part of the investigators. First, MM. Evrard and Beaumetz tell us that the head was placed on a table covered with compresses, so as to show the amount of blood which would be obtained. The face was then bloodless, of a pale and uniform hue; the lower jaw had fallen and the mouth was gaping. The features which were immovable, bore an expression of stupor, but not of pain. The eyes were open, fixed, looking straight before them; the pupils were dilated; the cornea had already commenced to lose its luster and transparency Some sawdust still stuck here and there to the face, but there was no vestige of any either on the inner su
lips or on the tongue. This is an important fact.
The opening of the ear was then carefully cleansed, and The opening of the ear was then carefully cleansed, and
the experimenters applying their lips as closely as possible the experimenters applying their lips as closely as possible
to the orifice, called out three times in a loud voice the name of the criminal. Not a feature moved; there was no muscular movement, either of the eyes or on the face. A piece of charpie, saturated with ammonia, was next placed under the nostrils; there was no contraction of the alm nor of the face.
The conjunctiva of each eye was deeply and several times The conjunctiva of each eye was deeply and several times
successively cauterized with nitrate of silver; the light of a successively cauterized with nitrate of silver; the light of a
candle was brought within two centimeters distance of the cornea, and yet no contraction was observed either in the eyelids, eyeball, or the pupils.
Electricity was then resorted to as a more powerful means of excitement of the nervous system. One of Legendre's electric piles, with a current of moderate intensity, determined vivid contractions in such of the muscles of the face
as were directly subjected to its influence. But was this evidence, say the investigators, of a feeling of pain expressed dence, say the investigators, of a feeling of pain expressed
by the physiognomy? Certainly not: and this for two reaby the physiognomy? Certainly not: and
sons; first, because, whilst the experiment affected the left sons; first, because, whilst the experiment affected the left
side of the face, the muscles of the right side retained their side of the face, the muscles of the right side retained their
expression of stupor, even when the opposite side was the expression of stupor, even when the opposite side was the
most convulsed; next, because the electrized parts themselves resumed their cadaveric impassibility as soon as the electric current ceased to animate them.
The integuments of the cranium were then incised from the nape of the neck to the root of the nose; the bones of the skull were uncovered down to the zygomatic arches. In performing these incisions, say the investigators, many nerves were cut, of which the section would have been most painful; the muscles of the neck and temple were still alive, since they retracted energetically under the knife; notwithserved. At that time three-quarters of an hour had not yet elapsed since the execution. The skull was then sawn through, and the brain removed; the muscles of the face and those of the jaws continued to obey the electric current, as when the brain was unimpared. The integuments had then begun to get cold, and yet, with an intense electric curthen begun to get cold, and yet, with an intense electric curhour after the extraction of the brain. Nobody will say that hour after the extraction of the brain. Nobody will say that
the brain still continued to act and think, though the musthe brain still continued to act and think, though the mus-
cles still responded to electric excitation. Beyond doubt the brain was as lifeless during the first part of the experiment as during the second. Indeed, at the very moment of the ex ecution, through the sudden interruption of circulation, and consequent syncope, the brain was quite as unable to feel as to express its sensations.
This view MM. Evrard and Beaumetz base on the condition of the brain and its envelopes when examined. There was no fluid in the large arachnoid cavity; the vessels of the pia mater were almost bloodless, and filled with aëriform fluid; the lateral cavernous sinuses were absolutely bloodless. The ventricles contained scarcely a teaspoonful of fluid, and in no situation was the brain injected. These facts entirely overthrow what has been advocated by some with regard to the persistence of the cephalo-spinal liquid, and of cerebral nutr tion.
Tho thoracic viscera were also examined. The heart was
found to be enormous, and was seen to beat under the perifound to be enormous, and was seen to beat under the peri-
cardium; the lungs shrunken, and of a blackish hue. There cardium ; the lungs shrunken, and of a blackish hue. There
was an enormous dilatation of the right auricle, and the venttricle of the same side was also dilated and tense. The left auricle was remarkably small, hard, and retracted. The right auricle and ventricle were filled, not with blood, but with an airy fluid. Pressure reduced their volume to threefourths of their apparent size. Whilst the contraction of the auricles persisted, those of the ventricles becameless frequent. A quarter of an hour after, the auricle and ventricle were once more swollen and distended, and it seemed that air, solicited by the contraction of the auricle, came from the vena cava (which was bloodless and dilated), as well as from the brachiocephalic venous trunks. An hour and a half after the execution, the contractions of the right auricle were still perceptible, though rare and weak; the right ventricle was then tible, though rare and weak; the right ventricle was
wrinkled, shrunken, and could not contract in the least.
The results of these experiments are in entire accordance with those which bad already been obtained in 1803 by the Medical Association of Mayence, which had been led to inves tigate the subject by the same motives as had actuated MM Evrard and Beaumetz. The experiments then made, such as calling out the names of the criminals in the respective heads, were much the same as those which I have just related.
The falling of the lower jaw, which takes place instan-; taneously, serves to explain (io a certain extent), according to MM. Evrard and Beaumetz, all the extraordinary stories of
the heads biting each other which have recently been propagated as coming from Sanson and other executioners. The fact would be a mere coincidence, due to the position of the various heads in the basket. Besides, the experimenters as sert that Heindrich, the present executioner, has positively assured them that he has never noticed this fact, nor indeed any sign what
tinés.-Lancet.

A PRIP OVER THE CEATRAL PACIFIC RAILROAD.

A contributor to the American Churchman thus graphically

 describes a trip over the Central Pacific Railroad:The real difficulty in the way of engineering, in connect ing the two oceans, occurs on the western side. It is all plain sailing on the eastern, till the road descends by a steep grade and through a pair of long tunnels into the Salt Lake Basin by Weber and Echo Cañons. The level plains of Ne braska, and the high table land of the Laramie Plains, by which the road ascends and crosses the Rocky Mountains, at an altitude of 8,000 feet, offered no difficulty to the engineer The trouble on the Union Pacific was from the Indians-th warlike Sioux and Cheyennes-and from the fact of the grea distance from supplies and material. But on the western side
the engineering problem was the great one from the start. the engineering problem was the great one from the start.
Immediately after leaving Sacramento the ascent begins Immediately after leaving Sacramento the problem was to ascend the Sierra Nevada range to hight of 7,000 feet within a distance of 80 miles
There was no getting round the thing. The mountains
tood there barring the way eastward. They would not get stood there barring the way eastward. They would not get out of the way for a railroad, and the "passes," by which
travelers in the old time surmounted the obstacle, are all rom 5,000 to 8,000 feet at their hight above the sea level.
It was, indeed, the common talk in California that it was mpossible to carry a railroad up the western face of the preposterous.
It is easy enough to mount it from the cast, for the high able land of the " great desert" comes up to its eastern side from 4,000 to 5,000 feet. In fact, the Sierra Nevada is the western face of an embankment-the embankment being half a continent-and this, the guttered and storm-washed ont of it towards the Pacific.
The point was to get up this rocky face to the table land it ound ϵ, and to do that in a very short space, for the conti ent breaks off short and comes down sheer.
But California energy, using 10,000 patient Chinamen, solved the problem, and took the track up and over, along the mountain side, through deep and long tunnels, across rifted chasms in the rocks, over headlong torrents and by the dizzy edges of abysses thousands of feet down, and " around Cape Horn.'
But even when the work was done, the snow avalanche, or he earth slide from the mountain round whose side, half up, the iron path winds twisting upward, might sweep the work away, or o
or months.
There was a remedy also for this in the skill and determin. ation of the men who did this work. They just roofed in heir road for fifty miles!
They took the giant stems of the pines and braced them gainst the mountain side, framing them and interlacing hem beam with beam. They sloped the roof sustained by massive timbers, and stayed by braces laid into the rock,
and covered with heavy plank, up against the precipice, so and covered with heavy plank, up against the precipice, so
that descending earth or snow would be shot clean over the safely housed track into the pine tops below ; and eo they run their trains in security under cover, and have conquered the now in its own domain.
There is one drawback. These "snow sheds" shut out orty odd miles of the most magnificent scenery on the whole rip-notably Donner Lake, and the deep valley inclosing it which lies straight down below the passing trains.
It was up this slope I traveled yesterday atternoon and evening. It takes two locomotives to persuade the trains to scend. I found a place just afterleaving Sacramento, on the foremost, and had a mountain ride, which I think must be nequaled considering the mountainsand the horse.
First there was the Sacramento valley-oak opening all which, to most of your readers needs no description. Only California is rich in oaks, and these, Michigan or Wisconsin California is rich in oaks, and these, scattered about as thick-
ly as apple trees in an old orchard, are the live oak, smally as apple trees i.
Then came the "foot hills" and a gradual change in the wood growth. The Manzanilla wood, with its shining stem and dark green glistening leaf, mingled with the oaks and the buckeye, which, in California, is a many stemmed busb, springing from a common root hung heavy with its pear shaped fruit, fil
Finally, we came into the realm of the conifera, and the tall stems sprang up smooth, branchless, and tapering, rear ing their green coronals to the sky.
We are going up the mountains! In a valley on one hand are these mining villages now beautiful villages in the State re these wning villages now. Down the mountain side, on the other, ran the water, led in sluices like a mill race, around point here and a bend there, and across a gorge yonder-
the water to be used, under the mighty power its descent gives it, to tear the hill side down and wash the rocks to pieces in "hydraulic mining"-mining, that is, which con-
sists in discharging a stream of water, with a head of a few sists in discharging a siream of water, with a head of a few
hundred feet, full in the face of a hill side till it is knocked into bits!-bits which contain gold, of course, or are supposed to.
But these too are left, as we go clanking on through pitchebs, coughing and straining in the tug up the steepest grade ye ventured by any engineer.
The day died out before we reached the summit, but died into a cloudless moonlight so brilliant, so silvery white in the flood of light it poured acrnes land and sky, that one sent

Moonlight in the mountains, and such a moonlight is something to be remembered for life. I lost all sense of the poor, every-day world, forgot so vulgar a thing as a railway car, even the clapk of the engine seemed to come softened as rom far away; and I was sailing over pine-clad mountains silvery white, in an air of balm and fragrance, and, in fact, I think was about half asleep when my friend, the engineer, plucked my sleeve-we were doubling Cape Horn!
Round the jutting mountain wall, so called from its bold advance into the valley, and its precipitous face, the road winds like a ribbon. No human foot had 6 ver trodden this hight, as far as man may judge, till the first "hand" was owered down to lash himself to a tree and begin, with pick and spade and crow, to cut a shelf along the dizzy hight Not even an Indian trail had ever passed where the long rain was passing now. The foot-sure savage had never ven ured here. Three thousand feet sheer down lay the va ley, in the moonlight like a lake, the mist slowly rising and swaying, silvered by the descending light. The feath ery tops of the rock anchored pines rose out of the nist far below. Across the valley the other mountain face frowned darkly, shaggy with bristling pines from base to summit.
That was one side.
On the other rose the almost perpendicular wall of the mountain, round which we were rushing on a shelf cut into the rock wide enough for the rails, of course-what need of anything more, when they are treble-spiked, and the rolling stock of the best and the engineer the salest man to bo stock of
found?
If we went off? If a broken rail should be ahead, if a rock should have rolled down beyond the curve yonder? Well, 1 suspect it would not make much difference, in that case whether one was on the engine or in a car yonder. It would amount to the same thing, I think, when we all reached the valley together
But there has never been an accident, and i it is just such places as this that are most carefully guarded, and where all prudence and forethought and skill are engaged to be active
I do not know that I have been able to give you half an idea of the magnitude of this undertaking, which has anni hilated these weary desert spaces, and brought East and West together. If I have said much about it, it is because after all, looking at it as I have, it seems to me the railroad across the continent, the double iron bands that tie Omaha and Sacramento each together, over the mountains, across vast deserts where human life finds nothing to sustain it, through the territories of tribes, too, a few years ago a terror to the whole border-it seems to me the railroad is really the to the whole border-it seems to me the
most wonderful thing one sees, after all.

New Attractions for the Central Park.

The New York Historical Society is about to give the most gratifying proof of being alive to the interests of art and of the public improvement. According to the Evening Post it proposes to establish in the Central Park a Museum of Histo y, Antiquities, and Art
By an act of the legislature of the state of New York, the Central Park Commissioners are authorized to set apart, and appropriate to the Historical Society such portion of the grounds lying near the Fifth avenue, between Eighty-first and Eighty-fourth streets, as may $b:$ required for the erection of suitable buildings for this museum.
The plan contemplates the removal of the rich treasures of the society from the building in the Second avenue, which has long been too small for their proper disposition and display, to a new and larger building in the Park, where, under proper restrictions, they shall be readily accessible to the public.
In the department of history the collections of manuscripts, maps, charts, newspapers, coins, and medals, will make a most conspicuous and interesting feature.
In the department of antiquities the Abbott collection of Egyptian memorials, the Nineveh sculptures presented by Mr. James Lenox, and the numerous relics of the aborigines of the American continent, will attract great attention. These valuable curiosities have long remained packed in the society's present buildings, for want of space to open them for exhibition

The department of art is that which will prove the most popular with the visitors in general, and this will contain, at
the very beginning, the well-known collection of the New York Gallery of the Fine Arts, the Bryan collection, and the Audubon collection, constituting the nucleus of a gallery which, in time, we may confidently hope will be worthy of the city, and of the beautiful pleasure ground in which it will be placed.
The New York Historical Society, in taking this step, has entitled itself to the hearty suppport of this community and o the thanks of the lovers of art throughout the United to the
States.

Glass for Windows.-A window glazed with ground glass is almost always unsatisfactory. The vitrified surface being removed, the smoke and dust discolor it, and make it difficult to be kept clean. White enamelled glass, having a semi-opaque figure upon a transparent ground, is more satis factory. If the windows of a dining-room were filled with clear light pink glass, the effect of the room would always be pleasant and comfortable. The greatest care should be taken to avoid introducing dark colors.

The first bar of tin ever made in the United States has been presented to the Secretary of the Californis Pinneers. It is eight inches long, four inches

Turning Irregular Forms

We illustrate from the Engineer an ingenious slide rest, de signed by Mr. W. H. Northcott for turning articles of irregular sections. This system differs from the Blanchard and other lathes, because it is applicable to ordinary slide and screw-cutting purposes, as well as to turning irregular forms. A is the center line of lathe spindle; B is the lathe bed, which carries a pair of ordinary headstocks; C is the saddle of the slide rest, which is caused to travel along the lathe bed in the usual manner by the leading screw, E; D is a rest holder, bolted down on the surfacing slide, for receiving and carrying any convenient form of tool-holder and slide; an ordinary short slide and Willis' holder is shewn in place and carrying a light fly-cutter. This cutter is driven from overhead by cutter is driven of a cord or gut, which is means of a cord or gut, which is
kept strained in every position of the kept strained in every position of the
slide by means of bhe lever, G. The slide by means of the lever, G. The
shaft, F, and the leading screw, E, shaft, F, and the leading screw, E ,
are driven from the lathe head by are driven from the lathe head by
suitable change wheels which of coursa vary according to the relative speeds required, but generally the shaft, F, at the back of the lathe bed runs at the same speed as the lathe spindle. The surfacing slide carry ing \bar{D}, is caused to move across the saddle by means of the screw, H either by a handle in front or auto matically by means of a worm matically I, driven by a worm on the shaft, F, the motion of the worm, I shaft, F , the motion of the worm,
being commumnicated at will to the being commumnicated at will to the screw through a sliding clutch. The
surfacing-screw, H , is continued pas surfacing-screw, H , iscontinued clutch, and at the worm-wheel and clutch, and at
its end is fitted with a bearing and adjusting nuts, to run in a cross head, K , which cross head slides on guides, Lu, one each side of the screw. The shaft, F , carries a small wroughtiron miter wheel which rotates with the shaft, but, by sliding along it, is en abled to follow the saddle anywhere gears with a similar wheel below it attached to a short stud or shaft, having its bearings in a casting fast ened to the slide rest saddle. At the lower end of the vertical shaft is a spar wheel, one of a series of changes any of which may be used to obtain the required speed. There is also another longer vertical spindle placed at the back of the saddle, and which rotates in a long boss forming part of the same frame. At its lower end this spindle is also fitted to receive a change wheel, driven either directly from a wheel on the other spindle or through double or single intermediate carriers by the short, radial arm, M. The top of the long spindle has a large collar or disk, to which is fastened another disk or receiving plate, N. ..The fastening is m 2 de with two small bolts with T heads fitted into a circular undercut groove in the top plate, and passing through the collar below. The edge of one plate is graduated, and the other has a pointer attached toit, so that the top plate ma be moved round any distance, and fast ened by tightening the small nuts be low. The top surface of the upper plate has a number of holes in it which are tapped to receive screws, and also tapped to receive ecrews, and also larger hole in the center. These hole serve for fastening the various shape plates or cam plates to the disk. The sliding cross head, R, carries a suitabl rubber, 0 , placed just below the bearing of the surfacing screw, and the shape of this rubber depende upon the shape of the copy-plate, being sometimes a flat bar, at others a roller, and sometimesan angular point. The surface screw, H has its usual bearings in the metal of the reet saddle, but the collars to the front bearing are formed by four nuts which allow of any end play being take up. The inside pair of nuts, must be screwed back when the irre ular mochanm is in has to slide endwise in its bering has to slide endwise in its bearing On the lathe being started, the bevel wheel on the shaft, F, drives the firs vertical spindle, and this motion is com municated by the change wheels to the copy plate attached to the top of the long spindle. The shaper plate in ro tating being pressed against by the rub ber, O, causes the cross head, K, and screw, II, to reciprocate or slide endwise, and the reciprocating motion o the screw is of course partaken of by the surfacing slide and cutting tools car ried by the slide. The velocity of this ment will vary according to the shape of the copy-plate, move its shape will therefore govern the shape of the work pro duced. The rubber is kept in contact with the copy by a weight attached by a cord to the surfacing slide, passing ove a small pulley in front. With the tools point-level with the center, with an eccentric circle for the copy-plate, and with
equal rotations of copy and work, when the tool's point de scribes a figure much smaller than the copy-plate the shape produced is cardoid, or heart-like, and this shape becomes more decided, and finally becomes looped as the tool gets near the center. When the figure is of the same size of the copy plate, its shape is also the same, namely, an eccentric. When the figure is made much larger than the copy-plate its shape is still somewhat the same as the copy, but its eccentricity is not increased.
It will be understood that when articles of irregular trans verse section only have to be tuirned, the work and copy plate generally make equal rotations; when the position of the shape has to vary there must be some slight difference be-

SLIDE REST FOR TURNING IRREGULAR BODIES

 r in otkers even into the solid rock.
boring insects.

Many of the lower forms of animal life possess powers of boring which, considering the soft materials of which they are made, seem very surprising. It is hard for us to under stand how such animals are naturally provided with tools ad equate in some cases for penetrating into the densest timber

We find no difficulty in understanding how shellish can bury themselves in the sand-the common cockle is an excel lent burrower in this yielding material. The razor-shell dwells in a long tube in the sand which he has formed by his own labors, from which he can only be extracted by darting down it a long barbed rod. Thi down it a long barbed rod. This
penetrates his shell and he is penetrates his shell and he is
withdrawn; but if this be not withdrawn; but if this be not
done with great rapidity he is endone with great rapidity he is en-
abled to escape, as he can move abled to escape, as he can move
very quickly in hishole. There is very quickly in hishole. There is
another shell belonging to the another shell belonging to the same tribe as the razorshell, which excavates for itself a hole in the solid rock. This animal hasno English name ; its Latin one is Pholas. It is to be met with in limestone rocks on the sea coast into which it bores boles to depth of several inches.
It is still a disputed point among naturalists as to how this boring is effected. Some think that the animal is enabled to secrete some acid which softens or dissolves the limestone, while others think that it is by the mechanical process of grinding that it is accomplished The preponderance of opinion seems to lie now with the latter view. Another boring shell is the well-known ship-worm or teredo This burrows into wood to a grea depth, and many an otherwise good ship has been rendered uu seawortly by the attacks of this indefatigable borer. Of course metallic coating to the vessel is a complete preservative against a complete
their attacks.
Our illustration represents a ween their speed. But by piving the a very slow mory diffrent kind tion compared with the work, instead of the article being of a tree is not a shell-fish, but an insect. The parent, when turned of irregular transverse section, it is turned circular, but of irregular longitudinal section. For exa nple, by having a shaper-plate formed of a portion of a true spiral, tapering shafts can be produced. If the spiral copy have a rise of $\frac{1}{6}$ inch, the large end of the shaft will be $\frac{1}{2}$ inch larger in diameter than the small end, and the length of the taper will be equal to the distance traveled by the tool while the rubber has traversed the edge of the spiral copy-plate.
The drawing rollers of spinning machinery, handles for

THE RAVAGES OF THE WOOD-BORING BEETLE.
tarting levers, bolts with countergunk heads, and many from them is that starting levers, bolts with countersunk heads, and many from them is at that stage of its existence utterly urlike its
 be produced from suitably formed copy-plates; whlle forcabinet. unlike a beetle as an earth-worm is unllke a house-fly; this
making and for ornamental turning the applications of the is called the larva condition of the beetle; and it is equally mechanism are almost endless.
The device is interesting as its capacity is more extended The device is interesting as its capacity is more extended
than the Blanchard lathe, familiar to American mechanics.
of a tree is not a shell-fish, but an insect. The parent, when
about to deposit her eggs, selects a tree of suitable sizs, and commences her operations on the bark. At the bottom of the illustration will be observed a small inclined hole, and at the end of this a be:tle is to be seen; this is the little architect who, by the joint exertions of herself and her progeny, has so wonderfully penetrated the tree in every direction. Another hole, running horizontally across, will likewise be seen at the right of the figure, and in the end of this another beer.le may be seen similarly engaged. When the exertions of the insect have prepared a sufficiently large hole she then commences to lay her eggs. But before proceeding to this subject, let us just dwell for a moment upon the magnitude of the work sbe has accomplished.
The hole bored into the heart of solid wood is about fourteen or fifteen times longer than the body of the beetle, and the animal must, by the help of its jaws, tear away and remove a bulk of timber more than twenty times its own bulk. We shall gain some idea of the amount of la bor necessary for this, by considering what would be the corresponding work that should be executed by a man, were he to be equally adapted with the beetle for this kind of work He would have in a few days to bore into a mass of solid timber a cylindrical hole, about eighty or ninety feet lung, and about three feet in diameter.
The central part of the illustration shows another stage in the history of these tunneling operations. We will suppose that a beetle has finished the hole of which the two already described are the commencements. All along each of these will be seen little white spots; these represent the eggs which she lays as she proceeds. The long line in the center of the figure represents a part of the completed hole, along the sides of which the eggs are laid.
When the eggs of the beetle are hatched, the little anima' that comes true of every other insect, that in the early stages of its existence it is utterly unlike in appearance, in food, and habits, to the parents from whom it has sprung. Thus the dragon-

