extending twenty inches below the edge of the shoe. The
water inside of them rises and falls with the state of the tide outside. The material to be taken out is shoved under the edge into the water shaft by the laborers inside, andis then taken out by thesocalled clamshell dredge
of Morris \& Cummings, of New York-the only known instrument which aman hand in picking up thingg. An sand pump was out of the question. The air shafts are $3^{\prime} 6$ feet in diameter and extend simply through the timber on top of which the air locks are placed. The supply shafts are two inches timber, twenty-one inches dia-
meter, aud of indefnite length-they have a door at the bottom and one meter, aud of indefnite length-they have a door at the bottom and one
on the top with an equalizing pipe. They are flled full of made air, and

the whole contents falliuto the air chamber below.

It was the original intention to have made the air chamber under the caisson one entire space without any divisions into compartments, thus
cacilitating the excavation of the material. Various considerations led to the abandonment of that view. Siuce the caison was to be launched like
a ship, a certain number of launching ways were required, and these re quired a stiff frame from the launching way up to the roof. Again, in the ed the weight at auy one time. But the chief point was the rise and fallo
the tides and their effect on the caisoon. The extreme rise and fall is $\%$ \%/s feet. If the iuflated caissou is just barely touching the ground at hig Water, it will press upon the base with a force of 4,000 tuns at low tide, all
of which has to be met by the strength of the shoe and the frames. And excavationtcon The strains in launching, and form a heavy truss of pine'posts and stringers
with three-Inch sheathing on each side, and side braces to the roof every With three-Inch sheathing on each side, and side braces to the roof every
six feet. The ends of the frames are secured to the sides of the V by kuees.
It was concluded to limit the pressure of the caisson during the launch
to $31 /$ tuns per square foot of launching surface. This required seven way in all, two under the edges and five under the frames. The total launching weight of the caisson was s,000 tuus, containing 111,000 cubic feet of timber aud 250 tuns of iron. It was launched sideways-that is, with the long face o ${ }_{f}$
168 feet.by. 14 ;feet 6 inches high facing the water. The ground-ways were laid at an augle of one inch per foot, the caisoon standing fifty feet back from
the end of the ways. To buoy up the forward end of the caisson as it en tered the water, and thus prevent its entire immersion, a temporary watertight compartment of twooinch plank was put in, one third the distance
across. It .eerved its purpose admirably. A full complement of wheel barrows, crabs, and winches were likewise stowed away, in it. The ground-
ways consisted of two timbers of eleven inches square each, bolted to gether sideways. They were grooved like the guide of a planer, and the
danger of launching so large a mass on seven ways consists in the liability
one eud going faster than the other, and thas wedging the caisoon fas on the ways. Only the outer ways were provided with rib bands. They however, proved superfuous to accelerate the motion of the caisson as it
ontered the water, and thus overcome the increasing resistance. The way entered the water, and thus overcome the increasing resistance. The ways
were laid crowning to the amount of eighteen inches in their length. The launching ways were likewise continued ten feet back of the caisson, and provided with shoesagainst the sides, it wasdesirable that the rear edge
of the caisson should leave the end of the ground ways uniformly, and not of the calsson shotld leave the end of the ground ways uniformly, and not
stick fast on one-a thing likely to occur, since the ways stopped at the low-water line, and the rear edge would fall at once into deep water. The
above arrangement answered the purpose. On the 19th of March, 1870 , the la unch took place; in every respect a success. As soon as the last block was split out, the caisson commenced to
move. TTe impetus it had acquired in the frrt part of its course proved move. The impetus it had acquired in the frst part of its course proved
sufflcient to overccome the immense resistance offered by the water. It
Hould peem thatif the ways had beenabout twent feetlonger, the caisson
would have lost its headway. The air caught inside the air chamber aided arerially in buoying up during the launch. Neither the battering rams
provided to start her, nor the checks and levers intended to hold her back until the proper time, were needed. The deck of the caisson was not sub nerged, nor was there any wave of translation in front, as might have before landing. This was at once set in motion, :and in a few hours the water wasall displaced from the air chamber, the air blowing out at one fterwards allowed a so eccape entirely, the top of the calsson settled within venteen inches of the water, which happened to agree with previon alculations.
unch rested with the bullders, and they antire res anibinty of th
 precautions or preparation
PrRparations or artr.
It had been estimated that the ame length of time would be required to prepare the bed for the caisson as to build it. Owing.to unforeseen difflcu ties, possessiou of the ground was not obtaiued uatil Jan. 18t, 1870. The
wiuter had hitherto been mild, and continued so, much to our advautage and during most winters it would have been impossible to do anything
The preparation of the site consisted in establishing a rectangular basin The preparation of the site consisted in establishing a rectangular basin
open towards the water side, surrounded on three sides by a wall of sheet pen towards the water side, surrounded on three sides by a wall of shee
piling leveled off to a uniform depth of eighteen feet at high water. This depth was decifed apon because one ocorner of the silde had that depth of water already, and because a certain depth was necessary to float in the caisson at all stages of the tide. The dismantling of the space-the ferry
up-drawing a hundred piles, tearing out 350 feet of fender sheathing, re oving of 950 feet of heavy cribbing, flled with stone and dredging of the oose material un top, requiredin ana outh month. The dredging was used. The drawing of the piles was done partly by pile drawers and in part by the "ox," a steam crane-boat well adapted for the purpose. At the same time it became necessary to cut away half of the pier separating
thefoundation from the main slip of the Fulton ferry which was accom plished withont interfering with the ferry. All the timber and piles take however, were conflined to the space between low water and the mud line A pile which was sixteen inches in diameter below the mud, perfectly hree inches just above the mud, and all timber was affected alike. This ows the necessity of going below the top of the river bed with our tim

In all, there were 10,700 yards of mitermovid.

In all, there were 10,700 yards of material removed, the bulk of it in th oundings then takenshowed 8,000 yards yet to be removed before the level of eighteen feet was reached. The character of this material was next to
olid work, some of the dredges could make but the slightest impressio pon it, neither the Osgood nor the powerfulgrapnel of Morris \& Cum of rocks or boulders, and these had been covered by flling in from the shore. Recourse wasnecessarily had to powder. Surface blasts were not
ised at all because the locality foroade the use of heavy charges whic reeessential for success. A surface charge of less than three hundre nthebottompy means of a ironpiledriven in and afterwards withdrawn. Into the bottom of, this hole say, four or flve feet deep, a canister contain Ing fifteento twenty pounds wasinserted by a diver when thepile driver
was hauled back and the charge exploded by electricity. The result was a small crater bed. Three iron piles were used, two of five inches and one of six
inches, twenty-two feet:long and shod with steel at the point and head. Two pile drivers were coupled together for this work and a double gang
of laborers employed day and night under charge of Captain Scott. A
A week's practice reduced the matter to a system and developed the kind of canister to be used, the exploders and the battery. From the ordinary In canister we passed to second-hand, lap-welded, wrought-iron tubes, cut in lengths of two feet and plugged at each end, which proved effiective,
but the supply getting scarce, recourse was had to cast-iron shell with side one half aninch thick. They possessed the additional advantage of drop-
ing to the bottom or the hole of their own weight. The average number ping to the bottom of the hole of their own weight. The average number
of blasts made by one gang in ten hours was thirty-five. The greateat of basts made by one gang in ten hours was thirty-ive. The greatest
delay wasexperienced in withdrawing the pile which frequently resisted
the united efforts of both pile drivers hauling on treble blocks with their engines, and a thorough shaking did more good than any amount of stead strain.
the battary
used was asmallfrictional machine, n nclosed in a light rubber case, an
was supplied from the Oriental Foundery, of Boston, as were the ex Was supplied from the Oriental Fouudery, of Boston, as were the ex
ploders. This machine was instantaneousin its effects and never out of order, and with itt any number of charges could be set off at the same time. short time. Many of the boulders were too large to be picked up by redge,: and a few were taken out by the Morris \& Cummings grapnel While others were sinng under water by
Those that were too heavy were floated along under water to a spac ack of the foundation and there dropped. The whole proceess was expen.
ve, but still very effective. The casual observer, to whom the surface of sive, but still very effective. The casual observer, to whom the surface of
hewater appeared the same day by day would think that nothing was the water appeared the same day by day would think that nothing was
done, but thediverwho slung boulderupon bouldernightafter night, had ane, but thediverwho
different story to tell.
This driving of iron piles aff orded a thorough knowledge of the entire ground. On the side towards Marston and Power a dozen blows would by a harder stratum. But in the center there is a ridge-shaped layer o hardpan, varying from twof eet to eight feet in thickness. Frequently 100
blows of the 1,50 -pound hammer were required to drive the pile three feet into this material. Towards ithe ferry the clay agaiu disappeared, giving way to boulders of all sizes, packed close together, a coarse sand filling up
the spaces between. On the river side all sand or clay was washed away che spaces between.
leaving the bare stone
As the time passedalong, all work was conflned to the lines of the frames wards, from under the caisson. Three fourths of the boulders consisted of the trap rock of the. Palisades, the rest guelis, with a few sporadic
boulders of red sandstone. Holes of extra depth were blasted for the location of the water shafts. In the south shaft the pile finally penatrate through eight feet of hard pan, and there struck into loose sand.
Nove of the dredges were adapted for such work. The bucket
ave been discarded entirely and replaced by one long plow- shaped tooth fastened to the dipper handle, solely with a view of rooting up th
The ordinary dipper presents too much surface for penetration.
The cost of dredging out the soft material on top was about sixty cents $\underset{\substack{\text { per yard. } \\ 1,173 \text { bla }}}{ }$
re ifred consuming 13;000 pounds of powder
While the dredging was going on the inclosure also proceeded-an outer
row of piles was frst driven and fastened back to anchors and logs, in
order to resist the pressure of twenty-two feet of earth-ifve feet inelde o for towing in the caisson.
Dring A pril, six air-compressirg machines were placed in their foundaDoring and atisfactorily tested. They were manufactured by the Burleigh Rock Drill Co., of Fitchburgh, Mass. Each engine is twenty-horse power,
autd drives two single acting air cylinders of fourteen-inch stroke and add drives two single acting air cylinders of fourteen-lnch stroke and
afteen-Inch diameter. Every engine has its own boiler, and they are all so oniected that the stoppage of no one boiler engine will affect the rest A large condensing vesse lserves to precipitate the moisture in the com.
pressed air and deliver dry air into the caisson. A ten-indh main leads thie and two rubber hose of six inches diameter lead the air to the sapply
hafts and thus into the caisson. Self-acting clock valves prevent the
escape of the air in case anything should happen to the hose. All the air conductors have been tested to a safe limit. A blacksmith and carpenter's shop have been erected, the fires being blown by compressed air. One compresbor has been set adart to compress air to
of working two Burleigh rock drills in the caisson.
Two double
redges in the water shatt and two more engines are rmmings to work the stone on the caisson by means of three larke derricks with horizontal booms, yet to be placed on the caisson.
On the first of May the lelin
On the frst of May the leveling off had proceeded far enough to briug down the caisson from Greenpoint. A contract had been entered into in
the mean time with Webb $\&$ Bell to lay the ten additional courses of yellow pine timber, and advantage was taken by them of the delay to put on
two of the courses at Greenpoint, where the calsson waslying alloat. THR OAIBBON WAB TOWRD DOWN
by six tug boats, under charge of Capt. Maginn. The pump was kept in peran V -shanded sides prevented any tilting or loss of air. This inflation was essential, as in oue part of the river there was only a foot space between the bottom aud the lower edge of the caisson. At the turu of the
tide the following day, the caisson was easily hauled into place. tide the following day, the caisson was easily hauled into place.
A double row of plies incloses it on:the outside, and also supports the rack and turntables for the stone carr.
By Juae20th all the courses of mber were laid. The courses cross each very two feet four inches the stick is fastened down by a one-iuch drift bolt. The whole mass is thus bound together into one solid unyleldiug
platform. Each course was properly adzed off, and the oridn platform. Each course was properly adzed off, and the original course of of timber laid in five weeks amounts to over 100,000 cubic feet. The space between the timbersis filled in with concrete, which serves to add to the it aecessary weight, as well as to harden and preserve the timber
It is composed of four parts of clean washed Deach gravel from the
Sound, two of sand, and one of cement. The gravel is small, uniform in size, and perfectly free from impurities. Various brands of cements have yellow cements from Coplay, Pa., Akronand Fayetteville, N. Y. The latter are all quick setting, but do not attain the ultimate harduess of the slower
setting Rosendale cement, eapecially where the latter has been ground of setting Rosendale cement, eapecially
extra fineness by special agreement.
extra fineness by special agreement.
As the timber was built up the
As concrete from four to il ve feet thick, which serves to protect the timber. The additional sections of water shaft as well as the air locks were put up, in the meantime permanent air connection was established. The air
locks are seven feet high, and six feet six draw luside; the sides are half nch boiler plate and heads of cast iron, with oval doors elghteen by These locks inches; $81 x$ bulls-eyes light up the interion
an Iron Works, and are very creditable specimens of workmanship. To avoid the lengthening cut of the air shafts the air locks are places Within water tight compartments, which occupy' the spaces of the well
holes in the Towers, and will keep out the water when the top of the timber is submerged.
The air chamber was frst entered May 10th through the air locks, aud gradually,
The removal of the temporary wooden compartment and shoving out of the material under the edges was accomplished liu due time, as well as the
opening of two doorways through each of the frames. opening
Forth
for eight or eight hours every day, under charge of Mr. Young, prinoirally in leve ing off and removing boulders which happened to lie under the frames and edges. A deposit of dock mud, from two to three feet deep, has made this work exceptionally unpleasant. The dredges, which are now beginniug
to work, will remove it in a short time. The removal of large stone from ander t
ing cons or mand
by means of blocks and falls, crabs and winches, and hydraulic pulling During this time the caisson hill be resorted to.
with every high tide and resting ribin
with every high tide and resting on the ground again at low water, re caisson is comparatively free from water. As the edge does not readily sink into the hard soil it is expected that there will always be some
water. Since the edge of the shoe is rounding, it allows the air to blow off berore the level of the water has reached the lowest limit; this is caused by any trifing agitation in the level of the water iuside, which gives the
esoaping air a chance to establieh an outgoing curreut before the head of water iuside becomes sufficiently great inside to overcome it. By constantly building up on top the center of gravity has been raised
considerabily, and the caisson is now in a condition of nustable equilibri*
um-that is, it does no longer rise uniformly with the rise of the tide. Oue am-that is, it does no longer rise uniformly with the rise of the tide. Oue end will remain on the ground and the other rises as much more in propar
tion, and the more it rises the more surface it presents to the upward pressure of the air on that side, the general level of the water iuside being This of by the level of the highest point of the shore
This rising of one end of the caissou is attended by another phenomenon the caisson is about:being overcome by the increased tensiou of the air inilde, as well as the buoyancy of the water rutside, one end or the calsson he tession of the air inside exceeds the head of water outside, and a tre endous outwardrush of air takes place under the shoe, carrying along a column of water of hundreds of tuus to a hight of sixty feet at times.
This continues until a return wave inside of the caissou checks it. These blow-offs are not felt to any extent b
noise and momentary draft created.
The magazine of force contalued in 170,000 cubic feet of compressed air is so large that the loss of a fer hundred tuns is a trifle. A system of pipes is put in the air ohamber for the purpose of illuminating the air chamber
with calcium lights, a trial of which has resulted favorably : with moder tepressurescandles answer very well
is now being laid. Its weight, together with the concrete on top of the limber, willprobablysuffle to ground the caisson permanently, and thus permit the erection of setting derricks on the calsson. The stone settiug
will,thenkeep uniform pace wita the excavation, and by the time the deired point is reached the masonry is far above the water level.
water,is the Kingston limestone, furnished hy Noil be permanently unde stones have both beds cut, but the sides and build $\begin{aligned} & \text { lef } t \text { rough, with vcrtical } \\ & \text { quarry }\end{aligned}$ quarry joints, the projections not exceediug two aud a half luches. The
beds are exceptionably wide. As the base of the masonry work restiug beds are exceptionably wide. As the base of the masonty work restiug
on the timberis very much larger than the section of masonry at the water on the timber is very much larger than the section of masonry at the water
level, it is considered that this class of masonry is equally as good, and certainly far cheaper than refular dimension stone. All the stoue in an one course are cut to a uniform size. Above
used on the waterface, and subsequently throughout as freestone.
The first or corner stone of the extensive pile of masory to be raised The first or corner stone of the extensive pile of masonry to be raised
above the caisson, unlike as it was to ordinary affairs of this kind, was a above the calisson, unlike as it was to ordinary affairs of this kind, was
massive block of limestone from the quarry at Eingston, Ulister Co., and in it is of this material that the founda tion below low water mark will consist.
Additional borings are now belng made for the N. Y. tower, The boring This one is directly on it: The same stratum or thity feet of the finest quicksand has been penetrated, butboulders have been encountered at a depth of eighty feet, and the indications are that rock will shortly be
larger than the Brooklyn caisson. Owing to the greater depth to which it 18 necessary to go, and the greater pressure of aif tobe encountered, it
be inned with boiler plate inside, otherwise it is constructed of wood. be lined with boiler plate inside, otherwise it is consiructed of wood.
Other means besides the water shaft will be provided for the remova the fine quicksand. Successful experiments to that effect have been made by Mr. Allen and Mr. Colling wood, during the summer. The depth of water varying from thirty-flve to forty feet, at the site of that pier, the manage ment of the caisson during its descent will be so
slight change in the frames and floor will be made
To Mr. C. C. Martin, formerly chief engineer of Prospect Park, and now
engineer of construction on the caisson, as well as to Col Pail engineer of construction on the caisson, as well as to Col. Paine in super-
intending the building of the caisson and the excavation inside, I am under continued obligations. Also to Mr. Colling wood, in charge of the designing room, and to Messrs. Van der Bosch and Hildenbrand, draftemen.
Reapectfully submitted, W. A. Rozbling, Chief Eng. N. Y. Bridge Co Respectfully submitted, W. A. Rorbling, Chief Eng. N. Y. Bridge Co. . We learn from Mr. Kinggley's report all of the work thus far which could well be done by contract has bee
The following aest responsible bidder.
The following are the princlpal contracts awarded.
The contract for making the caisson was awarded to Messrs. Webb \& Bell, shipbuilders, of Green Point, L. I., and they have received for its construc
tion one hundred thousand, two hundred and seventy-four dollars and tion one hundred thousand, two hundred and seventy-four dollars and
fifty-one cents ($\$ 100,27451$. This contract was a warded on the 30th day of October, 1869, and the work was prosecuted with such energy, and with such fidelity to the plans furnished as entitile them to very great credit. A contract was entered into with Messrs. Mayhew \& Co. for $1,800,000$ feet, board measure, of yellow pine cimber, at was promptly filled, and the timber was of superior quality. On October 29, 1869, a contract was made with Messrs. Wilder, Son, \& Co. or 1,800,000 feet, board measure, of yellow pine timber, at thirty-one dollars and fifty cents per thousand. This
and was in all respects satisfactory.
On November 10th, 1869, a contract was made with Messrs. Hubbard \& Whitaker, of Brooklyn, for the construction of the air, water, and supply harts, shoes, shoe plates,etc.,for the caisson, they being the lowest biditers.
On January 22,880 a contract was made with Messra. Morris \& Cum. mings, of New York, to furnish, and put in position complete, and ready or use, two of their machinesfor dredging, including the engines, hoisting gear, and buckets, for the sum of $\$ 9,00$. These are ln position and nearly
$r \in a d y$ for use. Kingston, N. Y., to furnish 5,000 cubic yards of limestone for the foundation ef the Brooklyn tower of the bridge. The delivery of the stone has been promptly commenced, and the indications are that it will be suppiied On April 11, 1870, a contract wa
Son, of Brookiyn, to furnidh two engines for hoisting stone from the scows Son, of Brookiyn, to furnidh two engines for hoisting stone from the scows
to the tower, for the sum of $\$ 2,250$ each. The time for the delivery of these as not yet expired, but the work on them is well advanced.
Note.-The laying of the stone upon the top of the caisson
was commenced the 15th of June, the day the above report was commenced public. One of was made public. One of the dredges spoken of in the report coamed rising with the tide on Saturday, the 18th, the tide
being low, and a considerable weight of stone having been placed upon the structure. It is now thought that the weight will be added as fast, or fuster than the tide increases, so
the caisson has probably risen for the last time.- [EDs.

NEW BOOKS AND PUBLICATIONS.

Life at Home; or the Family and its Members. Including Husbands and Wives, Parents, Children, Brothers, Sisters, Employers and Employed, the Altar in the House,
etc. By Rev. William Aikman, D.D. 1 vol., 12 mo . Nearly 300 pp. , tinted paper, muslin, beveled boards.
Price, plain, $\$ 1 \cdot 50$; extra gilt, $\$ 2 \cdot 00$. S. R. Wells, pub. Price, plain, $\$ 1 \cdot 50$; extra gilt, $\$ 2 \cdot 0$
lisher, 383 Broadway, New York.
This is a very excellent and timely book, one that should be read by parents and child
none too severe.
Lippincott's Magazine, for July,
contains an article from the pen of Justin McCarthy on "The Petticoat in the Politics of England," which contains much to fnstruct and something physical," by Edward D. Cope, states arguments and facts in support of thilis doctrine, and at the same time suggests some "consequent necessary
modification or our metaphysical and theological views" resulting from odification of our metaphysical and theological views " resulting from knowledge of Young and his followers, but will interest readers who are
not tired of the subject. "Negro Superstitions," by Thaddeus Norris, is a not tired of the subject. "Negro Superstitions," by Thaddeus Norris, is a very readable and entertaining arthle.
ing is supplied, and is of good quality.
The Atlantic Monthly, for July,
opens with a poem by Longfellow, "The Alarm Bell of Atri," which will
be read with delight by all lovers of poetry. "Equal, getDivine," by Burt G. Wilder, touches upon that absorbing question of the time the future status of woman in society. "Criminal Law at Home and Abroad," by Mr. Burt's contribution, are the solid dishes of the feast." The usual side dishes and dessert are added.

Inventions Patented in England by Americans.

[Compiled from the "Journal of the Commissioners of Patents."] PROVISIONAL PROTECTION FOR SIX MONTHS. 1,499.-Adtomatic Barrel-Filling Apparatus.-S. C. Catilin, Cleveland,
Ohio. May 18, 1870. Ohio. May 18, 1870 .
1,454.-Rolling Metallic Rods or Wire.-J. P. Blake, Medway, Mass.
May 19, 1870.

$1,500-$ - 18 . 187 .
1800. 1,508 .-Coning Metal Cop Tubes.-James Eaton, Boston, Mass. May 24 , London, England, and Mor Fire Engine Hoses, rto.-Loftug 1870. 512 - Washing Macine.-J. 'f. Owen Philadelphia, Pa. May 25 Machinery for Forming bats of Wool
Robingon, Matteawan, N. Y. May 25, 1870

QT A number of Moore's Rural New Yorker (the Great Nation
al Illustrated Rural, Literary, and Family Newspaper,) will be eent free to every reader of the Scientific Ame
MOORE, 41 Park Row,New York.

gutiutss aud tersoual.

The Charge for Insertion under this headis OneDollar a Line. If the
exceed Four Lines. One Dollar and a Hat per tine will be charged.
The paper that meets the eye of manufacturers throughout the nited States-Boston Bulletin. $\$ 400$ a year. A Pictures for the Parlor-Prang's latest Chromos, Hart's er Pares throughout the world.
Wm. Roberts \& Co., Designers and Engravers on Wood, 36 Beekman st., New York, woinld respectfally announce that they are now
prepared to receive ordersfrom Manufacturers, and others, prepared to receive orders from Manufacturers, and others, for
of machinery, views of stores, factories, trade marks, etc., etc.
Wanted.-A man of thorough knowledge or practical experience in casting white metal, buffing, burnishing, and dilver plating, to go
West. Address, with references, P. D. Box 5302 , New York For sale at a Bargain-10-Harse Boiler-a good one. For par ticulars, zddress A. H. Walker, Oswego Center, N. Y.
Carpenter Planes, the best quality, made by Tucker \& Appleton, Boston. send for list.
Of Washing Machines, there is nothing to be compared with Boty's.-Weekly Tribune, Dec. 15, 1869.
For Sale-The Right tor the six New England States of L Bertsche's self-tastening caster, the be
Bertsche, 8th Ward, Allegheny City, Pa.
Scientific American.-Back Nos., Vols., and Sets for sale. AdScientific American.-Back Nos., Vols., and Sets for sale
dress Theo. Tusch, City Agent, Sci. Am., s7 Park Row. New York.
A Superintendent wanted in a large wood-working and machine shop, in the State of New York. Address, in own handwriting, stat
ing references, past experience, salary expected etc. An interest in the business will be offered to the right person, if it is desired. Address" subusiness will be offered to the right person, if it is desired. Address " su-
perintendent," P. O. Box 773, New York city. The Editor of this paper will vouch for the responsible character of the establishment neediag the above seryice.
Wanted-A good second-hand Stationary Engine, from 12 to 15-H. P., built within the past two years. Send full description, with name
of maker and lowest price. Address P. O. Box 159, Brid geport, Conn. The " Patent Steam Gong," in tise for Fire Alarms, Fog Signals on steamboats, ractories, etc. Have a musical tone, and have been
heard thirtymiles. Manufactured by the Union Water Meter Co., Worcester, Mass.
West's Great American Tire-Setting Machine sets tire without removal from the wheel, saving ninety per cent over the old method. West \& Fish, Geneseo, N. Y
To Brick Makers.-Anew style of Brick,for Paving Sidewalks, Just patented. Warranted to lie solld and never to rock when trod upon.
Rightsforsalecheap by the inventors, Moffat\& Thomson, 121 Otterst Rights forsale che
Philadelphia, Pa.
Wanted.-Situation as Superintendent or foreman in Machine
 Wanted.-A good second-hand Roper 4-horse Engine. Ad-Wanted.-A good Patent Salesman. Box 115, Cuba, N. Y The best boiler.tube cleaner is Morse's. See cut inside page Crampton's Imperial Laundry Soap, washes in hard or salt water, removes paint, tar, and grease spots, and, containing a large per.
centage of vegetable oillis as agreeable as Castile soap for washing hands. " Grocers keep it." Offce 84 Front st., New York.
Peck's patent drop press. For circulars, address the sole manufacturers, Milo Peck \& Co., New Haven, Ct.
Millstone Dressing Diamond Machine-Simple, effective, durable. For description of the above see Scientific American, Nov. 27th,
1869. Also, Glazier's Diamonds. John Dickinson. 64 Nassau st., N. Y.
Direct-acting Steam Circular Saw Mill-Mill and engine combined in one machine. The power of the engine applied directly to the for. E. H. Bellows, Worcester, Mass.
For foot-power engine lathes address Bradner \&Co.,Newark,N.J Machinists and others using Fine Tools, send for illustrated cornhl, Botron.
Tempered Steel Spiral Springs for machinists and manufacturess. John Chatillon, 91 and 93 Cliff st., New York.
One 60 -Horse Locomotive Boiler, used 5 mos., $\$ 1,200$. Machinery from $t w o$ 500 -tun propellers, and $t w o$ Martin boilers very low Kidder's Pastilles.-A sure relief for Asthma. Price 40 cents by mall. Stowell \& Co., Charlestown, Mass,
Pat. paper for buildings, inside \& out, C. J. Fay, Camden, N. J. For solid wrought-iron beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Keuffel \& Esser,71 Nassau st.,N.Y.,the best place to get 1st-class Drawing Materials, Swies Instruments, and Rubber Triangles and Curves. For tinmans' tools, presses, etc., apply to Mays \& Bliss, Plymouth, st., near Adams st., Brooklyn, N.
Glynn's Anti-Incrustator tor Steam Boiler-The only reliable preventative. No foaming,and does not attack metals of boiler. Liberal
terms to Agents. C. D. Jredricks, 587 Broadway, New York.
To ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston Commercial Bulletin's manufacturing news of the United States. Terms $\$ 4.00$ a year.
Cold Rolled-Shafting,piston rods,pump rods,Collins pat.double Compressioncouplings,rnanufactured by Jones \& Laughlins, Pittsburgh, Pa For mining, wrecking, pumping, drainage, and irrigating Winans' boiler powder, 11 Wall st., N. Y., removes Incrustations without injury or foaming 12 years in use. Beware of Imitations.

Guswers to Corxespoulents.

All refand

J. H. P., of Ark., asks, will a 100 -pound weight drive light machinery, sewing machines, etc. We answe'r that a $100-1 \mathrm{~b}$ weight fall-
ing through a sufflecient space in a given time would drive the Great ing through a aufflient space in a given time would drive the Grea
Eastern, were the power thus developed applied to the propulsion of that monster. This correspondent is evidently laboring under a very
common misapprehenion; the confounding of atatical pressure with that monster. This correspondent is evidently laboring under a vers
common misapprehension: the confounding of statical pressure with mechanical power. Statical pressure is not mechanical power. It neve did and never will do work in the sense in which the term work is used
in mechanics. It takes on an average about one tenth of a horse powe in mechance.
to drive a sewing machine. To yield this power a 100 -pound weight would need to fall through a space of three and three tenthe feet in one minute of time, and conticue moving at that rate.
J. H. P., of N. Y.-This correspondent writes in regard to the uee of hellebore to kill currant worms. He says the white hellebore is as good as the black. This weed hs also known as poke, oritch weed. It is and stems, pours off the liquor, and applies it cold, with a watering pot He says that a aingle application made at the night time, that is, when th eggsare all hatched, will be effectual in destroying the worms. He ask
for something to kill maggots which destroy onions. Can any of ou for something to kill maggot
correspondents inform him?
W. \& B., of Tenn.-Petroleum products, such as gasoline, are tested for their speciflc gravity by an instrument called an hydrometer the or benzine spoken of as being 85° allows the instrument to sink to that number marked upon the stem.
M. H. S., of N. Y.-We cannot at this distance say what makes the bearings you describe heat ; there are many things that might do it. The belts may be too tight, the bearing surfaces too small for the
weight theysupport, or thelubricator used may be of a kind which evap relght lieysupport, or thelubricator used may be of a kind which evap bearing surfaces are too small.
J. K., of Pa.-We should regard a scale of three eighths o an inch in thickness as dangerous in any steam bonler. To drive an engine at greater speed while performing an increased amount of work
will require more :steam, and: consequently more fuel. Your question cannot be answered more definitely without more complete data.
S. K., of Mo.-Your solution of the 2d mechanical problem given out some weeks since is correct; it was also given by another
correspondent. See article entitled "New Mechanical Movements" in last issue.
L. R. P., of N. H.-There are various methods of making solid emery wheels, mostly patented, and therefore not available to. you
. G. S., of Vt.-What is meant by the pitch of saw teeth is the inclination of the face of the tooth up which the shaving ascends
N. F. E., of Vt., wants a size that will cause bronze to adhere to paper, linen, etc., and which will not stain or color. Do any of ou to paper, linen, et
correspondente kn
J. W., of L.I.-The plan of compressing air into receptacles to be afterwards used as motive power is old. It has many elements of impracticability which we cannot specify here.
T. A., of Mass.-Medals when dipped into the " bronze dips" described on page 265, are to be subsequently washed in water, and brushed. Thatis the whole of the process.
C. G., of Ohio.-Carbolic acid in weak solution is recommended as a pres.
been used.
A. A. E., of Mich.-A cement called marine glue is kept for sale pretty generally in drug stores, which unites wood and resists G. E. R., of Mass., wants to know what will exterminate black ants from beams and flooring which they have bored into.
D. L. B., of $\mathrm{Pa}-\mathrm{W}^{\top} \mathrm{e}$ published a rule for the computation of the sizes of cone pulleys on page 157, last volume.
W. W. W., of Ohio.-The expression "groin arch" is a mis M. C., of Ohio The
adigit of

Under this heading we shall publish weekly notes of some of the more prom inent home and foreign patents.

Machine for boring Posts and Pointing Rails.- Rudolph Martin and Matthew Harner, Taneytown, Maryland.-This invention has for its object to bore fence posts in order to the making of mortises therelu, and to
sharpen fence rails in order to the insertion of their pointed cnds in such mortises.
Streetand Station Indicator for Railway Cars.-Edward L. Dean Newburgh, ohio.-This invention has for its object to cause the inde. finger of a dial plate aflixed to the inside of a street car to travel over
its surface and point out the names of streets and stations as they are suc. its surface and po.
cessively reached.
Saddle.-George Horter, New Orleans, La.-The object had in view in making this invention was the production of a very cheap, and, at the
sametime, a very durable sadde, mainlyfor usein districts like the sonth ern and South-western parts of the United States where horse-back riding is the chief means of locomotion, and where most of the inhabitants are very poor.
Water Werel attachment.-W.a. Cobb, Orange, Mabs.-This inven tion has for its object to prevent water wheels from being stopped by the "back water" of floods. To this end the invention consists in providing
a casing extending from the floor of the flume on which the wheel rests to a casing extending from the floor of the flume on which the wheel rests t o the bed of the river, which casing receives the water flowing from the
wheels through the floor of the fume, and discharges it through one of two pipes, a short one for ordinary use and a very long one for flood seasons, which discharges at apoint not affected by the high water of the stream, and consequently renders the casing and flume impervious to the surround ing water, the gate to the short pipe being, in the mean timo closed
Honey-Bee Palace.-Nathaniel F. White, Mount Pleasant, Iowa.-Thi Invention relates to a new and usef ul improvement in a house or palace for
honey bees, in which their hives are placed and where they are protected from moths and from the weather.

