power, asitis called. It does not reside in the air, as supposed, although it may easily be traced, as we shall see. It produces a great deal of mischief, other than exploding steam borlers. It is the love of money. Avarice is the mysterious agent that is blowing up boilers and destroying property.
The mischief is not in the air, it is in the pocket. All talk about any other "inexplicable power" is inexplicable bosh. Here was a confessed ignoramus and a careless ignoramus repeatedly complained of, but still allowed to retain his position until his carelessness resulted in a wholesale murder. We do not gather how much was paid him for his services, but if it was two or three dollars a week less than a competent man would have demanded, that would be a suf ficient inducement for many employers to risk the lives of heir employés.
If this sort of thing goes on much longer, it will correct itself. People working in steam factories will demand so much greater wages for the extra risk they take, that it will be much cheaper to employ competent engineers.
As to the tantrums of boilers described by engineers (sic) in the above quotation, they are simply sensational moonshine. There has been enough of this kind of endeavor to saddle ignorance and incapacity upon Providence. There is nothing mysterious about boiler explosions, in general. In some cases there is absence of knowledge as to the particulars in which neglect or carelessness has been permitted, but in ninety-nine cases out of every hundred, there has been ome neglect. Boilers explode from the disruptive force of steam, aided sometimes by the force of unequal expansion in the iron; and if weakened by age or bad usage, they explode more easily than when sound and strong. This is the whole tory in a nutshell. Put ignorance and steam in contact nd you have a very dangerous combination. Place integri y , fidelity, and intelligence in charge of steam generators and keep them there from the time the first plate is cut, and the first rivet driven, till the boiler is pronounced unfit for service, and boilemexplosions will become as rare as they ar now abundant.

LOCRAGE WASTE ON OUR CANALS

The following extract from the Pittsbiurgh Commercial, has een referred to us for opinion
There seems to be some doubt entertained as to whether, the Erie Canal to accommodate the large tunnage that will undoubtedly seek transportation over this line when it is en larged to the capacity of a ship canal! In discussing this hase of the subject your correspondent John F. Bennett), raises the question of the possibility of ng boats through the locks with a less expenditure of wate han is commonly required. This is a pertinent inquiry that can be very satisfactorily answered. If boats have never yet
been passed through canal locks without the usual waste of water and water power, it must be because that economy has not been needed, for a very little practical knowledge will es tablish the fact that the poover due to the water falling from the higher to the lovoer level in passing boats up and down, ooes no Work in raising or lowering the tunnage, and may be em-
ployed in pumping back into the higher level a volume of wloyed in pumping back into the higher level a volume of cient machinery ought certainly to return more than one half and thus add more than one half to the ordinary capacity of the canal. No fears of a scarcity of water need operate to de prive us of this great improvement.
In its construction, the locks may be at once made large nough to accommodate any probable fature traffic, leaving of business shall require.
To make the water power that now goes to waste availabl in preserving the maxmium of water in the levels, it is only necessary, instead of letting the water into the locks through the ordinary wicket gates, to let it pass into the lock through a turbine wheel, and employ the wheel in driving suitable ligher level, and in emptying the lock let the water pass out through the same or another wheel, and again employ the power in raising a further quantity of water to the higher level.
When the immense power thus to be utilized is not needed oo assist navigation by returning the lockage water to the igher levets, it can be readily made avalabe for other uses, to the company owning the canal.
The general theory of mechanical saving in water wast given above is correct, and has attracted the attention of hy draulic engineers for many years, as to convenient and useful modus operandi, one favorite idea being to make the summit locks double acting by balanced frames, so that an emptied chamber on one side would in part restore a supply to the up per level. It, however, the gentleman who has advanced this suggestion, with a slight coleur de rose, will patiently work out the process by exact calculations of the power avail able for the net return, and more carefully examine the various sources of loss which go to make up canal waste, as a
whole, he will see that the economy is far less demonstrable han the primary impressions indicate.
The lockage waste itself, on a canal of any length, between points of supply, though undoubtedly a large item, does not measure the whole waste.
If we take, for instance, the estimated water supply for the "Improvement of the Champlain Canal," as given on page 98 of Mr. McElroy's Report in 1867, it will be observed that th items for one summit group of

Lockage per day.
 Evaporation, filtration, and weirs

Cubic feet.
2,368,800

Total.

- $\overline{991}$
about 62 per cent being lockage waste on a short length like this.
device for return supply at the upper lock, the limited quantity of water which is delivered with a descending boat, the absolute limit to time of filling and discharging on any important canal, the necessity of an entire rearrangement of the methods of inlet and outlet, the fluctuating head under which the pumping machinery must work, and the probable or possible ratio of return supply, engineers who have carefully studied the general subject have rather been induced to advise the use of an independent pumping establishment. It would, however, be a professional service, if any detail and careful analysis is presented of the advantages of a local and special lock return, on the general plan above mentioned, by which the actual merits could be carefully estimated.

RESTRICTIONS ON THE WEIGHING OF COAL

Granted that coal dealers are on the average as honest as y other class of men, and that they are no more disposed rob the poor than their neighbors who have less opportu nity for so doing; is it safe to tempt men as coal dealers must be tempted?
Not one man in fifty, when he orders a tun of coal delivered at his house knows whether he gets full weight ; and the coa dealers are perfectly aware of this fact. They know that if a rurchaser stands and looks on while the weighing is performed, that he must, perforce, take the weight of the car on trust, and therefore that even such vigilance would avail little to prevent fraud in the weighing.
It is so inconvenient for people in general to re-weigh their oal, and so difficult to devise any means whereby in the a sence of personal attention, and without extra expense to themselves, they can be secured against fiaudulent weighing, that in our opinion the system of selling coal by weight is a bad oue. It would be far better to sell it by measure.
There is no doubt that short weights are common in the retailing of coal, and cases have come to our knowledge where such fraudulent dealing has been practiced in the fillng of contracts to large manufacturing establishment which ought to be able to take care of themselves, and there ore are not much to be pitied.
But the poor who are only able to get coal by the very hardest, and who are wholly at the mercy of the dealer, ught to have some protection. This would be afforded were coal sold by measure. They would soon learn to detect rauds in bulk, and thus the power to cheat would no longer xist so far as quantity is concerned.
We do not suppose coal dealers more likely to take an advantage of opportunities to defraud than retail grocers, or even milkmen, but we respect them too much as a class, to wish them subjected to temptation, which might be removed by prayer to the Legislature to deliver them from it.

THE WATER WHEEL TESTS AT LOWELL

There are always two sides to every question. Our recent ricle on the test of turbine wheels at Lowell, has called orth a communication from Mr. Emerson, whose testing apparatus was employed at Lowell, and which will be found llustrated and described in another page of this issue
We have so far resisted all importunities to publish com munications upon this subject, and we shall adhere to this rule ; but having given a resume of one side of the question, as gathered from our correspondence, we do not wish to commit the injustice of refusing the same for the other side. We therefore, now give the gist of Mr. Emerson's statements, leaving our readers to form their own opinion upon it.
It is denied that the charges made in the correspondence, pon which our former article was based, are true, and a copy f the circular sent to manufacturers inviting them to send wheels to be tested, and stated to contain the only terms ever made in any way whatever, now lies before us.
The statement that the wheels were required to be of pecified power, is not contained in the circular; but, on the contrary, it is distinctly announced that "each competito will select the size and finish of wheel to suit himself."
The circular further specifies that "for use of flume and weir, competitors will be charged $\$ 250$; for use of dyna mometer and water, enough to cover expenses. Cost of flume water, and dynamometer will not exceed $\$ 300$. The arrange ments have cost $\$ 1,500$. If there is sufficient competition, the cost will be divided fairly with all. Each will make thei own arrangement with Engineers." It adds that further in and invites all who wish to witness the test.
That anything different from this was communicated by etter in answer to subsequent inquiries, is denied by Mr Emerson, who positively states that "these weere the only torm ver made.'
The arrangements alluded to as costing $\$ 1,500$ was the flume only. The dynamometers cost $\$ 1,700$ and nearly year's time was given by Mr. Emerson to the tests, and to preparations for it
In regard to the cost of the tests, we are informed that a the wheel specified in the circular as on eof those to be tested was distinctly announced as finished in the ordinary manner it was expected that the others would follow in the same way and without delay; instead of which, four months elapsed before some of the wheels were prepared for the test, and it wanse would be increased by this delay.
Mr. Emerson states that in return for over a year's expen diture of time, and an outlay of several thousand dollars, he has received in all only $\$ 650$, a considerable part of which has been paid out for freight on wheels, telegrams, oil, etc This certainly does not look much like extortion.
In regard to the settling of the like extortion.
still stands in the same place, and has been in use all winter for testing large and expensive wheels, and that it is considered as being in good condition.

It is stated that there was abundance of water for months after the test was announced. Early in the autumn there was a slight drought, but before the wheels were ready there was plenty of water again. At the time of the disastrous freshet which occurred in the fall, there was a break in the canal which caused a delay of four or five days, but Mr Emerson states that at the time of testing there was so much water that unless restrained at the head gates it would over flow the flume. So much for the statement that there was a scarcity of water.

In regard to the placing ${ }^{\text {F }}$ of the wheels, we are told each party placed his wheel as he liked, and if there were any fault the exhibitors were solely to blame, as each party had fuil control of the flume, while their wheels were tested, cut ting out or filling in as they liked.
The steadiness of the brake is attested by Mr. Hiram F Mills, C. E., under whose supervision the tests were conMuns, C. E., under whose supervision the tests were con-
ducted. Our own reporter also stated that when ho was present in July (see issue of July 17, 1869), the arrangements seemed perfect and the brake worked satisfactorily.
It seems then that the question resolves itself into one of fact, so far as this controversy is concerned; and we have endeavored to give impartially every essential statement made on either side.
The apparatus for testing turbine wheels, shown in the descriptive article we this week publish, is the same as that used in the Lowell tests, and our readers will be able to judge intelligently of its probable efficiency.
We may, in closing, remark that the terms in which the tests were announced in the circular before us, seem not to be sufficiently specific. There cannot in such matters be too definite an understanding. It would seem that not only the size and finish of the wheels, but the time when they were to be on the ground ought to lave been definitely fixed, and no departure from the prescribed conditions permitted. A competitive test will always give dissatisfaction if performed under variable conditions.

An lmmense Salt Mine

The great Humboldt salt mine, near Austin, Nevada, is described by a California paper as looking like a lake frozen over. The salt is as hard and as smooth as ice. Were it not for fine particles which are condensed from vapors arising from beneath, and which cover the crystalline salt to the depth of perhaps one eighth of an inch, it would make an excellent skating rink at all times of the year, except on the very infrequent occasions when it is covered with water. The expanse of crystallized salt is no less than twenty miles in length and twelve in width, without a break or flaw for the greater portion of that extent. The stratum of solid salt is about six or seven inches thick, under which comes a lyyer of sticky, singular looking mud, about two feet thick, and under this again another stratum of solid salt, as transparent as glass, of which the depth has been found in some parts to be six feet. In summer, this salt plain, glittering and scintillating in the light of an almost tropical sun, presents a brilliant appearance. The frosty covering and the solid alt is as white as the snow, while the crystalline portion, when exposed, reflects dazzling prismatic colors. This immense deposit is remarkably pure, being ninety-five per cent of salt and five per cent of soda-which is purer than what we commonly use for our tables.

Opera House Dirt.

The dust obtained from the places of amusement in New York haverecently been analyzed by the scientific officers of the Metropolitan Board of Health. Over one hundred specimens of the particles floating in the air and failing as dust, were collected on plates of glass, and were examined under the microscope. The proportions ol' the different ingredients varied, but the same substances were found in all the specimens. The composition of the matter subjected to the microscope was as follows : "The dust of the streets in its finer or coarser particles, according to the hight at which it had beeu collected, with a large proportion of organic elements ; par ticles: of sand, of quartz and feldspar; of carbon, from coal dust and lampblack; fibers of wool and cotton of various tints ; epidermic scales: granules of starch, of wheat, mainly the tissues of plants; the epidermic tissue, recognized by the stomata or breathing pores; vegetable ducts and fibers, with spiral markings ; vegetable hairs or down, either single or in tufts of four or eight, and of great variety, and three distinct kinds of pollens. Fungi were abundant from mere micrococ cus granules to filaments of mold. When water was added to a portion of dust from whatever source, and exposed in a test tube to sunlight or heat for a few hours, vibriones and bacteria made their appearance, and the fungous elements sprouted and multiplied showing that they maintained their vitality, and proving that the germs of fermentation and putrefaction are very widely diffused.

zinc Light.

By digesting metallic zinc in iodide of ethyl, we obtain volatile liquid which takes fire spontaneously in the air, and is known to chemists under the name of " 7inc-ethyl." It can be distilled in an atmosphere of hydrogen, and if this gas be made to pass through the liquid it will carry off some of the zinc-ethyl, and when ignited will burn with a magnificen white flame. It is probable that ordinary illuminating gas would answer as well as hydrogen for this experiment. The light produced in this way can be employed to take photo graphs, but its actinic properties are not equal to the effects produced by burning magnesium.

Dust and Diseasc.
Mr. Horace Waller, F.R.G.S., writes to Nature as follows The extremely important discoveries brought to light by Professor Tyndall will call forth great exertions on the part of thinking persons to carry his plans into operation, and I have no doubt, when due precautions are taken to sift infected air as it passes into the lungs of those whose duties
take them where contagion abounds, we shall have the haptake them where contagion abounds, we shall have the happiest results.
So great will be the tide of interest in this direction, that I am anxious to cast into it a theory I have long held, in hopes that it may drift in some one's way to be turned to use; I commend it to the traveling portion of your readers especially.
While traveling in scme very unhealthy parts of Africa, more particularly among the marshes bordering on the Shir and Zambesi rivers, it was often necessary to camp at night just where the canoe happened to be moored when daylight
failed us. Reeds, rushes, and mud were never many feet failed us. Reeds, rushes, and mud were never many feet off, and the accumulation of scum, decaying vegetation, etc.,
lodged in the sedge, made the situation as delightful to lodged in the sedge, made the situation as delightful to
mosquitoes as it was trying to the constitution of the mosquitoes
Still, with all this, as long as it was possible to rig up a mosquito curtain, I am convinced that really less danger existed in thus sleeping in the midst of miasma than in
other places where less of it was supposed to be present, but where the traveler felt no necessity to stretch this thin covering over him.
I have in this way done canoe journeys of twenty to twen-y-five days in length without a day's illness from fever, and could instance similar experiences on the part of others.
Now the reason I assign is this: the mosquito curtain is to miasma, what the Professor's cotton-wood respirator is to th poison of scarlatina, we will say
The curtain, after being used once or twice, saturated with dew, folded up while damp and crammed into the limited space generally provided for it in the safest place, becomes just so much affected by this treatment that each thread loses its smooth glaze, and is soon fluffy and fuzzy for want of a better expression.
The little honeycomb holes in the tine "net" are now a series of small six-sided sieves, each covered over with the fine filaments of cotton which have got disturbed and frayed up. Dew, falling upon a surface of this kind, quickly turns into an exquisitely fine strainer-in fact almost a film of water-through which all the air has to passwhich is breath ed by the person reposing beneath it.
Now, it is an old notion that the miasma which produces the bilious remittent fever (the pest of this part of Africa in question) and various other diseases of the tropics, cannot pass across water.
I believe that acting npon this theory, the Admiralty pro Ides that boats' crews shall sleep in their boats anchored of shore in malarious rivers. However, be this as it may, I have
a strong belief that the "wet sieve" does stop the poison in a strong belief that the "wet sieve" does stop the poison in
some way or other, and that it is a great safeguard to the oyager in these places.
The whole subject of miasm is in the dark; it is lawless as a cause of disease; it baffles the most astute, but the day may be coming when such hints as those of Prof. Tyndall's shall fit into an organized attack upon it, and we shall be able to overcome it in a measure.
A curtain, properly made, and taken care of with that instinct which alone is begotten by the buzz of mosquitoes, is perhaps the most valuable possession a man can have against deadly attacks in the night while men are asleep; were its merits studied more, we should not find men stuffing their companions so perpetually with quinine, to the keeping up an unhealthy tone by this abuse alone, and to the confusion of this most invaluable medicine when it is really called in to do its duty upon the fever-stricken patient.
The Bulging of Walls--Cause and Prevention.
The ugly protruding curvature commonly called a bulge, to which external and front walls seem especially subject, may frequently be traced to original defects of construction. Bulges very often occur at about the level of a floor, and where there is a floor, the brick work of outer walls is commonly weakest. To avoid running the floor-timbers into party walls, they are generally made to rest on the front and back, and the party-wall will often appear in better condition than the front. Immediately below the level of the intended floor, a timber scantling about $4 \frac{1}{\frac{1}{2}} \mathrm{in}$. by 3 in . is laid along the wall flush with its inner face, to receive the ends of the joists. The joists, let it be assumed, are about ten inches deep, notched to nine inches at the ends, so as to rise the hight of three courses of brick work. Here, then, bond-timber and joists together make a hight of 12 in ., or four courses of brick work. The joists will have a bearing of 6 in . on the wall, and the wall may be supposed to be a brick and a half thick. Now wherever the joists occur, there is a complete interrup. tion of the bond on the inner side of the work, while externally it appears unbroken, the outer face, in fact, being carried up half a brick in thickness, and looking as though the whole wall were perfectly solid and uniform ; but the backing between the timbers too often consists of bats and small So long as the timber remains sound and of its full dimen sions, all is well, but this is seldom very long. The manner sions, all is well, but this is seldom very long. The manner
of converting balk timber into scantlings precludes the permanent retention of its original form. When felled and squared in its native forests, it is thrown into the first lake or river, formed into rafts, and navigated to some port of shipment, where it is formed into cargoes for conveyance across
the ocean. The sea voyage over, it may be assumed to the
port of London, the timber is again immersed in the water which usually constitutes its only place of storage till wanted for actual application to some building. As to deals, an archi tect may specify dryness as a necessary quality, but he must not expect it in timber. He may say that it shall be sound and well seasoned, but water seasoning is all that takes place previous to conversion, and this fact is noteworthy, because as the subsequent shrinkage may be estimated at three quarters of an inch in the foot, it becomes obvious that so far as the bond timber and joists are to be regarded as forming the inner material of the wall, a subsidence equal to the shrinkage must take place. But the wall does not depend on the woodwork alone, and the irregular filling up between the joists will receive the weight, and so the evil will be deferred For the time there may bo no other vigible result than the dropping of the floor from the skirting, and when the latter is of wood, the simultaneous rising of the skirting from the loor. It is when the wooden bond, having shrunk to th minimum dimension of perfect dryness, enters upon its course of decay that the worst consequences of inserting timber constructionally in walls are developed. The inner face then
sinks, and the statical conditions are disturbed, and bulging sinks, and the statical conditions are disturbed, and bulging is inevitable.
It was a custom of by.gone days to insert timber very freely in walls. Foundations were fortified, as it was thought by the introduction of a "chain-bond" of large scantling, and many a goodly edifice has suffered from the practice. Great, therefore, have been the improvements adopted in the modern construction of walls. A solid basis is formed by the use of concrete; wrought iron hooping has advantageously dis placed wooden bond, and the joists are kept as much as posible out of the walls, their ends being supported by brick or ron corbels. Thus all rapidly perishable matters are ex luded, and a lasting character imparted to work so executed Skirtings also are made of stucco instead of wood, and shrinkage in that quarter got rid of. Thus experience and science
are gradually removing one of the old defects and disflgurements of baildings-the bulging of walls.-Building Nevos.

Dafis' Patent Fence.-We call attention to the adver tisement published in another column of P. Davis' patent wire and picket fence, an illustrated description of which appeared in a recent number of this journal. We are informed hat since that publication the demand for this excellent ence has so exceeded Mr. Davis' facilities, that he finds it ecessary to dispose of more territory than was at first anticipated.
Joun La Mocxitain, the celebrated aeronaut, is dead.

Butwers to \mathfrak{E} orreppoments.

. K., of Ohio.-You can bleach broom corn brush as follows Construct at some distance from your other buildings a small building of boards and batten the joints. Hang your brush on suitable frames
within this building and make your door to shut pretty tight. At one Whin this building and make your door to shut pretty tight. At one so that the shelf may bereached from the outside with a ladder. When the brueh is placed in the building. place on the shelf in an open earthen and one part black oxide of manganese with two parts of water. Set the
vessel-which should be three or four times as large as will contain the vessel-which should be three or four times as large as will contain the
mixture, and also broad and shallow-upon bricks, so that you can put mixture, and also broad and shallow-upon bricks, so that you can put
under it a bit of candle capable of burning about five minutes before it under it a bit of candle capable of burning about five minutes before it leading to the:Bhelf and leave the whole for twenty-four houra. The bleaching agentdevelopedhere is chlorine, and as it is poisonons when
inhaled, the building should be ventilated before anyone enters it by inhaled, the building should be ventilated before anyone enters it by
opening the upper and lower doors, and removing the vessel from the opening the upper and lower doors, and removing the vessel from the
shelf. The quantity of the mixture will depend on the size of the building, and this you must learn by experience. Too much bleaching will ing, and tris y
. K., of La.-A cistern wall laid up with a putty made of ground white lead with as much red lead as will make it of the proper mention, if bricks or square stones are employed. It is only necessary touse it for an inch or two next the water ; the rest of the joints may be illed with good water cement. If the water is used for drinking, we re informed that this cement may be used as above, and that no contamination of the water will occur
inside of the cistern be plastered.
C. G. B., of Pa.-If you will lay a cellar wall with the cement ecommended in answer to T. K., of La., in this column, we think you inl be able to keep it tolerably dry. You can ceil over with boards for oss, or a couple of feet filled in with shavings pressed in gently but packed hard. If kept dry by a suitable roof this will keep out frost. Carry up the walls sufficiently high to prevent surface water from unning in.
F. G. G., of Conn.-An excellent cement for broken glass and porcelain is shellac melted and run into small sticks. The broken edges must be warmed so that they will melt the cement, and the latter is then
thinly spread over them. This cement resists moisture, but of course remelts when sufficient heat is applied. A cement that will resist heat but does not withstand moisture, is made of white of egg mixed with $\#$ nely powdered quicklime.
F. W. E., of N. Y.-We know of no roofing material that is without a fault of some kind, and it is too much to expect perfection in
any human device. We think a fat roof can hardly be made to remain perfectly tight fifty years by any material now known. With suff cent inclination of roof we prefer slate to any other kind of roofin aterial.
D. F., of Mass.-The tensile strength of aluminum bronze is 73,000 pounds per square inch of section; that of steel in bars is 100,000 to
130,000 . These figures are from Rankin's tor 130,000. These figures are from Rankine's tables. Aluminum bronze is
more ductile than steel, but itsmodulus ofelasticity has, we believe, not more ductile than steel
set been determined.
W.M.M.-You can use a thin wash of glue or isinglass be fore painting, into which small articles may be dipped and afterwards fore painting, into which small articles may be dipped and afterward
allowed to drain; but for articles to be exposed to wet, no sizing, but allowed to drain; but for articles to be exposed to wet, no sizing, bu
good linseed oil with red lead, messicot or litharge, will stand long with out peeling off.
. K., of Pa.-An inch of water will make 1,696 cubic inches of steam. Two volumes of hydrogen combine with one of oxygen to form water.
A. W. A., of N. Y.-With the best constructed hydraulic ram, and a fallof fourfeet, about two and four tenths per cent of the falling water can be elovated one hundred feet.
L. B., of Wis.-It would be impossible to give you a good idea of the shapes of different turning tools withont engravings. Wat son's "Manual of the Hand-Lathe", gives all necccsary information.
published by Henry Carey Baird, 406 Walnut strect, Philtadelphia, Pa.

Full Files of this Paper
an be found in New York, at the oflice of George P. Rowell \& Co., Advcr ising Agents, No. 40 Park Fow.

The Charge for Insertion under thishead is One Dollar a Line. Vf the IJotices The paper that meets the eye of manufacturers throughout the United States-Boston Bulletin, 8400 a year. Advertisements 17c. a line Kidder's Pastilles.-A sure relief for Asthma. Price 40 cents by mail. Stowell \& Co., Charlestown, Mass.
Needlesfor allsewing machines at Bartlett's,569 Broadway,N Y. Dickinson's Patent Shaped Carbon Points and adjustable holder for dressing emery wheels, grindstones, etc. See Scientific Δ merican,
Manufacturers and dealers in articles for family use from $\$ 1$ to $\$ 5$ willplease send circularswith price to G.B.Bull,333 Mainst,Bu fialo,N.X. Wanted-The address of the different pocketbook manufacturers. Address H. R. S. Celton, Houghton, Micb.
For tool making, buy 15 -in. engine lathes with taper attachment, made by the Pratt \& Whitncy Company, Hartford, Conn
SteamPlow.-Patent for sale, on liberal terms,for the North and West. Machine of 11-H. P. to cost $\$ 2,500$. J. C. Delavigne, New Orleans,La Pat. paper for buildings, inside $\&$ out, C. J. Fay, Camden, N. J. For Sale at a bargain-A complete 1 -set woolen mill, with 27 cres of land and good improvements. Woodruff \& Co., O'Bannon's, Ks For solid wrought-iron beams, etc., see advertisement. Addrese Union Iron Mille, Pittsburgh, Pa., for lithograph, etc
Messrs. Howard \& Co., Broadway, N. Y.-Please send me your Illustrated Price List of Waltham Watches, as per advertisement in Tribune. Sign name and address in full. Any one who will write to us as above will receive the price list by return mail, postpaid. It describes of each. All who intend purchasing a watch should see it before making of each. All who intend purchasing a was Silversmiths, Broad was, N. Y.
a selection. Howard \& Co., Jewelers and For first-quality new 14,17 , and 20 -in. screw lathes, milling machines, and one-spindle drills, at sm
Geo. S.Lincoln \& Co., Hartford, Conn.
Drop, power, hand, screw, and lever presses, lathes, dies, models, and all kinds of light mach
N. J. Also, any work to order.
Hackle, Gill Pins, etc., at Bartlett's, 569 Broadway, New York. Curtain Holder.-See engraving and advertisement on back page. It is just the thing to make and sell at a good proft .
Wanted-A set of 2d-hand Boiler Makers' Tools, all in good working ord
county, Pa.
Best Decarbonized Cast Steel for armory uses,shafting,spindles, stay bolts, axles, set screws, keys, agricultural works, etc., 10 to 11 c .; or stay boits, axies, set screws, keys, agricultaral works, etc.,
in sheets, tough as copper, 9 to 12 c ., ordinary gages. Offices: 42 Cliff st ., In sheets, tough as copper, 9 to 12c., ordinar
N. Y.; 14 N. 5 th st., Phili'a. Philip S. Justice.
Peck's patent drop press. Milo Peck \& Co., New Haven, Ct. Anti.friction Horse-pewers, for from one to eight horses. This power, as now made, is the easiest of draft for the amount of work done
and we recommend it to all who want a strong machine. Prices red uced and we recommend to to all whe an Co., Postoffice Box 376, New York.
"Winn's Portable Steam Brick Machine," makes more and better brick than any
Winn, Lock Haven, Pa.
Perforated Zinc and Sheet Iron for separators, smut machines grain dryers, tubular wells, malt kilns, etc. R. Aitchison \& Co., Chicago T. F. Randolph, Steam Model Works, Cincinnati, Ohio.

For the Best Upright Drill in the World, address Wm. M. Hawes \& Co., Fall River, Mass.
Scientific American-Back Nos. and Vols., for sale. Address Theo. Tusch, No. 37 Park Row, New York.
For mining, wrecking, pumping, drainage, and irrigating To Rent-East River water front, stores and vacant lots suitable for manufacturing or mercantile purposes, tozether or separat Daniel W.Richards\& Co., 92 Manginst.
Portable Pumping or Hoisting Machinery to Hire for Coffer Dams, Wells, Sewers, etc. Wm. D. Andrews \& Bro., 44 Water st., N. Y. Two 60 -Horse Locomotive Boilers, used 5 mos., $\$ 1,300$ each. The machinery of two 500 -tun iron propellers, ing
Wm.D. Andrews \& Bro., 114 Water st., New York.
Cold Rolled-Shafting,piston rods,pump rods,Collins pat.double compresson \& Keuffel \& Esser, 71 Nassau st.,N.Y., the best place to get 1st-class Drawing Materials, Swiss Instruments, and
For tinmans' tools, presses, etc., apply to Mays \& Bliss, Brook lyn, N. Y
Glynn's Anti-Incrustator for Steam Boiler-The only reliable preventative. No foaming, and does not attack metals of boi
terms to Agents. C. D. Fredricks, 587 Broadway, New York.
Machinists, boiler makers, tinners, and workers of sheet metals read advertisement of the Parker Power Presses.
To ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston Commercial B.
turing news of the United states. Terms .6400 .a year.

