in a strong, substantial manner; and with this attachment |heatod and repressed. The second yield of oil is of inferior in a strong, substantial manner; and with this attachment a length of ten feet. The bed plate directly under the upper cutter head is a false plate so that it can be casily removed cutter head is a false plate so that it can be casily re
and dressed over in case it becomes worn out of true.
This machine has received first prizes wherever exhibited for competition.
These machines are now running in many of the first class mills in all parts of the country, and the one above mentroned just put up in Stein way \& Sons' manufactory will repay a visit to see.
For further particulars address S. A. Woods, sole manufacturer of Woodbury's patent planer and matcher, 91 Liberty street, New York, and 67 Sudbury street, Boston. [See advertisement in another column].

MANUFACTURE OF COTTON SEED, COTTON SEED CAKES, AND MEAL.
ify O. WIDEMANN, CIEmist, paris, framoer.

No. II.

It was at first proposed-and it has been tried by many-to work cotton seed along with linseed, so as to obtain an oil, which, in being boiled with oxidizing agents, would replace for painting purposes the linseed oil, and, being cheaper, would be used extensively. This has been dropped at the present time but will no doubt be taken up again,
It is very difficult to ascertain the exact yield of oil produced, and this yield varies a great deal according as the seed is of better or poorer quality and richness, according to the weather of the season in which it has been sown, dry weather giving a smaller seed but richer in oil. From my own experience I shall take the following figures :
For 2,000 pounds cotton seed, or 1 tun, cotton from the last ginning, 21 pounds; husks, 979 pounds ; meal, gielding from 32 to 36 gallons of oil. 270 pounds ; cakes, at $7 \frac{1}{2}$ pounds per gallon, 730 pounds. Total, 2,000 pounds.
Let ustake now the seed at the entrance of the oil mill. As it arrives in the bags it ought to beimmediately unpacked and aired by shoveling it from one place to another, and this should be done very frequently as the fermentation sets in very rapidly. This is known by putting the hand in the Beed ; if heat is felt the seed has to be worked as quick as possible, and in every case removed and cooled by airing. It therefore requires a large store room to manage it properly. The average weight of one bag is 92 pounds, and the average work done by a good pressman and a Taylor's press, for ten hours' work, is 250 bags or 114 tuns. Generally oil mills work night and day, as there is a great advantage in mills work night and day, as there is a gr
not letting the presses and mill cool down.
not letting the presses and mill cool down.
The cotton seed to be freed from the foreign matters it may contain, is passed in through a screen ; a large cylinder made of wire cloth, the holes being sufficient to let the seed escape and retain the foreign substa'ces. It is next carried to the top of the building where it passes through the gins. After this it gocs through the huller. The huller generally used is of two sizes; the large size is sufficient for the supply of two presses of three sets for night and day labor. The smallest size is sufficient for one day's work with two presses. From the huller the kernels and husks are passed again through a screen, and then through a blower, which separates entirely the husks from the kernels. The kernels are then carried to the grinding mill and are passed through crushing rollers which I shall now describe. This machine, Fig. 1, is composed of two cylinders in cast iron, D E, covere with steel, hollow, and working at equal speed, with a
 distance between them which can be regulated at will. One of these cylinders receives motion and transmits it to the other by a pinion. A hopper of wood, C, is kept full of soed, and feeds the rollers by means of a little fluted wooden roller, B, the accelera tion of which is regula ted at will.
A machine of this de scription, the cylinders 26 inches in length and 6 inches in diameter with a speed of 40 to 50
 revolutions per minute, crushes per day $12 \frac{1}{3}$ bush els of seed and supplies two pairs of mill stones. It is worked by onehorse power. I say mill stones, because the seed was formerly passed under double upright millstones so as to grind the kerne thoroughly ; but this has been abandoned by most manufacturers as a good crusher answers the purpose sufficiently well, especially if the distance of the two rollers is well regulated. The crushing is then perfect and the meal comes out sufficiently fine. This is tested by grinding it between the teeth. If fine enough it must be perfectly free from perceptible grains. It is next placed in the heaters, and upon this operation depends both the yield of oil and its quality. In Marseilles, where labor is cheap, the meal is first pressed cold, as the oil obtained thus is very fine, possessing a very sweet taste, like olive oil, and may be used like the
latter for the table. Oil designed for the table ought to be expressed cold. After the cakes are reground, the meal is
heated and repressed. T
quality to the first yield.
In this country, where labor is high, manu acturers prefer In this country, where labor is high, manu acturers prefer
to obtain at first as much oil as they can with the least hando obtain at first as much oil as they can with the least hand-
ling possible. As I said, the meal is placed in the heater ling possible. As I said, the meal is placed in the heaters
after grinding; these heaters are constructed in different after grinding; these heaters are construc'ed in different
ways. I have seen some made of a large table heated by steam, with iron rings four inches high plac ${ }^{\circ}$ d concentric t each other, and a stirrer in the center worked by power from the steam shaft above. Only a small portion of meal is heated at a time, I should say enough to fill a press bag ; but I am not satisfied with these heaters as they present too large a cooling surface to the air.
The best heaters are those attached to the presses, and they heat for the 15 boxes of the three sets of presses. They are made of cast iron. The whole apparatus, Fig. 2 is supported by brick work, A, and by a cast iron su:-port on the other side of the frame, B. C is a cast iron basin with convex bottom, at the middle of which is a receiving hole, E , to receive the stirrer, K. D is a steam jacket. This basin and steam jacket are cast n one piece and fixed on the platform, T, by means of bolts. The steam is admitted to the steam jacket through H, the condensation water escaping through the pipe, I. A sufficient quantity of meal being introduced into C, the stirrer is set let in ; and the let in ; when the temperature of 82° to 88°
Centigrade, or 180° to Centigrade, or 180° to
190° Fahrenheit is ob190° Fahrenheit is ob-
tained, the gate, F , is
 tained, the gate, F, is pened, a bag placed at the entrance, G, and the meal is then let into the bag.
The bags are made of a certain kind of woolen duck manufactured expressly for that purpose. The best woolen arn is used for their manufacture, and only two parties make them in this country. The cloth is about 32 to 34 inche wide, and is sold by the pound at a price running from $\$ 1 \cdot 10$ to $\$ 1 \cdot 40$. The weight of a yard of the cloth generally used is from 1 pound to 1 pound 4 ounces, and it can be used a well for linseed as for cotton seed. The bags are made in the mills by the pressmen themselves, and sewed on a wood en pattern to fit the squeezers. The old bags are sold at 6 to 8 cents per pound when they are quite out of order, as they can be repaired and are repaired with the same yarn they ar made of by the pressmen, or women engaged for that pur pose. A great saving could be madein cloth if parties would manufacture them as neafly as other bags, instead of in the coarse way they are now made in the mills.
The bag being properly filled, that is to say, not quite o the top, it must be thrown in doubie to close it in the

squeezer, the meal being well distributed all along it. The squeezer is then introduced in the box of the hydraulic press, Fig. 3. . The squeezers Fig. 4, are made of horse hair cord and covered with leather, to which a handle is riveted The rivets ought to be of iron, as copper is very soon oxidized by the action of acid fats. These squeezers are quite expensive, and are sold from $\$ 26$ to $\$ 28$ a piece. They last one year and a half to two years. Theyare easily repaired, but have to be kept in good order and cleaned as soon as the dust, or meal, and otherimpurities have begun
to adhere, by hammering them with wooden hammers, shall not describe the presses as they are nearly like all other hydraulic presses, differing only in some improve-

ments of the packing of the plungers, in the adaptation of check valves, etc. The pressure must be one and one half The cake must not be more than half an inch thick or very
little over, and should weigh from 7 to $7 \frac{1}{7}$ pounds. The presses, when charged, are left for twenty minutes and then the squeeturs are taken out
The cake is taken nut of the bag by setting the bottom of the bag against a board and turning it inside out. The cake is carried to a special room, where a man with a kind of half circular knife, Fig. 5, trims the edges and cuts the top and bottom. Sometimes the cut tings are reground and repressed, as these parts have never been as well pressed as the middle part. The trimmed cakes are then placed on frames upon their edges, and left to dry ; care being taken not to have them put too not to have them put to
close to each other, so that the air may have free circula tion all around them. Cakes would soon decay through
 the action of the moisture remaining in them. It is very im portant the meal should retain its temperature, and some works to that end have had iron pipes passing behind and between the sets, so as to heat the whole structure. It is always observed that the set near the jeater yields a larger quantity of oil than the last set. This is a consequence of the heat communicated to the press from the heater.

Cuntesyoudeute.
 The Editors are not responsbble for the Opmions expressed by their Cor respondents.

Safety Lamp for Miners
Messrs. Editors:-The Scientific American of Septem ber 25,1869 , contains an article on the Avondale disaster, and a notice of a lamp recommended by W. H. Bessemer. I in close a drawing of a lamp made by me as far back as 1829 on the same principle as that recommended by Mr . Bessemer. From my knowledge of miners I have always considered that there could be no safety while they had the control of the

lamps. I therefore made one like the drawing. part of which I still have. The globe containing the condensed air is 10 inches in diameter, the lamp 6 inches, with a joint made tight by leather (better rubber), and locked ; the lazap was made to burn the oils common in those days, ani would throw the light a great distance, so that it might be placed in safety and yet give a better light to the miner than the Davy. At the top was a piece of wire galzze for the exit of the products of combustion ; the whole was made of copper The miners of those days thought themseives quite safe with the Davy, and all I got was the name of a schemer, and sundry lectures on my folly, when, soon after, leaving England, I had other things to attend to,
I could never get anybody to see any good in my invenion. Perhaps I have been too far ahead of time, as many explosions have been required to prove the Davy not altogether safe.

Frederick Lifar.
Willsborough, Mo.
The Wandering Jew, or Cow Killer.
Messrs. Editors :-My attention has been arrested by the article bearing the above title, on page 43, current volume of your journal. Both names are new to me, having never heard them applied to an insect, which, by the description is clearly that of the large red stinging ant, a species of Mutilla, a genus among the order of Hymenoptera.
Thomas Say describes six species found within the United States, while thirty-eight species are noticed in Rees' Cyclopedia. They are solitary in their habits. The females are ways found on the ground, abounding mostly in hot, sandy situations. The males rosemble other sand wasps, boing pro

