Grinding Edze Tools.
The American Builder thinks that in finishing the grinding of cutting tools, the stone should revolve toward the edge of the tool. This is its argument
Edge tools are fltted up by grinding, very much as a plank *ould be reduced in thickness, were a large plane employed in thich were set a hundred of nore very small gouges, each kutting a narrow groove. The sharp grit of the grindstone being harder than the iron or steel, cuts very small channels in the surfade of the metal; and the revolving disk carries awdy ail the mindte partic es that are detached by the grit. If we were to examine the surface of a tool that his just been femoved from a grindstone, under the lenses of a powerful Of a field which has recently been scarified with some impleiiuelit whiëh formied ailternate ridges and furrows: Hence, as these ridges and furrows run together from brith sides, at the kutting edge; the newly ground edge seems to be forned of a a systeri of minute teeth, rather than to consist of a smooth edge: For this reason,a tool is first ground on a coarse stone so as to wear the surface of the siteel away rapidly. Then, it is polished on a wheel of much finer grit. And finally; in order to reduce the serrature as much as possible, a whetstone of the finest grit must be employed. This gives a cutting edge having the smallest possible serration. A razor, for example, does not have a perfect cutting edge, as one may per-
ceive by viewing it through a microscope. And yet, the serceive by viewing it through a microscope. And yet, the serrations aro actually so much smaller than a human hair, that the minute teeth cut the hair in twain. But, when the serrathat they will not sever a hair,or cut a man's beard off, the edge must be honed and strapped until the system of minute teeth will be so much smaller than a hair,that several of them will take hold of the smallest hair at once. These suggestions will furnish something of an idea of the operation in grinding and whatting edge tools.
Beginners are sometimes instructed, when grinding edge tools, to have the stone revolve toward the cutting edge, and sometimes from it. When the first grinding is being done, it is a matter of indifference whether this is donc or not. But, when the finishing touches are applied near, and at the very edge, a grioder can always complete his task with more accuracy, if the periphery of the grindstone revolves toward the curting edge, as the steel that is worn away will be removed more easily. Whereas, when a stone runs in the opposite direction, the grinder can not always tell exactly when the side of the tool is fully ground up to the edge. Tris temper The stone, when running from the edge, will not sweep away every particle of the metal that hangs as a "feather." But, every particle of the metal that hangs as a feather. But,
when the stone revolves toward the edge, there will be no "feather edge" to deceive the eye of the grinder.

Chincse Vohicles.

A contributor to the Coach-Makers' Monthly describes in a humorous manner the vehicles used by the Chinese. He says "The vehicles used for the journey are carts, one to each man ; and each cart drawn by two mules. The hubs of the carts, although designed to carry but one man and the driver, are as large as those of our strongest drays in the United States, and the wheels as strong and full of rivets as thewheels in Ezekiel's vision were of eyes. Through these pon derous hubs the axles project for a distance of seven inches, being three inches in diameter where they come through. What good this projection of the axle does, except to hit against everything in the way, belongs to Chinese civilization to determine. On to these axles, which are very heavy and strong, are attached heavy frames, made of two scantlings runuing from the mules' heads across the axle, to which the frame is made fast by strong bands and bolts of iron. There is nothing in the shape of a spring, or thorough-brace, or any such thing. The Chinese have not got along to these things yet in their civilization. On to this frame is fastened the thing to which you are to be imprisoned during your trip to the capital of the Celestial Empire. It is only large enough for one person, who is expected to sit with crossed legs on the bottom of the machine.
" This strange cage is a kind of a crcss between a hen coop and a dog kennel. It is made of hard wood, and very strong, the sides being made to resemble the windows in a penitentiary, the checkered bars being of hard, strong wood instead of iron. There is no seat of any kind, nor anything on which you can lay hold to steady yourself, as a protection against the terrible jerks you suddenly get from side to side as your cart drops into the ruts of ages, and is jerked out again by mule power. Your prison somewhat resembles an oldfashioned Pennsylvania or Kentucky freight wagon, bating the size, only the ribs of your inclosure are much nearer together and stronger. Then over all is placed a covering of strong, blue cotton muslin, to prevent the rain or dust from coming in, or you from seeing out except in front. This cover is made to come down in front of you, so that you must crouch to see out even in front, like a dog looking out of his kennel, day. You must first from under the old hen and then crawl backward through this hole to your quarters.
"Bed and bed-clothes, carpet-sacks and shawls are packed away in this little cramped concern, and you endeavor to adjust them so that your bones may escape being broken against the rough sides of your narrow cage. But the roof is so low that if you put in enough to make anything like a comfortable seat, your head will hit against the top, and if your head barely escapes the top of the roof in the midide, it will be sure to hit the sloping sides as soon as the lateral motion begins, and that is the moment the cart gets under way."

Mowale mind Enamel.

Mosaic is a kind of inlay, producizgo a picture or patter by the due selecticn of colors in the pieces eituployed. The substance may be wood, stone, marble, porcelain, terra-cctta enamel, or colored glass; and it may be cut into cubes, hexacons, triangles, or various other forms ; the chief conditions being that the pieces should be small in eize, variously colored, and placed in such juxtaposition as to bring the proper tints into the proper places. The marble pavement under the donie of st: Y^{\prime} aull's, the wooden flooring and paneling done in marquetry, the inlaying of cabinet work known by the names of marquetry and buhl work, the intricate patterns of Tunbridgeware toys, the nicely fltting lids of Scotch fintff bree-all are examples of mosaic so far as the principle is concerned; bitt it is generilly neant, in art, that a mosaic is a picture, which must hato ftre mind of an artist thrown into it before the mechanical working betging.
Enamel is really nothing more than opaque glass, the opacity being produced by the addition of some one or more among many metallic oxides to the other ingredients. Ac cording to the color required, so is the wetallic element chosen-lead or antimony to produce yellow, iroitita produce ed, eold for a more intense and beautiful red, copper fo green, cobalt for blne, and various combinations for othe colors. Enamel paintings ite plates of copper, silver, or gold, on which the picture is produced by dsing the enamel in the form of paint, and then vitrifying it by the heth of an oven. Enameled watch dials have a thin coating of white enamel on a copper disk or plate, while the figures and spots are painted in black enamel, vitrified by heat.
Now the use of enamel for mosaic is simply the substitution of cubes or small pieces of colored enamel for pieces of other substances. They are occasionally employed, like colored glass, with a part of the effect due to semi-transparency; but more frequently they are quite opaquo, only to be looked at by reflected light. The beautiful Pompujian mosaic of the "Battle of Issus" is of enamel. The mosaics oft. Peter's are also of enamel. So numerous are the graations of tint necessary to produce all the lights and shades of an elaborate picture, that the mosaic workshops at the Vatican are said to contain no less than twenty thousand va-
rieties, all methodically sortcd and arranged. Some of the rieties, all methodically sortcd and arranged. Some of the
larger and more ambitious works have taken ten, fifteen, or larger and more ambitious works have taken ten, fifteen, or
evon twenty years to execute. The durability of the material is fully as great as that of stone itself; insomuch that the mosaic pictures of St. Peter's, so far as atmospheric or climatic influences are concerned, way possibly last as long as the structures which they adorn. 'The mode of proceeding is pretty much as follows: A ground or support is prepared, either a metal plate or a slab of travertinc, the proper size and shape of the picture; and this is surrounded with a raised rim of iron. Into the recess thus formed is introduced a cement or stucco mixed to a pasty state, and consisting of pounded travertine, carbonate of lime, mastic, and linseed oil. The tessera, cubes, or small pieces of enamel (some barely larger than a pin's head) are selected of the proper colors, tints, and shades, and imbedded one by ono in the cement Only so much cement is laid in as can be filled with tesseræ
in one day, in order that it may retain sufficient softness. It eventually hardens to the consistence of stone. When the whole picture is finished, the surface is rubbed smooth and made dull or polished according to the kind of effect intended to be produced.

The Gloss on silk.

" The method of giving an artificial gloss to the woven pieces of silk," says the Druggists' Circular," was invented in 1663. The discovery of the method was purely accidental. Octavio Mey, a merchant of Lyons, being ono day deep in meditation, mechanically put a small bunch of silk threads into his mouth and began to chew them. On taking them out again in his band he was struck by the peculiar luste find that this luster continued to adhere to the threads even after they had become dry. He at once saw that in this fact there was a secret worth unraveling, and being a man of ingenuity, he applied himself to the study of the question. The result of his experiments was the procédé de lustragc, or 'glossing method.' The manner of imparting the artificial gloss has, like all other details of the weaving art, undergone certain changes in the course of years. At present, it is
done in this wise: Two rollers revolving on their axes are done in this wise: Two rollera revolving on their axes are
set up a few feet from the ground, and at about ten yards, in set up a few feet from the ground, and at about ten yards, in
a atraight line, from each other. Round the first of these rollers is wound the piece of silk, of twenty, forty, or one hundrod yards in length, as the case may oe. Ten yards of the silk are then unwound, and fixed by means of a brass rod in a groove on the second roller, care being taken to stretch workman coversan with a thin blade of metal in his hand daintily the inside uppermost side of the silk (that which will form under the outstretched with a coating of gum. On the floor runs a sort of tender filled with glowing coals. As fast as one man covers the silk with gum, another works the tender up and down, so as to dry the mucilage before it has had time to permeate the texture. This is a very delicate operation; forif, on the one hand, the gum is allowed to run long under one place, the piece is spoiled. In the first instance, it would be stained beyond all power of cleaning, and in the recond, it would be burned. None but trusty workmen are confided with this task; and even with the most proved hands there is sometimes damage. When ten yards of the piece bave been gummed and dried, they are rolled around the second cylinder and ten more are unwound. This
is repeated till the end. But the silk, with its coating of dry gum, is then stiff to the touch and crackles like cream-laid note-paper when folded. To make it soft and pliant again, it is rolled anew, some sis or seven times, under two different cylinders, one of which has been warmed by the introduc tion of hot coals inside, and this is sufficient to give it that bright new loc's which we all so much admire in fresh silk."

PATENT OFFICE affairs.

The business of the Patent Office is now in a flourishing condition, and the present is a favorable time to enter applica ions. Inventors will find the Scientific American Patent AGENCY ready to attend to the prosecution of claims with the greatest dispatch. By reference to our register, we find that we have made upwards of twenty-four thousand preliminary examinations into the novelty of alleged new inven tions. This great experience, together with the fact that large proportion of all the business with the Patent Office, for the past twenty years, has been conducted through this Agency, puggests to inventors the surost and best means to secure their right
We give opinions free, and all we require is a rough ketch and description of the invention.
Inventions patented through this Agency receive notice in the Scientific Aiserican.
Models.-In order to apply for a patent the law requires that a model shall be furnished, not over a foot in any of its dimensions, neatly and substantially mado. Send the mede by express, prepaid, addressed to Munn \& Co., 37 Park liow New York, together with a description of the operation and merits of the invention
Caveats.-Whenever an inventor is engaged in workind out a new improvement, and is fearful that some other paity may anticipate lim in applying for a patent, it is desirablo, under such circumstances, to file a caveat, which is good for one year, and, during that time, will operate to prevent the issue of a patent to other parties for the same invention The nature of a caveat is fully explained in our pamphlet, which we mail free of charge.
European Patents.-Probably three-fourths of all the patents taken by American citizens in Europe have been se cured through the Scientific American Patent Agency. Inventors should be careful to put their cases in the hands o responsible agents, as in England, for example, the first in troducer can take the patent, and the rightful inventor has no remedy. Wo have recently issued a new edition of ou Synopsis of European Patent Laws.

All communications and inquiries addressed to Munn \& Co., respecting patent business, are considered as strictly confidential.

American and English Mowing Machincs.

Reaping and mowing machines have now become standard implements on English farms, but in France they are still regarded somewhat as innovations; the lower rate of wages across the Channel having hitherto acted as a barrier to the introduction of labor-saving machines in agriculture. Wages, however, are rising in France, as in most other countries, and the attention, therefore, of agriculturists is directed to the best form of reaping and mowing machines. Several inter national trials of these machines are announced for the com ing summer. The first came off last week at Bourges, 123 miles south of Paris, at which there was a very sharp contcst between tho English and American machines. The Iron monger states that after a long and careful trial the award was given in favor of the English machine of Messrs. Howard, of Bedford, which in mowing an acre beat the far-fauled American machines of Mr. W. A. Wood and Mr. M'Cormick by eighteen minutes. American manufacturers must look to their laurels.

Flles on Horses.

The Journcl of Chemistry gives the following as a preven itive of horses being teased by flies: Take two or thre small handfuls of walnut leaves, upon which pour two or three quarts of cold water ; let it infuse one night, and pour the whole next morning into a kettle, and let it boil for : quarter of an hour. When cold it will be fit for use. No more is required than to moisten a sponge, and before the horse goes out of the stable, let those parts which are most irritable be smeared over with the liquor, namely, between and upon the ears, the neck, the flanks, etc. Not only the gentleman or lady who rides out for pleasure will derive pleasure from the walnut leaves thus prepared, but the coachman, the wagoner, and all others who use horses dur ing the hot months.

The Manufacture of Chloroform.-According to the late Jas. Y. Simpson, there is a single manufactory of chloro form, located in Edinburgh, which makes as many as cigh thousand doses a day, or between two millions and three mill ions of doses every year-evidence to what an extent the practice is now carried of wrapping men, women, and chil dren in a painless sleep during some of the most trying moments and hours of human existence

Improved Scetlonal Mills. We might fill more space than can be allotted to the present description, with comments upon the importance of uills for the pulverization of hard substances, and with even the briefest allusion to the various improvements by which the rude appliances of the ancients have been superseded, but we shall not attempt to discuss this fertile topic. Suffice it to say that the employment of iron and steel as a substitute for stone grinding surfaces is one of the most modern improvements in this field.
The earliest of these were made with a dress of straight fillets or grooves. The disadvantages of this style of dress, and the advantage of the sectional system, are so well set forth by the inventor in the general description of the mill, furnished hy hinı as the basis of the present article, that we cannot do better than to use his ows language upon this point. He says:
"It will be somewhat difficult to indicate all the peculiar advantages to be derived from the use of sectional grinding surfaces, without a personal examination of the ma chine.
" In nearly every form of iron mills here tofore in use, the grinding surfaces have been conlined to a system of straight fillets or grooves. This form of dress was adopted and continued in use, not because it was the best form of grinding surface, but from t :e impossibility of casting a cylindrical grinder with corrugations and indentations, without making it too expensive for practical use With such mills, having the old system of grinding surfajes, no matter what the na ture of the substance to be ground, whether it was hard, greasy, and tough bones, grain plaster,or brittle minerals-all was done with the same description of surface, or at least the variance was so slight that practically the vanation was the same with all With th operaticn was the same with all. With or ciuary diecernment, the merest observe wring Business doman way wrong. Business demands, practical and im p rative in their nature soon pointed the in ventor of the sectional mills to the fact that changes in the system were necessary; certain results were desired, and they could only be obtained by the most thorough experiment. For grinding substances of given character a d finite configuration of surface was demanded ; and as the subptance to be ground varied in character and condition, so also must the appropriate surface be supplied. This general advantage was attained by having the grinding' surfaces cast in sections. By this means any pattern of tooth suitable to the material to be ground could be furnished. The concave or shell in which the outer surface is placed, or the cone upon which the inner surface is placed, being turned upon a lathe to perfect truth of circle, insures the running of the machine with an exactness impossible to cxceed by any other system.

Another great advantage in the sectional system lies in the facility with which clanges can be made-no part of the body of the mill having to beremoved, but merely raised sufficiently by a screw to allow the sections to be slipped to or from their places. A change made thus in a few minutes, renders very obvious the advantage over the old system. Were the inner and outer surfaces each cast in one piece, it would involve the lifting of the heavy parts of the mill, so as to allow them to be placed in the inside, taking the work of geperal. men and a delay of several hours to accomplish. In the sectional mills the work can be easily done by one man.

A great advantage ciuitucr for the sectional mills lies in the fact, that should a piece of iron (which in grinding bones is very probable) accidentally get into the mill, and the grinding sur face be broken, the broken section or sections may by removed, and sound unes replaced, without the uecessity of renewing the whole. Practical men wiil see that this is a saving of time and expense not easily over-estimated."
Perhaps no material tries a mill so much as raw bones. These are not only hard, but they also possess a toughness that renders them peculiarly intractable. The machines we are about to describe arc in successful operation in the manufactories of the proprietors, in Philadelphia and Chicago, upon raw bones, where their great capacity and strength are demonstrated. The mills are also working upon guano, plaster, fire brick, sumac, bark, dye-woods, ores, fish scraps, etc., in other manufactories in

Philadelphia, Chicago, and other cities. Their efficiency in grinding ores has been, we are informed, well tested.
Fig. 2 is a sectional view of the mill, by the inspection of which its construction will be clearly perceived, in connection with the following description.
In the larger sizes the lower grinding surface of the crusher is curved, in order thatiron or other foreign snbstances than that which the mill is workjing on may be quickly discharged widhout injuring the dress when the pressure is made upon the m: while in the smaller sizes the grinding surfaces are in a straiglt line, or at least not curved.
A, is the tap breaker, with a projecting arm. This arm i baried in shape io suit differe at material. It is made to slip
easily over a sleeve which fits snugly on the shaft, so as to easily over a sleeve which fits snugly on the shaft, so as to
protect the shaft from abrasion from the continued jar of the protect the shaft from abrasion from the continued jar of the iron with every breaker.
The large screw-nut, B, is used to hold the breaker down to its place. This is a left hand screw and tightens itself in working.
C is the circular grinder, with holes for stud-bolts (only one of which is shown) used to tighten the grinding sections, D
E is the stationary sectional dress in the upper part of the hell, eight of which form a circle. The corrugations in thes sections are made very deep, soas to admit of a great amoun

E. P. BAUGH'S SECTIONAL MILLS.
of wear. The lower or full sections, D, are cight in number and are held in place by stad bolts, one of which is shown assing through \mathbf{C}.
The outside or stationary sections, G, are held in place by the nuts, H. The circular shape of the bottom of the dresse marlsed D and G, admits of a great amount of wear at the bottom, where they come first in contact, and, should iroz get into the mill, gives greater space on raising the lever to allow it to get out.

cog-wheel, \mathbf{N}, which is supported by M. Levers for adjusting the mill with weights are shown at 0 ; or screws may be used in their place. P is the driving cogwheel, which being half the size of the other wheel, doubles the power of the belt. Q is a wrought-iron connter shaft, to which are attache the fixed and loose pulleys, R.
S is the fiy-wheel, which, with its shaft, is supported by edestal boxes fitted with anti-friction metal.
The large screw at the top of the mill is used for raising the different parts to change the dress. In order to change the upper sections of the dress the bolts, T, are loosened, al lowing the mill to be opened at U . To change the lowe grinding surface, the bolts, HI , are un screwed, allowing the mill to be opened a V. Then the large nut, B, is loosened, and the breaker and sleeve are raised. Nex the stud-bolts passing through C are un screwed, when all the dress can be removed

The perpendicular or main shaft of the No. 1 mill is of wrought-iron, four feet six inches long and five inches in diameter The counter shaft is also of wrought-iron, three and one-half inches in diameter. The fly-wheel weighs nine hundred pounds The fixed and loose pulleys are twenty two inches in diameter and ten inches face
It will be seen that the proportions are such as to give great power and strength This sized mill is intended to prepare al hard substances for smaller mills, although it is claimed that a large percen tage of its product does not ordinarily requir e anothe operation. It weighs four tuns and is con structed sufficiently strong to crush rough raw bones, logwood (cut in lengths of 18 inches), the hardest quartz rock and al minerals, hard guanos, slag from furnaces and, indeed, all substanceswhichindustria science demands to be reduced. It is claimed that the hardest substance susceptible at al of grinding or breaking can be crnshed or grang or breakin, can be crushed without rik full capacity, is from tento twelve horses; yet its main shaft being solid wrought-iron fiv inches in diameter, it can be attached and run safely with power of twenty five horses. It is stated by the manufacturers that the amount of work capable of being performed in a day of ten hours is,for raw bones, twen y tuns and upwards, varying with the condition of dryness hurd ruanos, quartz, and other mineral substances, thirty to forty tuns; plaster, fifty or sixty tuns. Themill is especiall adapted to the pulverization of the South Carolina deposit of guano; the grinding surface upon this mar be run closely orrether, and a large proportion reduced to powder by th frst prucess. Of this latter substance 25 tuns may be duced in ten hours.
This mill has been secured by patents in Great Britain France, and the United States, and is manufactured by Baugh \& Sons, No. 20 South Delaware avenue Philadelphia, Pa.
Influence of Colored Lights on Insects
The discussion of the change produced in animal and vegetable forms by the influence of varying conditions of temperature, moisture, light, locality etc., especially as connected with the Darwinian hy pothesis, has induced a freat variety of experiments rom which some interesting results have bee derived. In some of these experiments, lately pub ished, a brood of caterpillars of the tortoise-shel butterfly of Europe was divided into three lots One third were placed in a photographic room lighted through orange colored glass, one thir ga room lighted through blue glase and the in a room ligh in ordinary cage and the re mainder kept in an ordiory cage in natural ligh All were fed with their proper food, and the third theve in the blue light in the usual time Those in the blue light were not healthy, a larg number dying before changing; those raised in the orange light, however, were nearly as healthy as those first mentioned. The perfect insect reared in the blue light differed from the average form in being much smaller, the orange brown color lighter, and the yellow and orange running int each other instead of remaining distinct. Thos raised in the yellow light were also smaller, but the orange brown was replaced by salmon color and the blue edges of the wings seen in the ordinary form were of a dull slate. If changes so great as these can be proauced in the course of a single has a heavy wroughtiron band around the base to support the same upan the dress, and is held in place by two feathers, L, in the shaft and a tight collar below. Wipers, J, carry the ground mate rial to the spout.
K is the perpendicular or main shaft, made of wrought-iron, the lower end of which, that works in the st ϵ p, being made of solid steel. There are two feathers; L, let into it to hold the cone and breakers in place.
A steel, conical anti-friction disk is placed under the shaft, which effectually prevents heating. The step-box, which has a steel lining, is movable. The step moves up and down in a hollow colnmn, M, in closivg and opening the mill to adjust the grinding; the shaft working freely through the bevel
the same upon a succession of individuals will develop som striking results

Grand Fafr of Western Texas.-The Second Grand Fair of Western Texas will be held in October of the pres ent year, commencing on Wednesday the 5th, at the Fair Grounds, near San Antonio, and will continue four days. A large list of premiums is offered, consisting of money and diplomas. Further information can be obtained of the Secretary, Mr. Robert Clark, of San Antonio.

Gas was first used for 1

