The Planet Mars.

The planet Mars is enveloped, exactly in the same manner as its next door neighbor, the earth, in a dense screen of mists and cloud; and it is only at the favorable moments when these clouds are rent asunder, that the actual surface of the
planet can be seen. When the cloud curtains are most closeplanet can be seen. When the cloud curtains are most closedrawn the hue of the planet is greenish-white; when the curtains are flung open the planet wears a ruddy light. 'The drapery of clouds is of the same tinge as the clouds of the earth when seen hanging in masses under reflected illumina tion.
Under these circumstances, the only way in which anything like an idea can be formed of what the appearance of the planet would be if the drapery of cloud was entirely removed, is to fit together piecemeal the several passing glimpses that
are caught of different parts of its surface at favorable times. The best views are so fleeting and capriciousthat the observer has to watch continually for hours to catch, it may perhaps be, but a momentary glimpse, which then has to be quickly fixed in the mind in order that it may be accurately trans ferred into the form of an endering record. And this task can only be worked at, it will be remembered, when the planet is in opposition ; that is, when it is on the same side of the sun as the earth, and therefore in its nearest approach to the observer-a circumstance which recurs after intervals
of 780 days. The observations of Beer and Madler were made with a fine telescope of Fraunhofer's construction, which en larged the apparent dimensions of the planet from 22 seconds to 110 minutes of arc, and which made its disk seem nearly four times as broad as the moon. Instruments of this class. until very recently, have been very costly affairs. But through
the great ingenuity and skill of Mr. With, instruments of a bigh order of merit and power can be now supplied at something like one fourth the cost of those of an earlier time Mr. With's telescopes are reflecting instruments in which the mirror is made of silvered glass, glass being much more easily worked into perfect form than the old speculum metal, and silver afforded a far more brilliant surface than the misture of copper and tin.
Photography is as yet unable to cope with work such as the delineation of the appearances on Mars, because the actinic power of the largely magnified image of the planet is very low, and because the complex movements of the planet and the earth bôth render prolonged exposures with any exact ness of definition impracticable. Mr. Browning has neverthe less shown that there is something which photography can
do in regard to this planet, although it cannot make the planet sit for its portrait. It can enable any pair of human eyes to contemplate the picture of the planet exactly as it would be seen if at some favorable instant it could be caught entirely stripped of its veil of cloud. It can bring all the thousand and-one results of patient and prolonged study and watching together into one glance. Such are, in fact, the stereograms of Mars which Mr. Browning has prepared.
It now only remains to draw attention to the leading fea tures which are developed in these interesting delineations of Mars. Certain spectroscopic observations made by Mr. Huggins leave no reasonable ground to doubt that the red color of Mars is due to the physical character of the actual sub hue is at all times less strongly marked towards the border of the visible disk of the planet, where it is more masked in con sequence of the reflected light having to pass through deeper tracks of the planet's atmosphere than in more central re gions. It is also very much more intense at some returns of the planet into the favorable position of opposition than it is at others. Thus, for instance, the planet was much more dis tinctly red in the year 1868 than it was in 1864 . This seems to indicate that clouds are more prevalent in the platetary at mosphere at some times than at others. The greenish or bluish-gray patches have just such a character of light a would be reflected from large oceuns of water. The red and a very high degree of probability that these are actually con tinents and seas, which are contemplated, by chance glimpses tinents and seas, which ar
upon the planet's surface.
The actual amount of solar light and heat which Mars re ceives from the great central luminary is less than one-hal the amount which is conferred upon the earth ; in more exact numbers the proportion is $\frac{43}{100}$.
From some careful investigations made by the philosopher Zollner, it appears that Mars appropriates for his own intrin sic use something more than seven-tenths (or more exactly 7328 parts) of the solar energy which it receives, and reflects into space nearly three-tenths (or more exactly 2672 parts).
With lessened solar force less vapor is raised into the atmosphere, and less rain is precipitated upon the land. There are, therefore, less vigorous traces of the changes that are worked by the wearing away of high land under the actio of running water. Something also of the difference of sculp turing and contour are most probably due to the fact that a
globe, having only one-seventh part the volume of the earth, globe, having only one-seventh part pass from the primeval incandescent and plastic con
would pass dition into the hardened and rigid form much more rapidly and therefore would not have the wrinklings and foldings of its contracted crust arranged in exactly the same way as the wrinklings and foldings of the crust of the larger earth. Prof. Mann.-British Journal of Photography.

Pale Lacker for Tin Plate.-Best alcohol, 8 oz.; tur meric, 4 drs. ; hay saffron, 2 scr.; dragons'-blood, 4 scr.; red sạnders, 1 scr.; shellac, 1 oz.; gum sandarach, 2 drs.; gum mastic, 2 drs. ; Canada balsam, 2 drs.; when dissolved, add spirits of turpentine, 80 drops.

OBITUARY--ZERAH COLBURN, ENGINEER, AND LEAD
We have had specially prepared for this paper a por trait of the late Zerah Colburn, which we publish with the accompanying obituary notice from the pen of his former associate, Mr. A. L. Holley, as published in the New York Times, of May 2d.
The name of Zerah Colburn is known to the engineers of ll countries where professional literature exists, and his writings are perhaps more various in scope and more vig-
orous in practical treatment than those of any other member orous in practical treatment than those of any other member
of his profession. In his death engineering sustains an irrep of his profes
Mr. Colburn was born in Saratoga, N. Y., in 1832, and was amed after his uncle, the celebrated mathematician. His removed to New Hampshire, where, during his boyhood, young Colburn earned his living on a farm. His early means and opportunities for acquiring ad education were limited to few months'attendance at a district school, a short clerkship in a factory, and such books as he could find in a remote
country village. But his industry and his wonderful memory ountry village. But his industry and his wonderful memory more than made up to him then, and throughout his life, his
want of early advantages. From an odd volume of the old Penny Magazine he gained a knowledge of the world and an
inspiration to see and figure in it, which all educational apliances fail to give the average boy of the period. At the earliest possible moment, young Colburn left the wilds of New Hampshire and struck out for civilization, and he kept moving
till he finally settled down in its midst-in London. His first sight of a city, and, what was a greater thing to him, a locomechanical talent in him at that sight asserted its prope lace, and the locomotive was ever after his chief study, and he subject of his best conclusions and ablest writings.

He soon after, as he found means for support, removed to
Boston. His first literary attempt was in verse for the Carpet Bag. His professional career commenced on the Concord Rail oad; under the late Charles Minot, then its manager, who was ttracted by the brightness and practicalideas of this singular and physiology of the locomotive engine, tabulated the and physiology of the locomotive engine, tabulated the
dimensions and proportions of those under his observation, and published a small, but excellent and still useful, treatise on the subject. He then got a subordinate position, and soon ose to the superintendence of the locomotive works of Mr. Souther, in Boston. ${ }^{*}$ Here he tabulated and committed to memory (an easy task for him) the dimensions of all parts of and labor employed in its construction. With the exception and labor employed in its construction. With the exception in connection with Mr. Souther, he started the manufacture of ocomotives, Mr. Colburn then made New York his head-quar ters until 1858. His moreimportant professional work at this
time was his superintendance, for a year or more, of the New time was his superintendance, for a year or more, of the New
Jersey locomotive Works at Paterson, during which engageJersey locomotive Works at Paterson, during which engage
ment he made some improvements, still standard, in the machinery of freight engines.
Although eminently fitted for the management of practical enstruction, Mr. Colburn early found that the literature of
engineering was his true calling. He therefore joined the Railroad Journal of this city, in which professional readers soon recognizing the hand of a master, began to look for a new era in technical journalism. And they were not disap-
pointed. In 1854, Mr. Colburn started, in New York, the Railpointed. In 1854, Mr. Colburn started, in New York, the Railof railroads, and addressed chiefly to the master mechanics and the more intelligent operatives. The next year he enlarged
the Advocate, which soon reached a large circulation and grea popularity, not only among railway mechanics, but among the profession at large. It is worthy of mention, as illustrating Mr. Colburn's extraordinary power of memory, that he kept no books for many months, but simply remembered when
every subscription and advertisement fell due, and made no every subs
mistakes.
In the summer of 1855 Mr . Colburn thought he saw, in his to a fortune in the business of railroad supplies. He therefore sold the Advocate to Mr. A. L. Holley, then draftsman of the
New York Locomotive Works, bourht land warrants with the New York Locomotive Works, bought land warrants with the
money, journeyed to Iowa and located his lands, and then re life had temporarily -but with another scheme. The frontie gine and machinery to set up a steam saw mill in the far civilization had resumed ' he mastery, and he fell to writing for the Advocate, because he could not help writing, and to arranging his supply business. The first thing-and the las with his knowledge industry shrewdness and his tires, and with the professional press, he kept the hammers at Falls Vil lage busy day and night building up an immense busines
which, unfortunately, the character of the tires did not main But Colburn was not made for a merchant. He pined for larger professional observation and knowledge, and for a wider field. As suddenly as he went into trade he left it, and sailed for Europe. During a three months' stay or rather rush
among the machine and iron works of England and France, whereof the story is recorded in the Advocate, and is of per whereof the story is recorded in the Advocate, and is of per-
manent valie, he had become agnin and finally wedded to litmanent value, he had become agnin and nennally wedded to ratwith the Advocate, which was then enlarged and entitled the In the Eutuineer
In the autumn of 1857, Messrs. Colburn and Holley were
commissioned by several leading railroad presidents to visit Europe to report on the railway system and machinery abroad, Europe to report on the railway system and machinery abroad,
and in view of the financial troubles of 1857 , they were
advised to stop, at least temporarily, the publication of their advise
paper.
Permanent-way and coal-burning locomotivés were found to be the most important subjects of the period, and in 1858 their report on these subjects, largely illustrated by engravrailway managers.
Mr. Colburn's thorough and, to American readers, entirely new and startling analysis of the cost and economy of British railways, was the foundation of many of the reforms that have since, although slowly, become standard here, especially in the matter of improved road-bed and superstructure. The success of this book was such that its authors determined to
continue their researches, and in the fall of 1858, Mr. Colburn again visited London. Here he commenced writing for the Engineer, then the leading professional journal, and soon be came its editor. Under his vigorous management it largely increased in circulation and influence.
Mr. Colburn at this time wrote a supplement on the
American Practice for a new edition of Mr. D. K. ${ }^{\text {Clark's }}$ American Practice for a new edition of Mr. D. K. Clark's
work on the "Locomotive Engine." After several years' Work on the "Locomotive Engine." After several years'
hard work in London, Mr. Colburn resolved to start another engineering paper in America. He came out in the Great Eastern, on her first passage in 1860 , and soon selected
Philadelphia, the principal seat of mechanical cngineering in this country, as the birthplace of his own Engiveer. It was an excellent paper, and the few numbers published will have permanent value, but the time was not ripe, in America, for a publication of this kind, and Colburn, although he had despondency he dropped his new enterprise, sailed for England, and again became the editor of the London Engineer.
At this time he familiarized himself with the French language and professional literature. He also wrote several pamphlets on boiler explosions, heat, etc., the originality of which attracted great attention, and he commenced his great work on the locomotive engine.
In 1866, Mr. Colburn
Engineering, which is in all countries accounted the ablest and best serial publication on that subject, and he dissolved his connection with it only a few weeks before his death.
During his residence in London, Mr. Colburn was eniployed as consulting engineer on many important constructions, and
prepared many valuable papers in addition to his editorial prepared many valuable papers in addition to his editorial
labors. The more noted of these were his papers before the Institution of Civil Engineers (of which he was a member) on "Iron Bridges" and on "American Locomotives and Rolling Stock," both of which received medals.
Mr. Colburn wrote vigorously, originally, and with understanding on all the leading subjects embraced under the head of engineering. On the locomotive, the steam engine and mechanical engineering in general, he was a first-rat authority. The saddest part of Mr. Colburn's story remains to be told. Overwork was at least a powerful agency in his early fall, and this, together with his natural impu'siveness and his habitual irregularity in relaxation, as well as in work, drove him,
within a few months, into partial insanity. He came to this within a few months, into partial insanity. He came to this away to a country town in Massachusetts, and there died by his own hand.
Zerah Colb
Zerah Colburn was a man whom the profession could ill
fford to lose. His thoro erhly practical afford to lose. His thoroughly practical education in the workshop, his extended observation of engineering works, his inti-
mate acquaintance with professional literature, his remarkamate acquaintance with professional literature, his remarka-
ble quickness of comprehension, his more remarkable memory and his mechanical talent and inborn engineering ideas, combined to give him a distinction that no engineer in the world will deny him-the best general writer in his profession.

Curregudodente.

The Eaitors are

A Simple Question.

Messrs. Editors:-It is reasonable, a priori, to assume that equal downward forces on the arms, A and B, are required to balance the rod on pivot, P ; but the rod is balanced by a force of 1 on arm, A, against a force of 2 on arm, B. The downward pressure of 1 . on $\operatorname{arm} A$, is not increased by its

greater distance from the pivot, P, than force, 2 , on arm, B for the joint pressures on the pivot is only $1+2=3$.
There is a law in nature, whereby the greater motion of a small force is made equal to the less motion of a greate force. But here there is no motion. How, then, does ar A, with half the force, equal arm, B ?
Until a better explanation is given, we may suppose the greater force on arm, B, does, or rather would preponderate if the inseparable and simultaneous creation of motion in initely small, did not arrest it, as with the parallel case of action and reaction.
T. W. B.

Pittsburgh, Pa.

Scraping side valves.

Messrs. Editors :-I notice in a recent number an article on "Scraped Surfaces." From thirteen years experience, find that for all kinds of slide valves and such like, a really good scraped-up face is a most decided benefit. But it is a lamentable fact that few workmen know how to scrape prop
a smooth file; everything should be finished with the smooth file previous to the scraper being used. I have seen many workmen leave too much to be done by the scraper. Now that is a gross mistake; every article ought to be fitted as well as possible before being touched by a scraper ; otherwise a bad job is almost certain to be the result. The scraper
should aiways be used obliquely to the file marks, never should aiways be used obliquely to the file marks, never across at any rate. Nothing makes a better scraper for wrought and cast iron than a taper saw file, and for brass a flat scraper must be used if good work is wanted ; say about 1 in . broad and ${ }_{3}^{32}$ in. thick. A saw file scraper is too keen for brass. In all railway shops in Scotland, scraping is much used and with the best results. We always scraped slide valves, motion bars and blocks, and axle boxes. It is certainly a very unworkmanlike way of turning out a slide valve,and leaving it to work itself tight. It is tantamount to saying it can't be made tight. Most of the first class marine engine builders in Great Britain scrape valves, etc. I know Penn, of Greenwich, tried last year to do away with the scraper on a pair of large valves; on the trial trip the valves got cut up awfully ; so scraping is there considered a necessity.
Brooklyn, N. Y.
Wm. P. Cowan.
Stean on Common Roads.
Messrs. Edrtors:-Quite a number cf years ago I first saw a steam carriage in Brattleborough, Vt.; it was about the size and build of a common 1 horse wagon; its two cylinders were placed horizontally beneath the seat, and were connected by the usual pistons, cross-heads, and connecting rods, to a crank shaft, with a crank upon each end, and at right angles with each other; power being communicated from this shaft to the driving axle by a "chain belt."
The boiler consisted of a series of tubes bent U form, the lower branches of them serving for the grate and the upper branches for the crown of the fireplace, their ends terminating in two parallel horizontal cylinders, the fuel door being between them, the uppermost of the two cylinders being sur mounted by a third of larger size for steam room ; the tubes and their two connected cylinders being filled with water and cased with sheet iron
This carriage worked quite lively on level ground and around a circle of from ten feet to twenty feet radius; but noticed that the fire and the condition of the water in the
boilers were matters of considerable care and solicitude with boilers were matters of considerable care and solicitude with the operator, the fuel being wood, and the boiler containing but little water, the pressure varied greatly and constantly now flowing frecly from the safety valve and the carriage running vigorously, and then barely steam enough to move There were both power and speed enough while steam was up. I was deeply interested in the novel exhibition, and expected
to see, long ere this, steam vehicles in as common use as any to sec, long ere this, steam vehicles in as common use as any
other; and I have often wondered that the people should be other ; and I have often wondered that the people should
so tardy in their appreciation of this mode of locomotion.

To be sure the association of boiler bursting has a terro for the inexperienced, but this will always vanish in propor tion to the increase of intelligence upon the subject.
During leisure intervals in mechanical operations-espe cially while engaged in putting up railway engines-I have often busied myself in considering the best methods of apply ing the power of steam to conmon road use, both for heavy and light work.
The steam carriage enterprise was prosecuted quite vigor ously in England some years ago, and the minutes of evi dence taken in the investigation of the subject in the House of Lords are extremely interesting. It is well known that the result of this investigation amounted to almost a pio libition of the working of steam carriages on any of the populous and paying routes; the tollsimposed being so heavy that the proprictors of steam carriages are forced to abandon
the enterprise to the "slow coach," podanger policy. Improvement must necessarily be slow while the paths of prog. ress are thus beset with such edverse legislation.
F. G. Woodward.

Colifisions on Reailways.

Messrs. Editors :-Within the last few months I have noticed that, on railroads, where each train is designated by a number, and all trains are moved by telegraph, that several wild trains, standiag on side tracks, have been mistaken for regular trains, and, as a natural consequence, in each cas a collision, more or less serious, has been the consequence.
Could that not be remedied by superintendents of roads having the number of each train painted on a movable board attached to either side of the cape of the engines drawing the train. For engines regular trains a revolving tablet could We used, on which could be painted the numbers of both the
1:al:." (North and South or East and West) sufficiently large and prominent to be read by the engincer of any train passing another while it was standing on a side track?
For night trains, lamps, with numbers on them, could be substituted for placards.
On all wild or construction trains, the word "Wild," or "Construction," or "Irregular" could be used
R. E. Pieasants.

Louisiana, Mo.

Misssrs. Editors:-I am glad to see the " buzzing up" process brought to notice in the Scientific American, vid page 252 "Explanation Wanted," C. H. Ladomus. Sure
enough it is wanted. Fifty years ago the operation was to enough it is wanted. Fifty years ago the operation was to
me a pastime, perfectly bewitching, and unaccountable as now. It is not (?) animal magnetism; I know as much about that as anybody-which is very little. What is it? C. H. L. is, I think, ucedlessly particular. A lies on his back, on the fioor, ground, or an open lounge. B and C (two are as good
as four) place their forefingers under the shoulders and hi
of A. They breathe in concert by finger signal from A. the exhalation B and C lift, but they don't lift ; the least ef fort or grunt breaks the spell, and you must begin anew, Thus A is breathed up, the breath lasting, if you are adroit, till you raise him as high as you can reach, when you must catch him to prevent a fall. The head should be the high est and then he will come down on his feet. He will fee that the gravitation is out of him; B and C lift only the clothing. He feels-have you ever dreamed of flying? That is it exactly.
No need of a close or still room, Mr. L. It can be done out of doors, in a gale as well as in a closet. When you get the knack of it-and it has once cost me three hours to teach a class-any two boys of 12 or 15 years can toss up a Daniel Lambert like a feather. I do not know that any science can come out of it, but as an amusement, it is the richest thing I ever knew. Thousands of your readers understand it, but they have need to be touched up a little in order to enjoy it Princeton, Wis.
W. M. R.

About Making Tea.

Potatoes, no doubt, are an important addition to roast beef, and the man who first planted them ought to have a statue raised to him. Some people may look with awe upon th ock near Salcombe, in Devonshire, where Sir Walter Raleigh smoked his first pipe in England. Indispensable as the potato, sweetly soothing as the tobacco plant, more thirst quenching than lachrymas Christi, or Bordeaux, invigorating as, but less soporific than beer, tea "cheers, but not inebriates," and seems to unite in itself the virtues of other modern luxuries, without sharing in their demerits. Tea in China, however, is not the same as tea in America. The Chinaman would as soon think of putting milk or sugar into his tea as we should think of flavoring champagne with salt. He is also far more particular about his caps and saucers cups, called "china" by courtesy. His our thick clumsy cups, called " china" by courtesy. His cup must be of a
certain shape, ornamented with colors, which are always beaucertain shape, ornamented with colors, which are always
tiful, and harmoniously arranged. He delights, most of all, in the delicate and transparent paper-china, that feels as light as a wafer, and is instantly heated through. The invariably stout and sedentary person, with useless feet, who
sits all day, and sometimes all night, making tea for him, sits all day, and sometimes all night, making tea for him, puts a few dry leaves into his cup, then pours the boiling water over them, claps a thin little saucer-lid upon the cup, to keep the steam in and draw the tea; and presently the tea is poured into that same little saucer-lid, and drank by John Chinaman, much in the style of our washerwomen. In Russia they make tea in tumblers, and flavor it with lemon and sugar. Some people add rum and drink it cold. In France if you call for tea, you will get a thin boiling fluid, which flows almost colorless from the tea-pot, and tastes something like warm water flavored with dandelions. Of
course we mean to imply that our method of making tea is course we mean to imply that our method of making tea is
the only sound and proper one. We are not sure that we might not borrow the saucer-lid from the Celestials, but we must insist upon plenty of milk and sugar. At all events, in a free country we may fairly claim the liberty of the subject in this direction; but, alas! how few people know how excellence in this art, and perhaps a few gifted ladies who have been carefully instructed by them. How many of those unconscious damsels, who carelessly shovel in an indefinite number of spoonfuls, and drench the same with an indefinite quantity of half boiling water, realize the difficulties of the task they have so lightly undertaken! They confidently put their tea-pot on the stove, as they say "to draw," as if, for sooth, tepid water would ever draw the hidden treasure out of leaves that have, perhaps, been placed in a tea-pot only half warmed. Others pour you out three thimblefuls as strong as brandy, and then fill up your cup with pure water, and hand you this flavorless mixture, with the request that you will add milk and sugar according to your taste, as if any possible additions could make the wretched stuff drinkable. Others merely tinge the fluid, already pale with weakness, thinking that the tea will look darker without much milk. Some give you a good first cup, and let the drained iea-pot stand till you call for a second; then they have the effrontery to fill it up under your very nose, and offer to pour you out any quantity of hot water, which they expect you to drink gravely, with milk and sugar, and call it tea. Others put in soda, and stir the tea-leaves with a spoon-some boil your
tea! in fact, there is no end to the dreadful delusions practiced by women on themselves and their victims under the name of tea-making. Doubtless, there are certain rules which may be laid down, such as-see that the water boils; warm your tea-pot and cups well through ; fill the tea-pot at least half or three-quarters full, or your tea will be cold, the water will not be hot enough to draw, or it will draw a little strong essence, which you will presently have to drown, and consequently spoil, with boiling water. Keep the tea as much as possible of an even quality. Let the second and third cups be at least as strong as the first. Dr. Johnson was a great connoisseur in tea, and used not unfrequently to take twelve
cups. But such were Mrs. Thrale's experience and skill, that we do not hear of his ever being disappointed. But no rules will insure good tea-making. Poeta nascitur non fit, and it may be said similarly, you are born a tea-maker, but you cannot become one.

However, to be a good tea-maker is one thing, and to avoid being a very bad one is another; and we are certain, if ladies art, and made to realize the importance of this delightful
are of tea, we should soon have what is sadly wanted through
out the country-a great reform in tea-making.

The First Artificial Fire.

Dr. Collas, in Cosmos, expresses doubt that the primitive races made fire by simply rubbing together two pieces of wood against each other. He claims that " the friction of t wo pieces of wood against each other is not sufficient to excite fire, and after what I have seen, I doubt very much if tho etrength of man is equal to such a task, even if it were possible. It is then not impossible, when we seek from the habits of men still in the uncivilized state, to learn the habits of pre-historic man, assisted by the utensils or relics which time has spared, to arrive at very definite conclusions con. cerning them.

The savage, in making his fire is, according to the Sanscrit etymology, a veritable Prometheus, for he hollows by rubbing in order to steal aroay the fire. Without the groove which he wears he could not make fire. His method is to take two dry pieces of wood unequal in size and hardness. In the larger and softer he plows the groove. The other he bluntly points like a pencil. The larger being firmly supported against a tree or a large rock, the smaller is pushed back ward and forward at an angle, in such a way that a groove is formed, making at the same time a mass of fine shavings, or rather a sort of powder which he gathers up at the extremity of the groove opposite to him. The powder soon blackens and smokes, then takes fire, but the powderonly, and not the piece of wood. Sometimes sailors have attempted the same thing, and have succeeded in blackening the powder and causing it to smoke, but I have never known one to inflame it. Our attempts have been successful in increasing the depth of the groove, but so far as heat was concerned, beyond blackening the powder, we have produced only that which induces prespiration.
"If now we take into consideration the rôle of the powder, the amount of unskilled labor which I have seen lost in rubbing pieces of wood with which, without great eff ort the young Kanack could procure fire, we are led to think that it would be difficult to make a fire with a piece of wood revolving like a drill. With equally good reason we shall conclude that the rocks (pierres) found near pre-historic dwellings served another purpose than that of making a fice, and that the piece of granite from Lake Fimon was a household utensil probably analogous to those which the inhabitants of India now possess, and which t'eey use for bruising many substances used as food, whether by pounding them, or by crushing them under a stone roller."

English Steam Plows in Louisiana

A writer in the New Orleans Times gives an account of a visit to a plantation known as the Magnolia Sugar Estate one of the largest in the country. Among other interesting things he witnessed the operation of some English steam plows. We cull a few paragraphs from his description :

This new implement of agriculture consists of two tentun portable engines, resembling the old locomotive that many of our readers probably have noticed at the lake end of the Pontchartrain dept. Beneath each locomotive is a re. volving steam drum, on which passes the steel corrugated wire rope that draws to and fro the cultivator, to which are attached some ten steel tipped plow blades. The cultivator is an iron frame, with a seat at each end, and mounted on two iron wheels. On top of the cultivator sits a colored boy, who by means of a simple tiller directs the progress of the plow. The locomotive engines are situated directly opposite to each other, about two acres in distance. By means of the steam drum and the rope the cultivator traverses the field back and forward much faster than a man can walk, and turning up the soil to a depth of eighteen to twenty-two inches in a more effectual manner than could be done by the old system; a harrow some eight feet in length is used over the same field, and is propelled with great ease by the same motive power.
" Mr. Lawrence, the proprietor of the estate. has four of these plows in operation, which easily turn over twenty-four acres a day, at a cost, including fuel and labor, of some three dol. lars per acre, which is quite a saving over the method heretofore pursued. There is no apparent intricate machinery about the work ; the whole seems to work as smoothly as an ordinary standing grist-mill ; the locomotive trails over the road quite easily, propelled by steam. Mr. Lawrence, last fall, took off a crop of over six hundred hogsheads of sugar, the entire plowing having been performed by the steam apparatus. The plow, locomotive, etc., were constructed by a firm in Leeds, England, and cost, exclusive of freight, etc., some £1600. The first one imported to this country is now in New Jersey; one subsequently was sent to Illinois, which has lately been sent to this State, and is now in operation at the Concession Plantation, in the parish of Plaquemine, where it is sail' to give great satisfaction."

Preservathon of Stones.

Dr. Robert, in the Paris Les Mondes, maintains that the use of the black oxide of copper, and its salts, will effectually prevent change in stone. He shows that the decay of granite, marble, limestones. sandstones, and all natural building stones, is the combined effect of various causes, and that among these is a very minute lichen, the Lepra antiquitatis, which is one of the worst enemies of stone, and its action is to such an extent that, for instance, the beautiful marble sculptures of the well-known Parc de Versailles will, unless proper measures be taken fer staying the process of decay, be unsightly and ugly masses of dirt, and quite irretrievably lost, as works of art, within the next fifty years. The author taking as instances such buildings at Paris as the Bourbon Palace, the Palais du Corps Legissatif, the Mazarin Palace
(l' Institut), the Mint, and others, points out that dust, spider's webs, and the action of rain, combined with the minute lichen above alluded to, hasten the decay of stone,especially of those parts where any sculpture or ornamental carving promotes the deposition of dirt and dust. Various places and instances are cited, of the application of oxide of copper and its salts,
which places are open to inspection, and the length of time which places are open to inspection, and the length of time
which has elapsed since such application, seems to warrant the conclusion that these compounds act as preservatives of stone. In reference to granite, the author states that this stone is also, according to the experience of Egyptian engineers, far more readily affected by a moist climate than one would be led to believe. Thcobelisk of Luxor, bronght from Upper Egypt to Paris, has become blanched and full of small cracks, dnring the forty years it has stood on the Place de la Concorde; although forty centuries had not perceptibly af fected it, as long as it was in Egypt. Granite, in a moist climate, becomes the seat of a minute cryptogamic plant. which greatly aids its destruction, and it is, moreover, a well-known fact, that the disintegration of this stone, which is composed of three separate minerals (quartz, mica, and feldspar), df. pends very greatly upon the thorough and intimate mixture as woll as the chemical composition of these three ingredi ents,each of which, in a separate state, more easily withstand the influence of the weather.

Thames IIUd Erutter.

A paragraph was recently published in the London journals about the adulteration of butter, in that city, from a product of the Thames mud. At the time of that publication, there was some doubt in our minds as to whether the report had foundation in reality, or whether it was one of those sensational newspaper reports which our British Cousins seem to tional newspaper reports which our British Cousins seem to
relish, as well as their Yankee relations. Morgan's Trad relish, as well as their Yankee relations. Morgan's Trade
Journal now reasserts the statement, and gives the following Journal now
particulars:
"An analytical chemist has extracted from a portion of Thanes mud, talken from the river at Battersea, a pure white fat. At this sta.ge it lacks both taste and smell, but properly manipulated, it malkes a very popular article of food-whether traceable to the refuse of manufactories and of ships or other sources it is impossible to say. That there is, however, no doubt about the fact is proved by the circumstance that about a weck agoa small proprietor on the bank of ournoble stream, his whati, butter factory. Now, the faster this secret oozes out of its butter factory. Now, the faster this secret oozes out of its
discovercr's brain into the receptive organs of other impost ors, the faster, of course, will the mud which it utilizes be made to ooze out of its native bed into pats of London butter which, if the truth as to its origin were fully told, would be stamped with a likeness, not mercly of a cow, but of Father Thames. Unfortunately, knowledge of adulteration is not step toward its suppression. We must grin and bear it, although we are quite awake to the fact,that our milk is sluiced with water, our stout colored "a fine brown" with liquorice,
and our butter likely cnough to be enriched with the fertilzing properties of mud. What are we to do, when on proverb warns us that every one eats a peck of dirt before he dies, and another, never to quarrel with our bread and butter, not ϵ ven when the latter is mud pie with a vengeancethe carth, carthly indeed?"

The Oxyon Light.

According to the Opinion Nationale, Paris, the new Prefe de la Seine las definitively authorized the Tussie du Motay Company to lay their underground comumnications in the city of Paris for illuminating with oxygen gas.
A system of pipes will connect the oxygen works of Pantin with the boulevards, and in a few months all the inhabitants residing between the "new Opera" and the Passage Jouf froy, will thus be enabled to benefit from the immense ad fantages offered by this new light over the old gas.
Already oxybidric lanterns have been placed at the entranc of the bazar European, near the Passage Jouffroy, and project a light of the purest whiste and the most dazzling briliancy, near which the old gas pales and appears to shine w.th the most singular yellow color.

The journal referred to congratulates M. le Prefet de la Seine for having ratified a measure in accordance with the general wishes and interests of the people, and which appcars to it to be the indispensable corollary of the great im provements undertaken within a few years in Paris.

Micaical Properties of Egras.

The white of an ggg has proved of late the most efficacious remedy for burns. Seven or eight successive applications of this substance soothes pain, and effectually excludes the burn from the air. This simple remedy seems preferable to collodion, or cven cotton. Extraordinary stories are told of the healing properties of a new oil which is easily made from the
yolk of hens' eggs. The eggs are first boiled hard, and the yolks are then removed, crushed, and placed over a fire, where they are carefully stirred until the whole subutance is just on the point of catching fire, when the oil separates and may be poured off. One yolk will yield nearly two teaspoonfuls of
oil. It is in general use among the coionists of South Russia oil. It is in general use among the coionists of
a means of curing cuts, bruises, and scratches.

To clean Marble.-Take two parts of common soda, one part of pumicestone, and one part of finely powdered chalk sift it through a fine sieve, and mix it with water; then rub t well all over the marble, and the stains will be removed hen wash the marble over with soap and water, and it will be as clean as it was at first.

The inventor of the Osmogene process, for purifying mo asses, M. Dubrunfaut, has lately reviewed in the columns of the Journal des Fobricants, the progress which his invention has made, and the extent to which it is adopted in the French sugar manufacture. We are not aware that the mrocess has been introduced into this country in a single instance, indeed it is chiefly valuable for operating on bect-sugar molasses, on
account of the soluble salts, which are the chief impurities of this sirup, and which the Osmogene prozess is so efficient in emoving.
M. Dubranfaut first made public his adaptation of the prin ciple of dialysis in a work presented to the Academy of Sciences, in November, 1855, in which he announced that he had succeeded in applying the power of Osmose to the separ ation of certain mixtures.
Dutrochet appears to have been the first to study the peculiar behavior (called Osmose) of saline solutions when separa ted from water, etc., by a diaphragm of a membraneous nature He was followed with greater accuracy of results by Vierordt Professor Jolly, and by the closer researches of Graham. The term Osmose, derived from a Greek word signifying impulsion, comprises the two terms endosmose (diffusion througb inwards) and exosmose (diffusion through outwards). The first experiment in connection with it was performed by sus. pending a closed bladder holding a saline solution in a vessel nearly full of water. The salts passed through the bladder into the water at a certain speed, and the water entered into the bladder at a certain speed, but the velocity of diffusion o the thicker fluid was called endosmose, and the opposit lower current exosmose. It is this principle of dialysis, diffusion, which M. Dubrunfaut successtully adapted to the purification of beet molasses and the extraction of sugar contained therein. These molasses are a mixture of sugar and different salts, chiefly nitrate of potash and chloride of potassium, which retard and in certain cases prevent the crystal-
lization of the sugars which are present with them. If, then, the proportion of salts in the molasses can be diminished by whatever cause, the molasses will furnish a further quantity of crystallizable sugar.
This result M. Dubrunfaut obtained by placing in the en dosmometer of Dutrochet molasses of the usual deasity in the presence of water, and then causing two currents to flow a strong one forces the water against the molasses, theother, more feeble, forces the molasses against the water, a dia phragm separating the two. The effect is such that the mo asses parts with the greater part of its salts to the water but with little or none of its sugar, so that the molasses re tion of contains much less salts and nearly the same propor tion of saccharine, which, by the usual operations of the re
finery, may be separatcd in the form of crystallizable sugar.
Such is the principle of this mode of treatment of mo asses and other saccharine liquids, and to the apparatus for carrying it out M. Dubrunfaut has given the name of an
In an osmogene there are two distinct reservoirs separate by a permeable partition. One of these receptacles contains the molasses or sirup, the other is filled with water ; the me dium separating the two liquids is of parchment paper.
Each receptacle consists of a casing, the top, bottom, and ends of which are of rather thick wood, while the sides are furnished with parchment paper; each casing is about 3 feet in length, 2 feet in breadth, and $\frac{3}{4}$ of an inch in thickness Four bars of wood divide the interior of the casing length wise into five compartments, which communicate with each ther by an opening in each bar. On each side of the casing is fixed a leaf of parchment paper, kept in place by slendor strings. Thus, when the molasses is allowed to enter at the lower part of the casing, it rises in a serpentine manne
hrough the five compartments to the top of the casing whence it may flow out.
A second casing, exactly similar for the water, isjoined to the first in such manner that one leaf of parchment paper erves to separate the two cases. This pair constitutes wha would allow of the treatment of only a small quantity molasses, a number of these double casings are united, say 25 for water and 25 for molasses, which work simultaneously. The result is, of course, according to the number of cases em ployed, and it is the union of these cases which is called an osmogene. It is only requisite for success that all the cases
of molasses and all the cases of water should fill and empty themselves simultaneously, as if only a single couple wer being operated with ; to effect this, the molasses enters at the bottom of one end of the series of cases, and a tube commu nicates with each, the water entering by the top filling simul Theously every water casing and flowing out at the bottom. There is thus maintained a constant efflux of molasses and kept separate during their course by the membrane of parch. ment paper.

A. Lee 'on Water as ar Element o organic Life.

Water is another factor of organic life. Without water no chemical or vital change can take place in the living body Water enters into the composition of all organic beings. A water. A man weighing 150 lbs . contains 111 lbs . of wate in his tissues. The oxygen that vitalizes his tissues is con veyed by water. The starch, the fat, the albumen, so neces ary to the existence of animals, are all digested, absorbed through whose chemical change lite is possible, are decom posed in the presence of water, and the products of this de-
composition are carried off by the agency of water. All the
higher animals drink water for this very purpose ; and the adult human being, on an average, in que form or another takes from 70 to 80 ounces of water daily. Water is the most potent of chemical agents ; its solvent power is equal to hat of the mineral acids, and it associates itself in natur with a vast variety of compounds with which it comes in con act in the extcrnal world. It dissolves both organic and in organic matters, bence it may become so contaminated as to be unfitted for the purposes of life. From the inorganic world, it may take up the salts of lime, iron, lead, copper arsenic, and other compounds in such quantities that, when aken into the human body, it is not only unfit for healthy life, but it may become the source of immediate disease o death. Like the air, it may become the medium of introduc ng those definite organic poisons, which, kindling similar poisons in the living system, are at once the source of diseas to others, and the death of the individual suffering from thei action. Hence, among hygenic inquiries, none, perhaps, ar more interesting and important than those relating to the quality of the water we drink; and pot only this, but as con nected with washing, cooking, and manufacturing purposes.

Is

the Sonstructiow.

In the tenth number of the Comptes Rendus for the presen ear, is a paper by M. Pouchet, on the modifications of the ests constructed by the common swallow, in which he re marks that it is evident the mode of life of certain animals, ar from being persistent and in variable, undurgoes modifica tions under different terrestrial conditions, and that, in many instances, their habits are different from what they were in former ages. Spallanzani indeed remarks in one of his remarkable memoirs on the swallow, that the slape and struc ure of the nests of birds are interesting features in thei istors, and that each species constructs its habitation on plan peculiar to itself, which never changes, and is continued rom one gencration to another. And this opinion is shared y many noturalists ; observations, however, when sufficient y close and attentively made, show that it is erroncous. We do not indeed see any modifications of those of their habits which are associated with their biology, so that the arboreal pecies seek to form for themselves a subterranean nest, or rear their young ones in dwellings adherent to the coigns of our houses, but it nevertheless is ascertained that in a succession of years, each learns to improve the construction of his residence. Certain birds work up only the products of our own handiwork, and would necessarily employ natural substances if these were deficient. Thus, as may be seen in the museum of Rouen, the Loriot of Eur, pe sometimes forms its nest with thread ends under the branches of trees, which cannot possibly be the natural method. For several centa ies the common swallow has disporteditself in our crowded cities, and with its friendly masonry attached itself to our houses. The chimney swallow, still more familiar and auda cious, often builds in the smoky shafts of our domiciles, or ven in the noisiest factories, undisturbed by the din or the fires or the novement around them. Such habits must form a strong contrast with those of their predecessors in times long gone by. When we ourselves wandered untutored savages in the prehistoric times, or when still later we construc ed lacustrine towns, or megalithic monuments, the habits of he birds can scarcely have been identical with those of to day, for such human edifices afforded little security or shade. They must then have built amongst rocks. Nearly the same emarks apply to the storks, which lave not remained sta ionary, but have preferred to their less commodious dwellings those offered to them by man. These changes in the indus try or the manners of birds are perlaps even more rapid than we might at first sight suppose; and M. Pouchet's obsorva tions have demonstrated to him that notable improvements have been adopted by swallows in their modification during the first half of the present century. Having directed a num ber to be collected for the purpose of having dr iwings mad from them, M. Pouchet was astonished to find that they did ot resemble those he had collected some forty y ars ago and which were still preserved in the musoum of Rouen. The present generation of swallows have notably impre ad on the architecture of their forefathers, amongst those still building in the arches and against the pillars of the churches. Some, however, still adhere to the old methods, or such nest may possibly have been old ones which have undergone re construction. In the streets, on the other hand, all the nests appeared to be constructed on the new method. And now fer the differences observed. The old nests show, and all ancient writers as Vieilıot, Montbrillard, Rennie, Deglaun, etc., describe the nest of the house-swallow as globular, or as form ing a segment of spheroid with a very small rounded opening carcely permitting the ingress and egress of the couple that nhabit it. The new nests, on the contrary, have the form of he quarter of a hollow semi-oval with very elongated poles, nd the three sectional surfaces of which adhere to the walls of edifices throughout their whole extent, with the exception of the upper one, where the orifice of the nest is situated; and this is no longer a round hole, but a very long transverse fissure formed below by an excavation of the border of the section, and above by the wall of the building to which the nest is attached. This opening has a length of nine or ten centimeters and a hight of two centims. M. Pouchet consid ers this new form affords more room for the innates and es pecially for the young which are not so crowded, whilst they can put out their heads for a mouthful of fresh air, and their presence does not interfere with the entrance and exit of the parents. Lastly, the new form protects the mhabitants of the nest better than the old one, from rain, cold, and foreign enemies.

lmproved Cherry Stoner.

On page 289, Vol. XVIII., of the Scientific American, we published an engraving of a neat and ingenious device for removing the pits from cherries, plums, and the like, and also the seeds from raisins, cranberries, etc. Since that time the machine has been greatly improved, and a very different form given to it, although the principle of removing the pits bypunching, is retained.
The improved form of the machine, which we illustrate in connection with the present article, was patented by George Geer, of Galesburg, 7l., the in ventor of the former machine.
It is screwed to the table by a hand screw, A. An upright, B, supports the body of the machine The fruit is held in the left hand as shown in the engraving, and rolls down along a gutter, C, and enters the small cups in the per
iphery of the annular wheel, D. iphery of the annular wheel, D.
E is a doublecrank from which a link, F, imparts vertical, reciprocating motion to the cross bar, G, and also to the recurved punching bar, H. Each time the cross bar, G, rises, a stud, I, engages with one of the cups on the annular wheel, D, turning it along one-eighth of a revolution, and bringing another cup directly un der the point of the punchingbar, H , carrying with it the fruit which carrying with it the fruit which has fallen into it from the gutter, C. Each of the cups has a hole through the bottom large enough to permit the passage of the pit ; and when the punching loar descends by the rotation of the crank, it pierces the fruit and forces the pit through the bottom of the cup, into the chute, J, whence it falls into a dish placed to receive it.
The point of the punching bar is ${ }_{d}^{3}$ branched into four short sharp prongs, so that it cannot slip to one side of the pit ; and a plate, K , prevents the fruit from rising with the punching bar.
Thus the pits may be removed almost as fast as a child can turn the crank, and the operation is so rapid that the juice does not escape, and the fruit retains its natural shape and appearance,

This ingenious and useful invention is manufactured by Geer, Stewart \& Brother, Galesburg, Ill., to whom all communications should be addressed.

Improved Screw-Driver.

In an article published on page 393, Vol. XVIII., of the Sci entific American, discussing the reason why a long screwdriver will put in a sorew easier than a short one, we showed that the fact was attributable solely to increased leverage. The device which forms the subject of the present article, and of which an engraving is given, secures increased leverage at the will of the workman without increased length, and will for many kinds of light work also take the place of the bitstock or brace for drilling, boring, etc.
In the engraving, A represents a wood handle, having a recess to receive and retain, when not in use, a second and smaller point, B. This recess is indicated by the dotted line. This supplementary point has a sleeve, indicated by a dotted line, which slips over the point of the larger screw-driver.
The shank, C, of the larger screw-driver is bent in the form shown. At D is a clutch, one portion of which is formed on the shank, and its counterpart on the handle, and underneath the ferrule.
The extremity of the shank, C , in the interior of the handle, has a turned groove, into which the point of the screw, E , enters, and holding the handle so that the ers, and holding the handle so that the two por- to Spain, being the first that had circumnavigated the globe tions of the clutch cannot engage with each other, permits The voyage occupied three years and one month. the shank, C, to be revolved like an ordinary bit-stock
When it is desired to use the tool with one hand, the screw, E, may be turned out a little distance, when its point no longer enters the groove. and the counterparts of the clutch at D, engage with each other. The shank will then turn with the handle, and may be used precisely like the ordinary screw-driver, except that when it is necessary to use the power of both hands in driving home a large screw, an increased leverage is gained by the curvature of the shank.
It will also be obvious that bits properly formed may be placed on the end of the large screw-driver in the same manner as the supplementary point, B, above described, when the instrument will take the place of the ordinary bit-stock.

Various styles of handles may be employed which will sug est themselves to manufacturers. It can be made of wood or metal, and constructed to carry a "kit" of small bits if desired. The inventor would like to communicate with manvice. Address David Drummond, patentee, McGregor, Iowa

Who Named the Pacifie ocean?
It was Ferdinand de Magelhaens, or "Magellan," as he is
things, which cause the worst forms of typhoid and other malignant fevers. It is a benevolent arrangement of the wise and good Ruler of us all that pestiferous gases ar lighter than the common air, and rise with great rapidity in warm weather to the regions of the clouds, where they can injure no one, and are either purified or resolved into their elementary conditions. Thus the disease-engendering atmos phere of the cellar, rises upwards, penetrates the crevices of the flooring, and would escape from the building, but is con fined to the parlors and chambers, especially on the highes foors. Thisis particularly the case in New York City where the only entrance to the cellar is within the building; hence, every time the cellar door is opened, a crowd of foul emana tions rush upward to impreg nate the air of every apartment in the house. Very many af the ceilings of cellars are no even plastered; when really they ought not only to be plastered, but the eight or ter inchesbetween the floors and the plastering, should be filled with charcoal or ashes. We have seen water closets unde the stores in Broadway, which for conditions of filthiness, ar an utter disgrace to civiliza tion. From considerations above tion. Fr, the cellar should be named, the cellar should be the cleanest apartmentin ever dwelling; and in this moving time of the beautiful May, when perhaps half the dwellings change occupants, it is peculiarly convenient, when a cellar has been emptied by the movers out, for those moving in, to have the cellar most complete ly emptied of every thing not fast attached to the building let every avenus of grating door, and window be left open day and nimht for at least week , the flow, walls, and cail wcek; the fior, walls, and ceil ings or joists should be swept several times; the walls and ceilings whitewashed with two or three coats; the floor well washed and then rinsed with water, and unslacked lime or powdered charcoal should be liberally scattered wherever there is any appearance of dampness, so as to absorb all odors arising from moist and dark places. In a large district in a city the cholera ap peared in only one house, traced to a pile of kitchen offal in a dark corner of the cellar.-Hall's Health Tracts.

Bosquilion on the Secrets of Longevity.

"To chew well and to walk well," said Bosquillon, "ar the greatest secrets of longevity that I know of." One of the most pernicious habits that can be acquired is that of eating fast. The loss of teeth is not necessarily conducive to a short life, if the imperfection in chewing is remedied by a more careful and slower process. Simplicity in diet is another great point. Two, or at the most, three dishes ought to suf fice, but monotony should be avoided. There should be variety in simplicity. It is also of importance to preserve a certain degree of regularity in repasts. The number of repasts may vary with age and constitution; but three repasts, a light breakfast, a good dinner in the middle of the day, and a light supper, are admitted more favorable to health than late din ners, which leave the stomach unoccupied for a long interval, and overloaded at sight. It is further of import ance that the mind should be at ease during meals. That which is pleasant promotes digestion ; everything that is the reverse is obnoxious. Plutarch deelared laughter to be the best sauce. Exercise should precede alimentation, not follow it.

Welding Iron to Copper.-It is said that the Pennsyl, vania Railroad Company have just concluded a series of ex periments on a new process recently discovered by Mr. Beazel a Pennsylvanian, which welds copper and all grades of steel and iron together at one heat so that they cannot be separated, even when upset and beaten down under a steam hammer. After subjecting it to every test at their shops at West Phila delphia for the last two months, the company have purchased the right to use it in their workshops.

To Bronze Gun Barrels.-Dilute nitric acid with water, and rub the gun barrels with it ; lay them by for a few days then rub them with oil, and polish them with bees' wax.

