Holsting Stone in quarries.

The dangers that attend the men who go down to the se in ships and occupy their business in great waters, are scarce ly greater than those which await the toilers who descen into the bosom of the earth to win the mineral treasures to which this country, in particuler, owes so much of her great ness. Whether it be in the mine or in the quarry, death or disablement are there awaiting the unfortunates who may happen to fall a prey to them. In the case of mines, we hear too frequently of fatal catastrophes, but, strangely enough the disasters which occur in quarries rarely find their way into the columns of the press, perhaps because each disaster is, in itself, too insignificant as compared with the wholesale slaughter of a colliery explosion. We have good reason, how ver, to know that the annual loss of life and limb, in quarry ing operations is by no means trivial; unfortunately, too, large proportion of these quarry accidents are more or les preventible by improvements in the hoisting machinery and appliances used
A large quarry, in full work, presents a considerable area of operations, and, as a rule, there is but one engine to hois the material ; this is usually placed on the edge of the quarry at the end of the tramway, along which the stone is taken when raised. The engine is generally on the surface ground but a sort of step or recess is cut close alongside it, and whose level is about ten feet lower; the tramway is brought to the odge of the quarry along this step so that the lorries for the stone are beneath the engine level. In a large and deep quarry it is evident that nothing in the way of a jib crane can be made available, and a gantry and traveler would be too expensive, even did such an apparatus give sufficient scope to reach all the area in work. Instead, therefore, of either, the following plan is adopted. A large chain is stretched from the enginehouse across quite to the other side of the quarry and there secured, but not permanently so, this end bein shifted from time to time, as the position of the stone being hewn requires. On this chain a sort of carriage runs; it is something like an iron block, with two sheaves set side by side in the direction of their diameters, not of their axis They are wide and deep enough in the grooves of their edge o run on the chain as on a rail. This block carries a rea lock, or what answers to one, suspended under but close to the chain; through this the rope or chain for lifting passed.
It will be evident that the hoisting rope has a merely verti cal action, but the block,or " horse," as it is technically called gives both a vertical and horizontal motion, as the chain is most generally on a considerable inclination.
The modus operandi is as follows: When a certain stone i to be raised, the chain is moved over it and the quarry end made fast. The "horse" is run along the chain till "plumb" over the stone. A "toggle" or pin is secured in a link behind it to prevent it moving down the slope of the chain, and the hoisting rope is payed out and the stone hooked on, which is aised till the lifting hook reaches the "horse," when it is secured to it. The engine then draws the "horse" along the chain till the stone is fairly brought out of the quarry, and over the step already described, as well as over a lorry placed there in readiness. A " toggle" is put into a link of the chain to prevent the " horse" going back, the stone is lowered into the lorry, and the operation is complete.
Any person with the most moderate knowledge of engineer ng must perceive that, however cheap and convenient this arrangement may be, it is fraught with danger to those work ing or passing beneath the chain; the very best chains care ully tested are uncertain affairs, even when subjected to imple statical strain, and the strain of the main, or as wo may term it, " gantry" chain in a quarry is not a purely sta ical one by any means, as the "horse," when it begins t move, "jumps" over tbe links sufficiently to cause a consider able "jar," which, as a matter of course, is constantly break ing the chain,or if the hauling chain or rope from the engine happen to break, the "horse" runs violently down the incline of the chain, and the latter, already, perhaps, loaded nearly its limit of strength, succumbs to the vibration and th stone and ends of the fractured chain, in all probability, fal n some luckless workmen beneath.
We have good reason to know that appalling accidents from this cause are common, a fact scarcely to be wondered at, seeing that there is no adequate inspection of the arrange ments of quarries, and the chains and whole apparatus ar f inferior quality in too many instances.
We will proceed to sketch the outlines of an arrangemen which we considerto present some ad vantages over that already described. The chain should be abolished altogether, and either a steel wire rope or a rail substituted. The rope would be little, if at all, more expensive than a chain,while it would be infinitely more trustworthy; less power, too, would suf fice to raise the loads, as the wheels of the "horse" woul have a comparatively smooth and uniform surface over which to travel. We believe a rail might be arranged made o round iron jointed much as a gas pipe is, the ends of the joint sockets being rounded on their outer edges to give freer pass age to the wheels of the "horse." Instead of the "toggle" used with the chain, to prevent retrograde motion, a "clip" should be put on the rail (or rope) made of two pieces of iron hinged at one end, and with a coach screw at ihe other, each half being nearly semicircular in the center; this part would embrace the rail, and, if screwed up tightly, would preven backward motion, or at the worst would act as a brake if the strain were too much for it. As to the catenary formed by a chain or rope, the rail would equally well assume that curve as of good iron its diameter need not exceed by more than without a weld, would be reliable to an extent such as the
very best chain can never equal. This round iron rail arrange ment wou.

Pyrometers

A trustworthy means of determining with accuracy th high temperatures of furnaces, or any elevated temperatur xceeding that of boiling mercury, has not as yet, perhaps been successfully secured. The earliest pyrometer which ac ually came into use was that of Wedgewood, invented about 1780. The principle on which this invention was founded is he well-known property of clay to contract under the action of heat. In form, the pyrometer of Wedgewood was extreme y simple. It consisted merely of a gage for measuring the dimensions of certain little clay cylinders before and afte heir subjection to the heat of the furnace. The test was in tself a very rude one, but the uncertainty of the indication of the instrument was increased by the fact, subsequently dis covered that clay may contract under the influence of a com paratively low temperature, long continued, to as great a de gree as under a higher or less duration.
It was proposed, at about the same time with the originatio of Wedgewood's invention, to construct a thermometer fo high temperatures on the plan of the mercurial thermomete employing a fusiblealloy instead of mercury, and a tube of clay enamel, or translucent porcelain, instead of glass. Thi was the conception of Achard, and it has a prima facie plausibility in its favor; but it is not known to have been reduced to practice. In fact, considering the liability of the porcelain o contract in the furnace-the property from which the py ometer of Wedgewood derives all that it has of practical tility-the indications of the high-temperature thermomete here proposed would be liable to uncertainty in a very high egree. Several very distinguished physicists have en deavored to reach a more satisfactory solution of this difficult practical problem by availing themselves of the expansibilit of air under high temperatures. These efforts have been to a certain degree successful; but the methods to which they have conducted depend for their accuracy upon the truth of the assumption, not yet fully established, that the expansi bility of gases at the highest artificial temperatures follow mentally verified.
One of the most promising methods of pyrometric measure ment which has yet been proposed is the suggestion of Pro essor Edmond Becquerel, of Geneva, and is founded on th rinciples of thermo-electricity. In the Exposition of 1867 Mr. Ruhmkorff, of Paris, exhibits a thermo-electric pyromete constructed under the direction of Professor Becquerel, which In the experimental trials to which it has been subjected has furnished indications remarkably consistent with each ther; while it is free from complication of parts and appar ently capable of being made practically available for all th uses for which such an instrument is needed. The thermo lectric combination employed by Mr. Becquerel is a singl couple formed of two equal wires of platinum and palladium, each being one millimeter in diameter and two meters in length, united by one extremity in a junction formed by bind ing them firmly together with a fine platinum wire. The wo elements, which are placed parallel to each other, are in contact to the extent of about one centimeter at the junction n order to keep them separate for the rest of their length the palladium wire is passed through a tube of porcelain and this tube, with the two wires, is subsequently introduce into a larger tube of the same material, which last is to b xposed to the heat of the furnace. Both tubesare then filled with sand. The two wires are suitably connected at thei outer extremities with the binding screws of a Weber's gal and the developed currents has been prepared by Mr. Becquerel by comparing the indications of an air pyrometer with those of the electric pyrometer when both are similarly expose side by side. The divisions of this scale are equivalent to ten degrees Centigrade each.
It cannot yet be said, perhaps, of any form of pyrometer unless of that of Wedgewood, which, as we have seen, is un trustworthy, and which at best indicates differences of tem perature very imperfectly, that its use for practical purpose entirely unattended with inconvenience; but the electric yrometer of Mr. Becquerel seems to come as near to fulfill g this condition as any that has yet been suggested. Barnard's Report on the Industrial Arts.

Prize Offered for a Machine to Se

The Government of India, after communication with vari us agricultural and horticultural societies in India, and with persons interested in the subject, has arrived at the conclu ion that the only real obstacle to the development of an extensive trade in the fiber of Rheea or China-grass, is the want of suitable machinery for separating the fiber and bark from the stem, and the fiber from the bark; the cost of effect ng such separation by manual labor being great.
The requirements of the case appear to be some machinery or process capable of producing, with the aid of animal vater, or steam power, a tun of fiber of a quality which shall verage in value not less than $£ 50$ per tun in the English market, at a total cost, all processes of manufacture and al lowance for wear and tear included, of not more than $£ 15$ per tun. The said processes are to be understood to include all the operations performed, after the cutting and transport of the plant to the place of manufacture, to the completion of the manufacture of fiber of the quality above described The machinery must be simple, strong, durable, and cheap and should be suited for erection, at or near the plantations,
as th.
To cimulate the inention or adaptation of such ma lo prize of $£ 5,000$ for the machine and process that best fulfills prize of $\infty, 000$ for
Rewards of moderate amount will be given for really mer torious inventions, even though failing to meet entirely al the conditions named.
Arrangements will be made by the Government of India or the supply of carefully dried stems, and specimens of fiber separated from the bark, but subjected to no other pro cess, to mechanical firms and others desirous of competing, on application to the Secretary to the Government of India in he Home Department
All machinery, etc., must be brought by the competitors, their own charge, to a locality which will be notified hereafter, probably in the north-west provinces of the Pun ab, and there worked under the supervision of their own epresentatives for a sufficient time to enable the judge ppointed by Government to determine whether all the con ditions named have been complied with. The prize machin to be transferred, if required, to Government at 5 per cen bove cost price ; the patent right in any such machine to be lso transferred, if required, to Government, on the latter se curing to the patentee a royalty of 5 per cent on the cos price of all machines manufactured under the patent during its currency.
One year from February 10th, 1870, will be allowed for th preparation of the machines, and their transport to the loca ty named for the competition, and the trials will then be made, and the decisions of the judges announced. If no in ention of sufficient merit is received in the above-named period to obtain the prize offered, the Government will con inue to allow machines to be tendered for trial till the end fwo years from the same date, after which, or on the ward of the prize, the offers herein made will be withdrawn By order of the Governor General in Council,
E. C. BAyley,

Secretary to the Government of India,
Fort William, Calcutta

Will it Pay to Build the Darien Canal.-In our recent editorial under the above title, an error crept in which obscured our meaning. Instead of saying " If w condense the Erie Canal one tenth in length woithout altering its cubic contents," we were made to say the same with the talicized words omitted. Printers will readily see how such rors as this sometimes escape notice; but as the genera ader might be misleả, we make this correction. Instead of saying it would make a canal 36.3 miles long, 400 feet wide a the to $p, 280$ feet roide at the bottom, and forty feet deep, w should have said forty feet wide at top and twenty-eigh feet wide at the bottom

PATENT OFFICE DECLBIONS.

Inventions Examined at the Patent omece,-Inventors can have a careful search made at the Patent Offlce into the novelty of their inven
tions, and receive a report in writing as to the probable success of an application. Send sketch and description by mail, inclosing fee of $\$ 5$ Address MUNN \& CO., 37 Park Row, New Yorh

