Turning Irregular Forms

We illustrate from the Engineer an ingenious slide rest, de signed by Mr. W. H. Northcott for turning articles of irregular sections. This system differs from the Blanchard and other lathes, because it is applicable to ordinary slide and screw-cutting purposes, as well as to turning irregular forms. A is the center line of lathe spindle; B is the lathe bed, which carries a pair of ordinary headstocks; C is the saddle of the slide rest, which is caused to travel along the lathe bed in the usual manner by the leading screw, E ; D is a restholder, bolted down on the surfacing slide, for receiving and carrying any convenient form of tool-holder and slide; an ordinary short slide and Willis' holder is shewn in place and carrying a light fly-cutter. This cutter is driven from overhead by cutter is driven from overhead by
means of a cord or gut, which is means of a cord or gut, which is
kept strained in every position of the kept strained in every position of the
slide by means of the lever, G. The slide by means of the lever, G. The
shaft, F, and the leading $k c r e w, ~ E, ~$ shaft, F, and the leading screw, E ,
are driven from the lathe head by are driven from the lathe head by
suitable change wheels which of coursa vary according to the relative speeds required, but generally th shaft, F, at the baclis of the lathe bed runs at the same speed as the lath spindle. The surfacing slide carry ing \bar{D}, is caused to move across the saddle by means of the screw, H either by a handle in front or auto matically by means of a worm matically by means of a worm shaft, F, the motion of the worm, I shaft, F , the motion of the worm,
being commumnicated at will to the being commumnicated at will to the screw through a sliding clutch. The
surfacing-screw, H , is continued pas surfacing-screw, H , iscontinued clutch, and at the worm-wheel and clutch, and at
its end is fitted with a bearing and adjusting nuts, to run in a cross head, K , which cross head slides on guides, Lu, one each side of the screw. The shaft, F , carries a small wroughtiron miter wheel which rotates with the shaft, but, by sliding along it, is en abled to follow the saddle anywhere gears with a similar wheel below it attached to a short stud or shaft, having its bearings in a casting fast ened to the slide rest saddle. At the lower end of the vertical shaft is a spar wheel, one of a series of changes any of which may be used to obtain the required speed. There is also another longer vertical spindle placed at the back of the saddle, and which rotates in a long boss forming part of the same frame. At its lower end this spindle is also fitted to receive a change wheel, driven either directly from a wheel on the other spindle or through double or single intermediate carriers by the short, radial arm, M. The top of the long spindle has a large collar or disk, to which is fastened another disk or receiving plate, N. ..The fastening is m 2 de with two small bolts with T heads fitted into a circular undercut groove in the top plate, and passing through the collar below. The edge of one plate is graduated, and the other has a pointer attached toit, so that the top plate ma be moved round any distance, and fast ened by tightening the small nuts be low. The top surface of the upper plate has a number of holes in it which are tapped to receive screws, and also tapped to receive ecrews, and also larger hole in the center. These hole serve for fastening the various shape plates or cam plates to the disk. The sliding cross head, R, carries a suitabl rubber, 0 , placed just below the bearing of the surfacing screw, and the shape of this rubber depende upon the shape of the copy-plate, being sometimes a flat bar, at others a roller, and sometimesan angular point. The surface screw, H has its usual bearings in the metal of the reet saddle, but the collars to the front bearing are formed by four nut which allow of any end play being take up. The inside pair of nuts, must be screwed back when the irre ular mechanism is in wis has to slide endwise in its bearing has to slide endwise in its bearing On the lathe being started, the beve wheel on the shaft, F, drives the firs vertical spindle, and this motion is com municated by the change wheels to the copy plate attached to the top of the long spindle. The shaper plate in ro tating being pressed against by the rub ber, O, causes the cross head, K, and screw, II, to reciprocate or slide endwise, and the reciprocating motion o the screw is of course partaken of by the surfacing slide and cutting tools car ried by the slide. The velocity of this ment will vary according to the shape of the copy-plate move its shape will therefore govern the shape of the work pro duced. The rubber is kept in contact with the copy by a weight attached by a cord to the surfacing slide, passing over a small pulley in front. With the tools point-level with the center, with an eccentric circle for the copy-plate, and with
equal rotations of copy and work, when the tool's point de scribes a figure much smaller than the copy-plate the shape produced is cardoid, or heart-like, and this shape becomes more decided, and finally becomes looped as the tool gets near the center. When the figure is of the same size of the copy plate, its shape is also the same, namely, an eccentric. When the figure is made much larger than the copy-plate its shape is still somewhat the same as the copy, but its eccentricity is not increased.
It will be understood that when articles of irregular trans verse section only have to be tuirned, the work and copy plate generally make equal rotations; when the position of the shape has to vary there must be some slight difference be-

SLIDE REST FOR TURNING IRREGULAR BODIES.

 r in others even into the solid rock
boring insects.

Many of the lower forms of animal life possess powers of boring which, considering the soft materials of which they are made, seem very surprising. It is hard for us to under stand how such animals are naturally provided with tools ad equate in some cases for penetrating into the densest timber

We find no difficulty in understanding how shellish can bury themselves in the sand-the common cockle is an excel lent burrower in this yielding material. The razor-shell dwells in a long tube in the sand which he has formed by his own labors, from which he can only be extracted by darting down it a long barbed rod. Thi down it a long barbed rod. This
penetrates his shell and he is penetrates his shell and he is
withdrawn; but if this be not withdrawn; but if this be not
done with great rapidity he is endone with great rapidity he is en-
abled to escape, as he can move abled to escape, as he can move
very quickly in hishole. There is another shell belonging to the same tribe as the razor shell, which excavates for itself a hole in the solid rock. This animal hasno English name ; its Latin one is Pholas. It is to be met with in limestone rocks on the sea coast into which it bores boles to depth of several inches.
It is still a disputed point among naturalists as to how this boring is effected. Some think that the animal is enabled to secrete some acid which softens or dissolves the limestone, while others think that it is by the mechanical process of grinding that it is accomplished The preponderance of opinion seems to lie now with the latter view. Another boring shell is the well-known ship-worm or teredo This burrows into wood to a grea depth, and many an otherwise good ship has been rendered uu seawortly by the attacks of this indefatigable borer. Of course metallic coating to the vessel is a complete preservative against a complete
their attacks.
Our illustration represents a ween their speed. But by piving the a very are mery diffrent kind tion compared with the work, instead of the article being of a tree is not a shell-fish, but an insect. The parent, when turned of irregular transverse section, it is turned circular, but of irregular longitudinal section. For exa nple, by having a shaper-plate formed of a portion of a true spiral, tapering shafts can be produced. If the spiral copy have a rise of $\frac{1}{6}$ inch, the large end of the shaft will be $\frac{1}{2}$ inch larger in diameter than the small end, and the length of the taper will be equal to the distance traveled by the tool while the rubber has traversed the edge of the spiral copy-plate.
The drawing rollers of spinning machinery, handles for

THE RAVAGES OF THE WOOD-BORING BEETLE.
tarting levers, bolts with countergunk heads, and many from them is that starting levers, bolts with countersunk heads, and many from them is at that stage of its existence utterly urlike its
 be produced from suitably formed copy-plates; whlle forcabinet. unlike a beetle as an earth-worm is unllke a house-fly; this
making and for ornamental turning the applications of the is called the larva condition of the beetle; and it is equally mechanism are almost endless.
The device is interesting as its capacity is more extended The device is interesting as its capacity is more extended
than the Blanchard lathe, familiar to American mechanics.
of a tree is not a shell-fish, but an insect. The parent, when
about to deposit her eggs, selects a tree of suitable sizs, and commences her operations on the bark. At the bottom of the illustration will be observed a small inclined hole, and at the end of this a be:tle is to be seen; this is the little architect who, by the joint exertions of herself and her progeny, has so wonderfully penetrated the tree in every direction. Another hole, running horizontally across, will likewise be seen at the right of the figure, and in the end of this another beer.le may be seen similarly engaged. When the exertions of the insect have prepared a sufficiently large hole she then commences to lay her eggs. But before proceeding to this subject, let us just dwell for a moment upon the magnitude of the work sbe has accomplished.
The hole bored into the heart of solid wood is about fourteen or fif teen times longer than the body of the beetle, and the animal must, by the help of its jaws, tear away and remove a bulk of timber more than twenty times its own bulk. We shall gain some idea of the amount of la bor necessary for this, by considering what would be the corresponding work that should be executed by a man, were he to be equally adapted with the beetle for this kind of work He would have in a few days to bore into a mass of solid timber a cylindrical hole, about eighty or ninety feet lung, and about three feet in diameter.
The central part of the illustration shows another stage in the history of these tunneling operations. We will suppose that a beetle has finished the hole of which the two already described are the commencements. All along each of these will be seen little white spots; these represent the eggs which she lays as she proceeds. The long line in the center of the figure represents a part of the completed hole, along the sides of which the eggs are laid.
When the eggs of the beetle are hatched, the little anima' that comes true of every other insect, that in the early stages of its existence it is utterly unlike in appearance, in food, and habits, to the parents from whom it has sprung. Thus the dragon-
fly, with which we are all so families, and which is such an ornament to our streams, was, when young, an unattractive and somewhat ferociouslooking grub, wholly resident in the water, over which, when mature, it akims, but which it never touches. The food, too, of the larva of the dragon-fly is quite different from that of the mature insect.

This being understood, we shali not be surprised to find that when the eggs of the beetle we are describing are hatched. the young that come from them are quite unlike their parents. They are small white grubs, rather uninteresting in appearance, but endowed with a most tremendous appetite and vast powers of digestion. The food which supports the little grub is the solid wood of the tree itself. It will be remembered that each egg was deposited on the side of the hole, and there it remains attached until it is hatched; thus the little creature finds, the moment it becomes conscious of its existence, the food which nature intended for it surrounding it in boundless profusion. At once it commences to eat the wood that is under it, and thus it speedily excavates for itself a little hole, the bottom of which gradually deepens as the insect proceeds. Its brothers and sisters, likewise hatched about the same time, commence each to eat their small hole, and thus from the main tunnel a number of small holes gradually extend through the trunk, all commencing, of course, from the hole originally made by the parent insect.
Now, as the little grubs progress onwards, they, at the same time, grow in size, and their appetite consequently increasing, the hole gets gradually larger, and this is, of course also necessary to allow for their increased dimensions. Gradually they proceed farther and farther from the center, and approach nearer and nearer to the outside of the tree; bu just before they finally emerge, when they are just beneath the bark, a curiousichange comes over them. They have now grown to be as large as their parent, butstill they are grubs; they have not donned the legs and wings which are necessary for the perfect beetle, but the tree which has housed and fed them in their infancy still affords them shelter till their final development. As they get near the bark they cease to eat, and fall into an inert condition; but all this time a wonderful change is taking place within their bodies-they cast off their skin and are transformed into perfect beetles. Speedily they emerge from the tree to find themselves in a new and won drous world, and to use and enjoy those powers of flight which they have so recently and so curiouslyacquired. Truly this is a very astonishing history; we have seen one beetle boring into a tree, we see a hundred emerge from it; the solid substance of the trunk has afforded nourishment to the numerous offspring. There is no more interesting depart ment of natural history than that which treats of the habi tations of insects; and there is, perhaps, hardly any insect more interesting in this respect than this wood-boring beetle

SUBMERGED BJOYS ASA BASIS FOR STRUCTURES
The following, from a letter from Mr. Thomas Morris, of Carlton Chanbers, England, to The Engineer, appears to us to contain a good idea.

The purposes and situations of structures in deep wate are so numerous and various that every available principle becomes worthy of record. I suggest the application of sub merged buoys to such uses, and my reasoning is this. If you have a water-tight vessel with a certain floating power, sas equal to 100, and to that vessel you attach a weight equal to 110, and cast it into the water, both weight and float go to the bottom. But if they are connected by a line the weigh alone sinks to the bottom, and as soon as it has found its resting place the descent of the float ceases. It becomes stationary above the weight, with the length of the line between them. In this situa. tion the float possesses a re markable property; the original weight having ceased to nal weight having ceased to exert a sinking force, it can
only be farther depressed by a new load greater than its asnew load greater than its ascensive power of 100 . In still water a vessel wholly submerged has obviously great advantage in point of economy, perhaps four fold, over one partially immersed; but where
 the surface is agitated there is the further advantage that the submersion may be fixed at the dead water point, and uprights of small comparative sectional area alone be exposed to the action of waves. The figure shows a couple of these buoys applied to the cross section of a pier or jetty where the upright posts, horizontal bearers, platform, and parapet, oeing well connected and braced, would give firmness and the requisite degree of rigidity. It is supposed probable that some means of submerging the buoys may supersede the use of weights should the principle be practiCally adopted; and from the known effect of deep water cur rents, some kind of anchorage would be essential in situa tions exposed to their influence."
A Correction.-In our description of the Bolt Cutting Machine, manufactured by the Howard Iron Works, Buffalo N. Y., published on page 215, current volume, a typographi cal error occurred which might mislead some of our readers In the fifth lize the first word should be three, instead of "these," as the types made us say. The sentence should read The machine herewith illustrated has three dies in the cutter heod," etc.

IMPROVED PACRING STEAM DRYING CYLINDERS ON PAPER MACHINES,

We are informed that the invention we herewith illustrate has been applied to two hundred and twenty-five cylinders during the past year, and has been tested under pressure o seventy pounds with marked success.

The stuffing box is shown entire in Fig. 1, and in section in Fig. 2. A is the box containing the packing material, and B the packing nut. The box, A, has a flange, G, by which it is bolted to the end of the cylinder, with which it revolves the steam induction pipe, C, remaining stationary. The box A, is also provided with an internal shoulder, D.
The inner end of the induction pipe has two shoulders, , formed upen it. The packing, H, is of rubber, or an suitable material.

The action of the device is as follows: When steam is ad mitted to the cylinder, the pressure therein of the steam act upon the end of the pipe, C , to thrust it outward, whereupon
the shoulder, E , compresses the packing, H , and keeps it the sh
tight.

Though originally designed for steam drying cylinders on
paper machines, upon which it has been extensively tried and proved to be very satisfactory, it is obviously adapted to arious other uses.
Patented, through the Scientific Americaa Patent Agency une 8, 1869. For further information address W. B. Fowler patentee, Lawrence, Mass

Valuable Invention.

A fen weeks ago there appeared, in the Scientific Ameri an, an article calling attention to the great waste of labor in volved by the present method of raising bricks and mortar to the upper stories of buildings under construction, and asking if it were not possible for the genius of our inventors to produce a remedy for the evil. The American Builder says this question has been answered in the most practical manner by a Chicago builder, who has invented a machine by which two men can easily and rapidly accomplish the labor of several effecting a saving, not only in money and labor, but in time also.
The apparatus, which is destined to do away with the tedious practice of carrying the material for building up long ladders, endangering the lives of workmen, and involving such an amount of unnecessary work, is described as follows:
Two endless chains, made of any required length by a sim ple device, connected together at intervals of about a foot by iron cross-bars, pass at their lower extrem'ty over a broad pulley or wheel, located as in an ordinary windlass, such as is usually employed in raising stone where a crane is used and worked in a similar manner. The parallel endless chains thus connected pass over another broad pulley or revolving wheel, supported on four legs, much as a grind stone is usual ly placed. This upper pulley is put in any part of the build ing where the bricks may be wanted, usually in the inside The ordinary hods are used to raise the bricks and mortar with the addition of a broad, stout, iron hook projecting down wards at the end of that part of the hod containing the brick which is farthest removed from the shoulder when carrying The hod, being filled, is hooked by the contrivance mentioned to one of the cross-bars of the endless chain, the handle press ing upon the lower cross-bars and acting as a lever to kee the hod firmly in position; and, as two men work the wind lass is raised to any required hight. The hods can be placed as close together as their length will allow. The empty hods, a like manner, are hooked at the top of the machine on the descending side and received by the workmen on the ground Probably the best method of placing the machine is in the in-
terior of the building, when the legs supporting the upper prilley over which the parallel endless chains are made to pass
are placed so as to locate ine pulley directly over an aperture
through the loosely laid floor of the story where the material is required. These legs may be of any length, and the hods can be raised to the shoulders of the workmen who deliver their contents to the masons. The machine is already in practical operation, with the most satisfactory resulta, in a large building now erecting in Chicago, and two men raise easily four hods a minute to the fourth story. Of these hods three usually contain brick, and one mortar, thus furnishing all the requisite material for carrying on the work. The hods contain on an average sixteen bricks each, and consequently in a day of ten hours, two men can raise nearly twenty-nine thousand brick with the mortar necessary for laying them. The laying of two thousand bricks is, we believe, a good average day's work for a mason, and two men are by this device enabled to raise the material for fourteen bricklayers. Those ac bled to raise the material for fourteen bricklayers. Those ac
quainted with the business will readily perceive the advan quainted with the business will readily perceive the advan
tages of the invention. Of course men are required to fill tages of the invention. Of course men are required to fill
the hods at the bottom and empty them at the top, but by no means what has been the usual number for doing the work are required. The apparatus simply substitutes a vastly bet ter method for raising the material.

Professor, Chandler on the Purity of Croton water

The water supplied to the citizens of New York, at the liberal rate of sixty-five gallons to each person daily, is col lected by the various branches of the Croton river from an area of 338 square miles in Westchester, Putnam, and Dutchesscounties. The character of this water-shed is a suff cient guaranty of the purity of the water. The surface of silicious gravel rests on hard Laurentian gneiss, and is open pasture or woodland, with few swamps. No factories linc the streams, which are liable to contaminate the water with refuse chemicals, and no towns or large villages exist anywhere in the district to pollute the waters with sewage. A recent survey of the water-shed has indicated fiftetn points at which dams can be erected for the creation of largestorago reservoirs, whose joint capacity would be $67,000,000,000$ gal lons, or a supply, at the present rate of consumption, for 1,000 days. One of these dams, 650 feet long, is now in pro cess of construction at Boyd's Corner, in Putnam County cess of construction at Boyd's Corner, in Putnam County
twenty-three miles from the mouth of the aqueduct. When twenty-three miles from the mouth of the aqueduct. When
this dam is completed it will flood an area of 303 acres, and the reservoir thus produced will contain $3,369,206,857$ gallons or a supply for fifty to fifty-five days of dfought
Examinations were made of Croton water which had been in contact with lead for different lengths of time, unde usually occurring circumstances, of which the following are the results

1. A gallon of Croton water from a lead-lined cistern, in which ithad stood for several weeks, was found to contain 0.06 grain of metallic lead.
2. A gallon of water which had remained six hours in the lead pipes of the chemist's residence yielded $0 \cdot 11$ grain metal lic lead, a considerable portion of which was visible to the eye, in the form of minute white spangles of the hydrated xycarbonate ($\mathrm{PbO}, \mathrm{HO}+\mathrm{PbO}, \mathrm{CO} 2$)
3. Water drawn from one of the hydrants of the Bchool of Mines Laboratory, in the middle of the day, when the wate was in constant motion, yielded traces of lead. This wate reaches the school through about 100 to 150 feet of lead pipe These results indicate the source of many hitherto unac countable cases of lead poisoning, and are of a character to alarm the residents ef New York, and to lead them to adop precautionary measures for protection againgt this insidious cause of disease
Many have already introduced as a substitute for lead pipe the "tin lined" or 'lead-encased block tin" pipe.

Chinese Pottery and Glass.
Po Shan, in the Lanfoo valley, contains extensive poiteries hree different kinds of ware being manufactured-the fin straw-colored porcelain, the common red ware, and a peculia shining black ware, very light, that looks like metal (lead) and is valued in districts where fuel is dear, in consequenc of its rapid heaing qualities. The red paving tile ard the large red water kongs are also made here. Yen-shing ba extensive glass manufactories of which foreigners are little aware. I was much surprised at the quantity and excellent quality of the glass. There is a quarry in the immediate neighborhood, from whence is obtained the stone which, f , verized and smelted with nitrate of potassa, forms the glass This stone is s:milar to granite, only of a beautiful lilac color Nearly every house in the city of Yen-shing, is either a glas manufactory, or a shop where glass ware is sold. We found hem blowing glass, running it into rods and plates, making window glass, bottles, beads, lanterns, and ornaments a every description. Some very beautiful opaque bottles of different shapes and finely painted I procured here. Th glass seemed extremely pure, and sold at very reasonabl prices; the rods of pig.glass about 30 inches long, and 1 ncles in diameter, costing 30 cash a catty, or less that 1 d per pound. Saltpeter, much used in the manufacture of glass, is found in the vicinity of Po-shan-shien.-J. Marikam

Iceberg Alarm,

Mr. Charles Dion, of this city, proposes to place an appara us on board of steamers and other vessels, so arranged a o sound an alarm on approaching the vicinity of an icebcrg. The device is arranged on the bottom of the vessel, and is of uch a nature that when the keel strikes any very cold strata of water the alarm is sounded
It is well known that icebergs refrigerate the water around them to a considerable distance. Mr. Dion's instrument wil shibit the exact temperature of the water balow the vessel at all times.

