Scontitir Amexirm,

MUNN \& COMPANY, Editors and Proprietors.
publisined weegly at
vO. 37 PARI ROW 〔PARK BUIIDING), NEW YORE
c. MUNN. B. H. WALES. A. E. BEACH.
 The New York News Company," 9 spruce street.
A. Asher \& Co., 20 Unter den Linden,

VOL. XXII, No. 26 . [[New Series.] . . Twenty-fifth Year
NEW YORK, SATURDAY, JUNE 25, 1870.

The circulation of the Scirntific Ambrican is from 25,000 to 30,000 opies per week larger than any other journal of the same class in the world. Indeed, there are but few papers whose weekly circulation equal that of the SCIENTIFIC AmERICAN, which establishes the fact now generally ell known, that this journal is one of the very best advertising mediun in the country.

SIX MONTHS OF PROGRESS IN MECHANICAL AND

 CIVIL ENGINEERING.The close of the present volume affords a convenient oppor tunity to review what has been done in the mechanical worl during the time of its publication. We shall find little that is new or startling in the way of discovery but that con siderable work has been done, and some steady progress has een accomplished.
The department of civil engineering may boast of the active commencement of one of the greatest feats of engiceer ing of modern times, in the building, launching, and placing of the great caisson, at the Brooklyn terminus of the East River Bridgc. Descending into this vast structure, if one has ufficient physical strength to withstand the pressure, he may see a large gang of men busy as bees in a hive, laying the foundation for the enormous superstructure. Everything is progressing with that smoothness and absence of unforeseen contingenciea which gives assurance of the successful com pletion of this great work.
The Suez Canal has been greatly improved, so that ship of the deepest draft now find no difficulty in making the passage.
The proposed Darien Canal has been made the subject o careful survey, and its possibilities and probabilities are becoming daily more determined.
A new explasive, dualin, has been added to the list of com pounds employed for blasting, but its merits are still not so fully demonstrated as to secure the confidence which it per haps deserves.
The question of street pavements has received more ligh fom some successes, and by far more numerous failures. A new kind of pavement called Dura Pavement, from its resist ance to wear, is now laid in small sections in several places, and seems to promise well. Experiments with the French asphalte, and with artificial imitations have also been made, but we think not with great success.
The preservation of brown sandstone, which has become so popular as a building material, has also been the subject of experiment; and concrete building, as well as the manufacture of artificial stone, has been slowly but surely advancing
Our readers will recollect some editorial remarks upon the subject of "Improved Building Materials," published not long since in this journal. The subject will bear further at ention in sonnection with recent improvements.
There seems to be a general cheaper and if possible better building materials than have bitherto been employed. Our exchanges from abroad, more especially those devoted to architectural topics, give us very encouraging accounts of the progress of concrete building. This style of building seems growing in favor, and is furnish ng a very good class of dwellings at a very cheap rate.
We find also an account of a new kind of artificial stone called the Victoria stone, which seems to have endured severe ests and to promise well.
It is the invention of a clergyman, Rev. H. Highton. Tb process by which it is made consists in mixing broken granite with hydraulic cement, and steeping the whole when set in a solution of silica. The granite used is the refuse of the quarries, and is brok \in n up at the works. It is then mixed with Portland cement, in proportions of four of granite to
one of cement, sufficient water being added to give it a pasty than a subscription to this journal. Nothing comparable to consistency. In this state it is placed in molds, when it con- it in size or in fulness of valuable contents is published fo solidates in about four days. When taken from the molds it anything like its price, and its information is always gath is placed for two days in a solution of silicate of soda, whic ompletes the process.
The silicate solution is prepared in a peculiar manner, and upon it the success of the operation depends. The silicate of soda has the property of hardening any kind of concrete in which lime is a component. This substance hasbeen hitherto oo costly for general use in artificial stone manufacture, and it becomes caustic by the absorption of its silica, so that it ttacks the hands of the workmen.
Mr. Highton produceshis solution in the following manner. He uses a soft kind of stone containing twenty-five per cent of silica, found at Farnham, in Surrey, England. Thi dissolves in a cold caustic soda solution
The solution of soda is placed in the tanks used for steeping he stone, and the Farnham stone is ground and added to the bath. The lime in the artificial blocks removes the silica
from the solution, which in its turn takes up more silica from the Farnham stone, and so maintains its supply of silica, thus removing the objections above named. The process is ex tremely ingenious, and we are informed that flagging, sinks, mantels, coping, cap-stones, sills, etc., are produced by it. Finely cut moldings are not successíully produced, and it seems better adapted to a heavier class of work.
In America also considerable improvement is observable in this field. We recently noticed an excellent stone manufac tured in this city. A Brooklyn paper states that porcelain enameled bricks are now produced by a firm in that city, of great beauty, both for outside and inside work,

The taptality of
a iso all formed by pressure into ornaments both for outside and insid decoration, which when painted resemble, very closely, cut
stone or stucco, as the case may be. These ornaments are stone or stucco, as the c
both cheap and durable.
The Pneumatic Tunnel under Broadway, New York, ha been commenced, and so skillfully conducted as not to dis urb surface travel in the least. This tunnel when completed and put in operation will be the largest work of the kind in xistence.
Prof. Norton, of New Haven, has been testing the hitherto dmitted laws of the deflection of beams, by rigid experiment with results varying from the hitherto accepted formula His experiments, of which a notice appeared on page 256 , current volume, are worthy of the attention of engineers, a he laws in question lie at the very root of scientific construc ion.
In rock-drilling machines, some improvement has been ade, but the progress in this portion of the engineering field has been limited mostly to the more general adoption of machines already invented, than to the invention of new machines. Power is gradually superseding hand labor here and is probably dest:ned to be ultimately used in all exten ive works where such drilling is required
A submarine blast of unprecedented magnitude was fire in the harbor of San Francisco, on the 23d of April, by whic Blossom Rock, a dangerous obstruction to commerce, was en tirely removed. The rock known as Hell-gate in the East River still remains an obstruction, but it is stated that large quantity has been removed by drilling and blasting. Our opinion is that unless some other means than are a present applied to its removal are adopted, it will be a long ime ere this obstinate rock will be subdued.
In steam engineering no marked advancement has been made, although many devices tending to increased safety in he use of boilers have made their appearance. The past six months have been extremely fruitful of disasters from explo ions, which shows that practice in boiler making, or i ooiler tending, or perhaps both, are retrograding rather than In miscellaneous inventions there has been considerable activity, and many useful devices have been brought to public notice. It shall be our aim in the coming volume to kee ace with all new improvements, and to render the Scien iffic American in the future, as it has been in the past, the best and most reliablerecord of progress published in this country.

THE CLOSE OF VOLUME XXII

In closing the present volume we feel a natural pride in he fact that notwithstanding a host of competitors have prung up in the various cities of the Union directly or indi ectly calculated to obtain a share of the patronage of the lass of readers for whose interest and instruction we have so ong labored, we find our subscription list larger than eve before at this season of the year. The general tone of our orrespondence also assures us that never before has the Sc entific American held so high a placeinthe esteem of the eading public as at this moment.
We feel that we may entertain a just pride also in the ery large variety of original matter contained in the presen volume. No technical paper published in the English lan guage has touched upon such a wide range of topics, or give information in a more popular and readable form. Whil hen we look upon our extending circulation with satisfac tion, we feel that our success is but the reward of earnest endeavor and unremitting labor to perform all that we promised in our prospectus at the beginning of the year.
We feel that our full performance of our promises to our readerss also entitles us to confidently solicit their co-opera ion in further extending our circulation. There can be no invesiment for which a greater return is sure to be obtained
red from reliable sources. We hope, therefore, our reader will feel like giving a good word to their friends and neigh bors in our behalf, and that they will feel certain of thei eward for this slight trouble in our continual effort to plac weekly in their homes the most readable, instructive, and re iable paper published in the world, upon such matters of eneral, technical, and current interest, as comes within ou sphere.
To our numerous exchanges we extend thanks for the many courtesies for which we are indebted to them, and the many favorable notices and compliments by way of copied ad accredited articles, we have received at their hands
Pledging ourselves that we shall in no way slacken ou forts to keep full pace with the advancement of the age, w hall commence Volume XXIII. with the determination that although others may compete with, they shall not excel us.EXPLOSION AND COLLAPSE
BOILERS-..HOW TO AVOID I

Whether from the better construction, and more scientifi rrangement of kitchen boilers in this country, or whethe ecause cases of such explosion are not deemed sufficiently nsational to be generally reported on this side of the A antic, certain it is that we read of three such accidents in oreign journals, to every one that we find reported īI cur merican exchanges. Yet there is no nation in the worl that makes such an extensive use of modern improvement of this class as the American.
Such accidents, however, do happen here, and that they do not happen more frequently is certainly not due to want of acilities afforded by plumbers.
For the most part the pipes and boilers in dwellings are eft in charge of servant girls, who know very little abou steam or hydraulics, and many of these arrangements ar constructed on principles to understand which requires not a small degree of such knowledge.
In his absence one day, notification was given to people at the residence of the writer, that the water was about to be urned off from the street, by a contractor, and direction were left to extinguish the fire, which, it was stated, would prevent any injury to pipes or boiler. Relying upon this in struction, they succeeded admirably in doing two very disa greeable things, namely, substituting a cold lunch for th sual dinner at 6 P. M. and collapsing the kitchen boiler int the shape of a very dilapidated hat just rescued from beneath he foot of an elephant.
Shortly afterwards this boiler, which had been re-rolled and repaired, was collapsed in another way. Too great heat had generated so much steam that the water was forced entirely out of the boiler. The servant, slightly opening the fauce was alarmed at the volume of steam whichescaped, and shut off the flow; this threw a jet of water in from the supply pipe, which suddenly condensed the staam, and before wate in sufficient quantity could flow in to supply its place, the oiler was again suddenly flattened out.
These are the most common ways in which such boiler re collapsed, where the supply of water flows in directly from the main, as is usually the case in this country. The rarit of bursting is probably due to the fact that the head of the water limits the pressure of the steam, and the boilers ar riginally made to safely withstand the pressure due to the head.
We know, however, of cases where the lead pipes leading to the boilers have burst by the action of steam forcing ho water back into them and thus weakening their tenacity.
These accidents may be avoided by a proper arrangeme of valves. Every boiler of this kind should have a valve opening inward to prevent collapse. It should be made strong enough to withstand considerably greater pressure than it will be subjected to by virtue of the head. Then if a check valve be emploged to keep the water from being forced back ato the pipes by the steam pressure, and a safety valve be et to blow off at, say, five pounds above the maximum press re due to the head, the boiler can neither burst nor collaps under any circumstances, and will need no care to guard it gainst the ignorance of servants.

THE DAWN OF AN IMPORTANT INDUSTRY

In the year 1832, Professor Dumas, the eminent French chemist, discovered among the products of the distillation of oal a new body, to which he gave the name of paranaphthaine, but which was afterwards called anthracene. When coal tar is subjected to fractional distillation a heavy oily mat ter comes over, which, upon exposure to a temperature of 18° Fah., deposits crystals of naphthaline and anthracene. The crude material is treated with alcohol, which dissolves t's naphthaline and leaves the anthracene unattacked. The latte ody can then be purified by further distillation
Anthracene boils at $350^{\circ} \mathrm{Fah}$., and is soluble in turpentinc but not in alcohol. It does not seem to be formed at low empenatures, but at the heat required to manufacture gas it sometimes comes off in sufficient quantity to make its appear ance like snow in the purifiers, and also in clogging the pipes. It is therefore as an incidental product of the gas house that we are to look for this substance side by side with the benzole, carbolic acid, and lubricating oils now so extensively made from tar.
Berthelot and Limpricht have succeeded in making anthraene artificially, but the process is too complicated for practice on a large scale, unless materially modified by further ex It is not many rears since coal tar was thrown away. The gas companies allowed anyone to take it who

