hall secure to them the most complete road-bed and the most thoroughly reliable equipment, is the one which will also enable them to reduce cost of track repairs per mile cost of car repairs per tun per mile, and loss and damag to goods and passengers to a mere nothing, compared with what they would be under the reverse rule. Safety and speed can both be increased, and with these comes, what
all are striving for, larger traffic. Surely, it seems to us, it all are striving for, larger trafic. Surely, it seems to us, it
is not very difficult to see that when a wheel which would is not very diffcult to see that when a wheel which would cost $\$ 22$ would prevent an accident involving the payment of thousands of dollars of damage caused by a wheel whose price was $\$ 18$, it is better to pay the $\$ 22$. Yet managers buy the $\$ 18$ one, and trust to good fortune to protect them from ill-consequences.
The public, who risk life and property on railways each and every day, have a most unmistakable interest in these things, and an undoubted right-we had almost said dutyto declare through their representatives, that it shall be a crime, properly punishable, for railway managers to decrea safoty in order to secure cheapness.
We are glad to know that some of these gentlemen can se their own and the public's interest without any forcing, prom inent among whom is the superintendent of a road some sixty-four miles long, running through a difficult country, all grades, and tunnels, and trestle-work, and yet the record of whose accidents will compare most favorably with many bet ter located roads, and his secret is, testing the materials he ases in his track and on his motive power and car equipment testing them thoroughly, and then purchasing that which shows best service, whether its first cost is greater than the thers or not.
If managers generally were as wise, we should soon have the pleasure of reporting a decreased mortality and a lessened damage account on railways.-Railroad and Travellers' Jour nal.

Por the Scientifc American.3

on tin.
hy proprssor ofarles A . joy.
Tin is one of the metals known to the ancients, although i does not occur native, and requires some metallurgic know lege for its preparation. It is mentioned by the earliest writers, and was called by Homer "the easily worked metal." The Greck name for it was cass:teros, and this in turn is derived from the still older Sanscrit word castira. By studying the derivation of the name we arrive at the conclusion that the metal was well known in the East, and probably was intro duced to the Western nations from that quarter of the globe Later in our history it was discovered by the Phœenicians in what they called Cassiterides and we know as Cornwall.
The Romans called the metal" "white lead," and the Celte cin or y staen, from which we derive "tin." Stannum wa frst used for argentiferous lead, then for white metals, and finally, in the fourth century, for tin. The Latin name which is used in pharmacy, and affords us our symbol, Sn., is there. fore of comparatively recent origin. In ancient times the uses of tin were chielly for bronze and for mirrors. The famous mirrors of Brundusium were alloys of copper and tin, and were afterwards replaced by silver. Even in the Middle Ages there was a very limited use of the metal, and it is a corious fact that no specimens of antique tin have come down to us. The alchemistic name of tin was Jupiter, and many f tin is the oxide or tin stone, from which it is easily separated by coal. The easy working of the orf accounts for the rated by coal. The easy working of the ore accounts for the
knowledge possessed of it by the ancients. There is a tin pyrites, or compound of sulphur, copper, and tin, and a siliate. The metal has also been found associated with tanta iun, tungsten, and columbium, in certain rare minerals, and, in Bolivia and the Ural mountains, is said to occur native. Traces of tin have been discovered in mineral waters, to which, how ever, it imparts no poisonous properties. We do not find that it plays any conspicuous part in the animal or vegetable king. lom. America otherwise so rich in metals has hitherto produced very small quantities of tin. There are rumors of its occurrence in large quantities in Missouri, also in California, in Durango, Mexico, and in New Hampshire, but these localities have not been sufficiently worked to produce much im pression on the market. The production of tin in Europe in 1865 amounted to $19,140,000 \mathrm{lbs}$, the value of which was about $\$ 4,740,000$ gold ; of this $18,590,000$ lbs. came from Great Britain. It is said that the mines in Cornwall, which, according to some authorities, have been worked for 3,000 years, are gradually giving out, but the statistics of the annual production do not confirm this rumor. There is naturally more demand for tin than formerly, and this may have occasioned the rumor of the falling off in the Cornish mines.
The mode of extracting metallic tin from the ores is fully described on page 79, current volume.
The properties of tin hava been well understood for many centuries. It is rare, indeed, to talke up a metal our knowledge of which has been so slightly increased, as is the case
with tin. The literature of any other metal, especially of with tin. The literature of any other metal, especially of under the head of tin we find very little that is new. It is true that the number of its compounds has been materially increased until there are about two hundred and fifty of them described in the text-books and journals. To some portions of an able lecture recently delivered by Professor Stone, at the Cooper Union, we add a few scattered facts obtained
from recent publications. from recent publications.
Tin has a well-known
Tin has a well-known white color, with a yellow tinge and a high metallic luster. At 213° Fah. its ductility is so far in-
creased that it can be drawn into wire. At ordinary temperacreased inatit can be drawn into wire. A ordinary tempera-
one of the chief occasions of its usefulness, as it is in the form of foil that it has such extensive application. An ingeniou method for the manufacture of tin foil was invented by M Crookes, of New York city, it consists in hammering plates
tin by placing them on top of each other. As fast as a give sheet becomes large and unwieldy, it is cut off and laid on top and in the course of time one hundred sheets are piled one
on the other, like so many quires of paper. They do not ad here together, and the workmen can, in this way, produse very thin foil. Much of the work can be done by machinery but as the inspectors of tobacco require a foil of a particula thinness, the exact point can only be ascertained by the fin gers. It requires a very expert workman to decide when the foil has reached the exact fineness to suit the officers, and no machine can take his place. Metallic tin impartsa characteristic odor to the moist hand, it also has what is called the tin cr when it is bent. This property affords a means for testing bars of tin to distinguish them from solder. Plumbers are in the habit of holding the ingots to their ears and giving hem a bend. They can thus separate bars of tin, lead, and solder from each other. Cadmium is the only metal that re embles tin in this respect. Although tin melts at so low a point as 442° Fah., it is not sensibly volatilized. It requires high heat to convert it into a vapor. The metal slowly tarreadily combines with rapidy oxidized at a ree heat. I malgam used in the manufacture of mirrors. For this pur pose four parts of tin and one of mercury are usually taken A sheet of tin foil ts laid on a stone slab and spread out uni formly by a roll of flannel; the glass is skillfully pushed ver it, and is afterward drained and pressed.
Another compoand of tin witi mercury and sulphur i known as mosaic gold, and is extensively employed as a sub frames for gold leaf in the manufacture of cheap pictur parts of mercury are put into a mortar and stirred ; this is mised with" seven parts of flowers of sulphur and six part mixed with" seven parts of flowers of sulphur and si
of sal ammoniac, and the whole heated in a matrass.
of sai ammoniac, anse for hitchen utensils, is often mixed
Tin, such as is used for with eighteen per cent lead, and hence could give rise to lead poisoning if incautiously handled.
Speculum metal for mirrors and reflecting telescopes is an alloy of one part of tin and two parts of copper; it is of steelpolish. ifferen. It is difficult to unite tin and copper owing oo the alloys of which tin is a valuable constituent. Britanniametal consists of equal parts of brass, tin, antimony, and bismuth. Pewter, four parts of tin and one of lead.
Common spoons, queen's metal, nine parts of tin, one of Common spoons, queen's metal, nine pa
antimony, one of bismuth, and one of lead.
Rose metal, which is used for safety plugs, and melts at very low temperature, is composed of two parts of bismuth ne of tin, and one of lead. Plumbers' solder is made up o equal parts of tin and lead; fine solder of two parts of tin and one of lead.
Bell metal is variously constituted; it is sometimes com. posed of seventy-eight parts of copper and twenty.two parts of tin. Gun metal has less tin. Bronze less tin with three or rour per cent zinc. It is an interesting fact that bronze cooled slowly, is brittle, and, suddenly, is malleable, exhibiting a property just the opposite of steel.
Tin is used by calico printers and dyers for making "spirit mordants" and "stannate salts," and imparts crimson hues and azure colors to various materials. This application has been seriously interfered with by the new industry in aniline, where the colors are of a greater variety and the mordants are albumen iustead of metallic salts. There was a period in our history when we inported nearly all of the white metal and Britannia ware for the various utensils of the table and kitchen. Now we manufacture most of our table service and also work up great quantities of tin ware. In beauty of design and perfection of workmanship our plated ware is equal to any manufactured in England or France, and we have no longer occasion to send to Europe for such articles. During the year ending June 30,1869 , the total importation of tin amounted to $\$ 10,300,000$ upon which a very heavy duty was levied by the government to the great injury of many branches of manutacture where the article is largely employed. Tin ware is used by all classes-the poor as well as the rich-and ought to
with duties and taxes.
How to use waste scraps profitably has long attracted the attention of metallurgists, and various methods have been employed. In New York city the scraps are put into circular iron baskets and subjected to great heat. The tin runs off and is collected in a suitable receptacle. The iron remaining after the removal of the tin, is not wasted, but is employed in various metallurgical operations. Sometimes the tin is econ-
omized by converting it into stannate of soda used as a mordant in dyeing. There are numerous ways of accomplishing the separation of the tin from the iron and subsequently combining it with the soda. One of them is to digest the scrap in a proper mixture of soda lye and sulphur. Crystals of sul phate of soda or glauber salts are a secondary product, and lect on the sides of the vessel. After filtration Sometimes twelve to fifteg per cont of the stannate is obSometimes twelve to fifteen per ce,
tained in this way from the scraps,
A fine green color is obtained by combining the stannate with a salt of copper, and a pink color for porcelain by fusing together stannic acid, quartz, bichromate of potash, and some chalk. The poisonous properties of lead have been so ofte ataly tested that many efforts have been made to substitute in tubing in its place. The cost of the material has hitherto
been a serious drawback, but the invention of a method of
producing lead.incased tin pipe has obviated much of this dif ficulty, and encouraged the hope that tin pipe can be general ly substituted for lead. The use of tin and its salts, as re ducing agents, is one of the most recent additions to our knowledge of its properties, and there are numerous applica tions for the 250 compour ds of the metal, an account of which we omit from want of space and may recur to hereafter.

THE CENTURY PICANT

by jozn rambay gordon.
The Agave, or Caretas, is one of the genus of plants known to botanists as the Amaryllidacee. The American aloe and century plant are names by which it is commonly known.
This plant grows abundantly in tropical climates, particuarly in South America and the West Indies; it is called the aretas in the French colonies and in some of the other ad caretas in the French colonies and in some of the other ad-
jacent islands. The name, agave, is derived from a Greek word signitying glorious, which, I suppose. was given to it on account of its gorgeous appearance when in bloom, combined with its majestic growth; and, it seems, indeed, an ap prof riate one
Though not aware of the origin of its French name, I believe it is mentioned by the celebrated writer, Pierre 'Abbat, in hisdescription of the Antilles. Century plant is, think, an incorrectname for it ; of this I shadl say more ereafter.
The agave, or tree aloe, in its entire appearance resombles very much the medicinal or shrub aloe; but, unlike the latter, it sends out but one stalk, and each leaf is rolled up lengthwise in itself when small; it is of a dark green color when in its youth, that hue changing to an olive shade with the decay of the plant.
The leaves of it are of a blade-like form, all growing from one base, near the ground; from the center of them there projects a stalk, which attains a hight of twenty feet, and sometimes more; this stalks grows perpendicularly, and is tolerably straight ; from the stalk, there grow branches, which resemble the arms of the old style of saloon candle. stick. These branches bear flowers on attaining maturity, and afterwards seed pods appear on them. Though the entire plant is of a pulpy nature, it is nevertheless strong and durable. Some persons have asserted that it attains the great age of one hundred years, hence its name of century plant; but, I think, that this is hardly possible, as its roots are seldom firmly fixed in the soil where it grows, which in general is of a rocky nature. The stalk and branches become lig. neous, or woody, before decay. The leaves are composed of a quantity of fibers or threads arranged longitudinally, which are covered and united by a greenish pulp, and the whole is
inclosed by a substance resembling parchment. These blades are extremely sharp at their ends, and, at their edges, are provided with a series of small acute thorns, extending from the heart of the plant to the point of the blades.
When the agave is in bloom, the appearance of it is rather imposing, and the perfume which.it emits is equal in effect to the night blooming cereus or any other essence of the toilet, and birds and insects gather about it in numbers to suck the nectar from its flowers. There are daily to be seen, also, innumerable swarms of bees gathering their food. One Species of the trochilus, or humming-bird, known in the West Indies as the doctor bird, frequents, too, the localities where the aloe is to be found ; and I have seen it with its plumage of brilliant hue, fluttering its tiny wings, and, while suspended in air, sipping its luscious draft of nectar I have before remarked that it has been stated that the plant attains the age of one hundred years; were it possible that this could be, I can safely affirm that the poor century plant would not stand one day after some jolly follower of Neptune had set his eye upon it.
Sailors! What will they not conceive? One Sabbath vening-the sailor's vacation-I watched a number of men who had provided themselves with axes, making an attemp to secure one of these plants, which they could not accom plish without cutting its surrounding leaves; and, as I was desirous of knowing what use they would make of it, I ap proached and questioned them. One of the men informe me that they made razor strops of the stalk, and that it furished tolerably good ones too. It was cut into lengths of hree feet in order to be portable, and at leisare it would be cut into the desired form of razor strops.
The name, caretas, applied to this plant by the French colonists, is very familiar to me as it is that which is employ in the island of St. Thomas whence I hail.
It seems to me that the caretas could be rendered very serviceable in several ways; and I think that it would furnish very good rope, as the fiber which exists in the leaves of the plant, when spun, makes strong cord; in fact, it is employed by the South American Indians for this purpose, though not to any great extent on account of the want of machinery necessary for the manufacture of it. I believe that it is also nd the West Indies.

Loulsiana State Fair

The fourth grand State Fair of the Mechanies and Agriculural Fair Association of Louisiana, will be held at New Or leans, in April of this year, commencing Saturday, the 23d, and continuing nine days. The Fair will be held on the ex ensive grounds of the Asoociation in the above city, and a greatly enlarged list of premiums is offered. Visitors and exhibitors are invited from every section of the country. It is announced that railroads, steamships, and other transporta ion lines, will carry exhibitors and their wares at half price The Secretary of the Association is Mr. Luther Homes, wh may beaddressed by parties wishing further information.

