[For the Scientific Amerian.]
ON REFRIGERATING MIXTURES AND THE DEPRESSION OF TEMPERATURE PRODUOED BY DISSOLVING SALTS

New and very thorough experiments have been made on this subject by Mr. F. Rüdorff, who has published the results obtained in the reports of the German Chemical Society.
Mr. R. there announces the following considerations and conclusions:
The depression of temperature produced by the dissolution of salts in water will generally be the more considerable the more salt 38 dissolved. But as a certain quantity of water does not at a certain temperature dissolve any more than a well-defined quantity of salt, the lowest temperature will be obtained by mixing salt and water in such proportions that they will form a saturated solution at that low temperature which is expected to be thereby produced. Any amount of water or salt in excess of this proportion will only increase the quantity of matter which has to be cooled down, and therefore prevent the mixture from attaining the lowest possible temperature. This circumstance has been disregarded in all previous experiments made on this subject, and it is owing to this neglect that the results obtained by different experimentalists did not perfectly agree.
If, on the other hand, salt and water are used exactly in the proportion necessary to produce a saturated solution, it lasts very long till the whole of the salt is dissolved, and the influence of the higher temperature of the surrounding air becomes then perceptible, depressing the cooling effect of the mixture. This shows how important it is to effect the solution in as short a time as possible. It is therefore advantageous to use the salt in the shape of an extremely fine powder, to etir the mixture and to have a little more salt in it than is required for saturation, a sinall excess of salt being less injurious than an excessive prolongation of this dissolving process.

The table given below shows for a number of different salts the most favorable percentages to be used. It also contains the general results of the experiments made by Mr. manner:

The finely-powdered salts and the necessary quantity of water were kept for 12 to 18 hours in a room of even and constant temperature, and before being mixed. The water
was then poured over the salt and stirred with a sensitive thermometer. The mixture reached its lowest temperature in less than one minute
The results given in the table are averages from several experiments, the results of which did not vary' over two tenth of one degree Cels.
The quantity of water used was from 250 to 500 grams. The influence of the mixing vase and of the air on smaller quantities of solution is quire marked, and is always perceptible when less than 300 grams of water are used. All experi ments made with more than 300 grams of water were not perceptibly influenced by the surrounding temperature ; thei results agreed perfectly with each other.

Mr. Rüdorff found, by special experiments, that the depres sion of temperature created in the mixture is leas whenever a larger proportion of salt is used than that given for each kind in the above table. He also found that the depression of temperature was more variable when the salt had not bee
pulverized very fine. As the very fine
As the solubility of some of the salts mentioned in the table rises considerably \dot{y}° with the temperature; and as the cold produced by a refrigerating mixture depends on the solubility, or rather on the easiness and quickness with whish the salt is dissolved, different results will be obtained wit' a different initial temperature of the mixing materials. For example, in dissolving a proper percentage of salt,jeter in water the temperature sunk in one case from 230° to $10 \cdot 2^{\circ}=$ $12 \cdot 8^{\circ}$; in another case from $13 \cdot 2^{\circ}$ to $3^{\circ}=10 \cdot 2^{\circ}$ only. It may be seen from this that a differenco in the initial tomperature of the material used in such experiments l.ust produce a diff rence in the results finally obtained.
The low temperature created by the d solution of a salt in water can never be below the freezing point of the solu ion, but it may reach that point under favorable circum stances.
Indissolving.
Satpeter
Carbonate of sodia...
Nitrate of ammoniu
Freezing point of the
saturated 8 ,lution.

Among the substances named above the sulpho-cyanide of potassium is particularly adapted to show the depression of
temperature produced by the dissolution of a solid substance When 500 grams of sulpho-cyanide of potassium are dissolved in 400 cubic centimeters of water and stirred with a large
glass half filled with water, the latter will be conver glass half filled with water, the latter will be converted into a solid cylinder of ice within two or three minutes. Sulphocyanide of potassium would therefore be very useful in the manufacture of ice.
The numbers contained in the first column of the above table are those found by Mr. Mulder, with the exception of the two last ones, which Mr. Rüdorff determined by special experiments. He found that 100 parts of water dissolve at a temperature of 0° Cels. 177.2 parts, and at 20° Cels. $21^{17} 0$ parts of sulpho-cyanide of potassium ; and that 100 parts of water dissolve at $0^{\circ}, 122 \cdot 1$ parts, and at $20^{\circ}, 162 \cdot 2$ parts of sulpho-cyanide of ammonium.

How Gems are Cut in Ceylon.

A writer in Once a Week gives the following description o the fabrication of imitative gems and the cutting of gems in Ceylon:

The Moor traders are very expert in the manufacture of false gems. On the occasion of the building of a church in Kandy, a Moorman bought up all the broken colored glass from the painted windows; and on being asked for what purpose, confessed that it was 'to make precious shtone for En glish steamer-passenger at Galle.'
"They calso imitate the rough stones, and occasionally even deceive the more experienced. They are sometimes themselves taken in. On one occasion a Moorman endeavored to induce one of a party of native diggers to sell him a sapphire surreptitiously, to which the Cingalese agreed; and the next day the Moorman came prowling about and watch ing the digging and sifting, till a beautiful rounded blue stone appeared shining among the wet gravel; a bargain was struck by a few signs, and the money and stone exchanged with the utmost secrecy. The Moorman disappearedto gloat over his knavery and his gains; but to his dismay, found that his beautiful gem was a piece of roughed glass, which the Cingalese had provided himself with and quietly slipped into his basket.
"The Ceylon ruby is seldom free from a tint ot blue; and it is a remarkable fact that while the blue color can be ex pelled from such stones by heat, the red color is indelible, and the native jewelers avail themselves of this peculiarity to improve the color of their rubies.
"It is very common to find stones one half blue and the other half colorless, and some have merely a crust of blue on one or more sides. The native lapidaries take advantage of this in cutting, and by leaving the colored part on the under surface, form a foil which gives a fine blue to an otherwise valueless stone.
" The opalescence above mentioned is found in rubies and sapphires as well as in topaz; it is worse than any flaw in depreciating their value; a crack or cavity can be cut out, but opalescence, which is most difficult to detect in an uncut stone, reveals itself in the cutting, and often runs in a pencil through the whole breadth or length of a gem, destroying its clearness and color, and rendering it comparatively worth less. When such stones are cut hemispherical en cabocion at a star of six rays in a strong light. This is very pretty as a a star of six rays in a strong light. This
fancy stone, but is of no value as a gem.
" We will now take a look at the proceedings of the native lapidary. His means and appliances are few, consisting of a pair of laps attached to spindles by a composition of resin and sand melted together. One lap is of lead, on which pounded corundum or adamantine spar is used for reducing the stones and shaping them in the rough. The other is of copper, for polishing the facets. Instead of diamond powder they use for this purpose a fine silex extracted from the calcined husks of rice. The laps are lodged in a frame and worked by a bow. The native lapidaries use no gem pegs or mechanical instruments for regulating the angles, but work entirely by eye and touch, and it is wonderful the precision they attain, although it isdificult consequenty native-cut stones are known by a slight beveling of the native-cut stones are known by a slight beveling of the
facets. In the towns they have now adopted the European horizontal laps and fittings. The stone to le cut is fixed on he end of a stick with the same luting of resin and sand and applied by the left hand to the vertical plate, while the right hand works the bow.
"In cutting a stone, the natives sacrifice everything to size. Gems, to show their most beautiful light and color,
should be cut across the axis; but as in most cases the stones should be cut across the axis; but as in most cases the stones cut them parallel to the axis, and their brilliancy is lost. They rarely use a slicer, and the waste of gems is conse quently great-the whole mass being ground away to form the end, which is largest and clearest.
"I have before noticed the combination of colors in sap-phire-the Ceylon ruby being never found without a tint of blue. To expel this, when the stone is formed or polishing t is rolled in a ball of wet lime, and placed in a pan of char coal, which is gradually raised to a white heat with a primi tive bellows or blowpipe made of a tube of bamboo; after being kept at a white heat for about twenty minutes or half an hour, the ball is taken out and allowed to cool, and when broken open, the stone will have lost the blue tint without injuring the crimson. By the same process, the tint of blue can be expelled from a stone which is nearly white; if, however, there is any crack or flaw in the stone, it is liable to fly to pieces. I should imagine that the natives discovered this evanescent quality of the blue color by accident. I knew a a number of fine blue sapphires; unfortunately his bungalow
was burnt down, and among the ashes of his furniture he fourd many of his gems, but all as white as glass.

Manutacture of Elastic Sponge

We extract from the $H u b$ some particulars of the manuacture of elastic sponge for upholstering purposes.
"The raw sponge is received in hard dirty masses, filled with sand and bits of shell. Being soaked in a large tank of water,it expands into such condition that its quality may be determined, and it is sorted into two kinds; the " soft " for mattress stock, and the "hard" for cushions. The cleansing process, which is an exceedingly important one, then begins in another room. In order to effist this, the sponge is first cut and washed, by passing for an hour through a huge tub, in which there is a series of knives through which the sponge is made to pass by means of the movement given to the water by a wheel. The water, too, is constantly changthe water by a wheel. the water, too, is process the sponge is nicely cut, and its filth ing, so by this process the sponge is nicely cut, and its filth
separated in part. It is next soaked for twenty minutes in a separated in part. It is next soaked for twenty minutes in a
tank of water, containing two degrees (hydrometer) of soda tavk of water, containing two degrees (hydrometer) of soda
ash, and heated to 150°. It is next passed into a tank conash, and heated to 150°. It is next passed into a tank con-
taining a hot solution of very strong detergent soap, where it is soaked for half an hour with constant and violent agita ion. It then returns to the first tub, where it is washed another hour and cut more finely.
"The cleansing process is then complete, and after the water has been pressed out by a passage through rollers, it is carried by the elevator to the "drying room," two stories above, where a high degree of temperature is maintained, and it is dried in large revolving cylinders. It is then clean and without smell, but hard and inelastic in character, and in its present condition, totally valueless for the purpose of stuffing. It was at this point that the inventor's skill was necessary. The pores of the sponge closed when the water had evaporated, and no permanent elasticity could be had unless these could be held open permanently. Glycerin, being a non-evaporative substance, was found to answer the purpose. The remainder of the process is then as follows: "The dry hard sponge is placed in a solution of glycerin and water, in the proportion of about half and half, and after passing through heavy rollers it is again dried in the cylinders. The aqueous portion then evaporates, and leaves the bits of sponge dry and sweet, and so permeated whith the glycerin, that a permanent elasticity is maintained. It is then at last taken to the packing room, highly compressed into bales of about forty pounds each, and is ready for market. It will be seen upon examination that the principle of the manufacture is very simple; it is necessary only to cleanse and saturate with glycerin, but the working out of the details, by which these two ends have been performed satisfactorily has been the work of years. Elastic sponge, like all novel ties, has had its lessons to learn and its drawbacks. These were natural consequences of its novelty, and were necessi ties. An invention is never born perfect. Just as a child must grow from infancy to maturity, so an invention of novel character must improve by age and experience, before it can succeed to perfection. But the days of its experiments seem to be over, and it has settled down into a standard ar ticle, upon which reliance can be placed."

The Diameter of one Pulley, the Length of Belt, Given'to Find the Dlameter of the other Pulley.
Mr. John Mersom of Charleston, S. C sends us the follow Mr before our readers for criticism as we have not found time to determine its truth or falsity. He says : determine its truth or falsity. He says
"The question divides itself into two parts, as the pulley whose diameter is required is greater or less than that of a pulley which is known. When this point is uncertain, mul iply the radius of the known pulley by $3 \cdot 1416$, and increas the product by the distance between the centers of shafts. If his sum is greater than halt the length of the belt, the re quired pulley is less than the given one; but if less, than the required pulley is the greater. In both cases divide the dit ference between the trial number and half the length of the belt by the distance between the centers of the shafts. In the first case call the quotient, A, and the second, B, and ap ply the following rules
"1st. Take double the number A from $2 \cdot 4674011$ and sub tract the square root of the remainder from $1 \cdot 5708$, and call the difference D
" 2 d . Multiply the number D by the distance between the centers of shafts, and the remainder taken from the radius of the large pulley will give the radius of the less one.

3 d . When the required pulley is greater than the given one, add double the number B to $2 \cdot 4674011$, from the squar oot of the sum, subtract $1 \cdot 5708$, and call the remainder E.
4th. Multiply the number E by the distance between the centers of shafts, and the product added to the radius of the given or less pulley, will give the radius of the required or greater pulley."

APPLICATIONS FOR EXTENSION OF PATENTS.

Head and tail blocks for Saw Mills.-E. H. Stearns, of Erie, Pa., has petitioned for an extension of the above patent. Day of heariag March $30,1870$.
HAY AND Co
piled for an extension of the above patent. Day of hearing March 30,1570 Ma oifne for Sowing Fertilizers.-Warren S. Bartle, of New 30 , 150 has petitioned for an extension of the above patent. Day of hearing Ap ril 6, 1870.
Machine for tunneling and Quarrying.-George G. Merrill, of Shel-
burne Falle, Mass., has petitioned for the extension of the above patent. Day of hearing April 6, 1870 .
Furnace for Smelting Iron.-Thomas h. Powers, Milwaukee, Wis., has ap
$18 \% 0$.

