THE GREAT ST. PANCRAS RAILWAY station.

This week we give an engraving of the interior of the This week we give an engraving of the interior of the
new St. Pancras Station, Mialand Railway, London. Occupying, as it does, a site of nearly ten acres, it is undoubtedly, if not from an architectural, at least from an engincering point of view, the finest terminus in the world. Its most interesting and peculiar feature is the roof. While it has the widest span of any roof in existence, the space beneath is unbroken ly ties or braces, common to all $\bullet$ thers. It style is subdued othic, with segments mecting at its crown. As level, the principal ribs each having the form of a four.cen tered arch, the radii of the curves being 57 feet and 160 feet respectively. The two central curves-tuose of 160 feet ra-dius-meet at an angle in the center at a hight of 96 fee above the platform level. The length of the roof is 690 feet with a clear span of 240 feet, covering five platforms, ten lines of rails, and a cab stand 25 feet wide, thus making a ines of rails, and a cab stand 25 feet wide, thus making a total area of 165,600 square feet. Its hight at the ridge is 125 feet above the level of the road. There are twenty-five
with open iron-work.
The roof is glazed bout roof is glazed ide of the center, and the remainder is covered with slates on boarding one inch and three eighths thick, grooved ard tongued and chambered, the underside being var nished. The slates are best Welsh, and securely fastened to the boarding with copper nails weighing about 7 lbs. per 1,000 . The lap is not less than 3 inches. The timber work throughout is well protected by varnishing, painting, or Burnettizing, according to the situation in which it is fixed.
The transverse girders which support the floor of the station ake the thrust of the roof. They are conected so as to concontinuous girders ross the stations sides being tied to hem, the feet of the ribs are each secured by four 3 -inch bolts to an anchor-plate built into the wall an trongly fastened. Theraillevei of the station is about $17 \frac{1}{2}$ eet above that of the ffording very exten ive cellarage. The high of the basement tory is 13 feet 6 inches, and under this asement the conne tion of the Midland ne is carried to tha the Metropolitan m. To enable vehicles to reach the station levei from the strest, inclined ap proach roadways have been constructed on the station is flanked by a row of pictur esque shops and other buildings. The plat forms have edges of dressed stone, and are Hoored with red deal planks, dressed, close jointed, and tongued with hoop iron. The decorations include a sselated frieze about two feet deep, inlai ith colored tiles,and a dado round the base to the foot of the ing above the frie is surmounted by an
iron cresting of floral design, the leaves to curve inwardfrom $\mid$ ards consisted of die-square backs of timber, 12 inghes square he cornice. The lighting arrangements of the station are the horizontal traverse pieces were double 12 inches by 6 Barff, of Parliamey were intrusted to the Messrs. Sim and inches each, except the lower one, which was 12 inches square arbon whilecss is to be attributed the brilliant light obtained, ards and braces. These were connected by cross braces, and , the whole was moved, either together or separately, on 123 rictre construction of the station about sixty millions of wheels, each 2 feet 8 inches in diameter, turning on a balk of
 feet of glass and timber have been used. Over 9,000 tuns of; at the end of the station.
ronwork have been employed, the weight of some of the

Main-floor girders
Cress-girders of floor
Buokled plates.
$\begin{array}{ll}\text { Main reof, ribs, and spandrel framing.................... } & 8270 \\ \text { Intermediate }\end{array}$
Intermediate ribs......................... 320
Cast-iron columns and caps below fiooring 1,080
THE ORIGIN OF CANDLES.
The tallow candle is the offspring of the tallow torch used in the twelfth century. When tallow candles were first in troduced their cost was se great that only the most wealthy could afford the luxury, and it was not till the fifteenth cen tury that they were sufficiently cheapened to come into gen eral use.
Think of a tallow candle-that dripping, guttering, greasy
principal ribs in the roof, each weighing about 50 tuns. Be- signed by J reofing were erected, were very ingeniously de- used only where more convenient and economical lighting ween each of these, which are about 29 feet 4 inches apart principle on which Alleyne, of the Butterley ron-works. The materials cannot be obtained, is, as we now know it, no more rom center to center, are three intermediate ribs, carried by main rib until the wind ties wrefnally fixed hold of the to be compared the the cande of the twelf century, than the russed purlins, constructed se as to stiffen the bottom flanges 'The staging was divided into three sections, the center con- to light, and burning so rapidly as to melt a large portion of of the main ribs laterally. The station walls rise behind the sisting of six divisions, the side ones of five divisions each, the tallow into rivers of oil, so that the drip of four candles spring of the principal, the space at the top being filled in and from front to rear there were four divisions. The stand-, would buy a new one. The traveling stage and hoisting gear, by means of which thing, being considered a luxury. But the tailow candle, now

os fhe ringios

> What would the quaint old revelers of that period have way to the light of a brighter and nobler period.
> Can it be that in centuries to come, the luxuries of the present will be regarded as contemptuously as we now regard the obsolete appliances of the middle ages?

What would the quaint old revelers of that period have and is covered by metal which expands into a collar or rim, hought if, in the midst of one of their drinking bouts, their considerably larger than the bore, and coming nearly down as nearly alike as possible Two were charged as usual tallow dips with tow wicks could have been suddenly eclipsed to the muzzle when in place, so as to receive the full force of with $71-2$ kilos. of powder, and an elongated projectile weigh no the the explosion. Projecting out a foot, more or less from the ing 45 kilos., an excer charge; one of them burst at the both the physical and mental darkness of that age has given collar, is the main body of the arrow or 'fléche, consisting eleventh, and the other at the twelfth fire. Two of the

## LIFE-SAVING GUNS.

We find in the Army and Navy Journal an interesting ar ticle on "Life-saving Guns," a title that might at first seem paradoxical, as guns have been and still are employed chiefly for the destruction of life. The inventions noticed in the article are all of foreign origin. The first one mentioned is that of M. August Deloigne, of Paris. "This gun is a bronze casting, about one foot long 1 1-6 inches bore, and weighing about 66 pounds, without trunnions or carriage. Screw into the breech is a tail-piece of iron, nine or ten inches long greportionate charg which, when the piece is to be fired, is thrust into the soil at of firing the an angle of about 30 degrees. For long ranges, when firing ' cartridge, varying according to the weight of the projectile, through it, with a 'monkey tail' screwed into it, is admir to windward, arrows of iron are used as projectiles, and for and the fire is introduced into the forward end of the cart- ably adapted to ${ }^{\circ}$ the requirements of humane societies and short ranges, or for long ranges when firing to leeward, ridge. life-saving benevolent associations. When it is to be use The lower ors, which are to be preferred, as they will float. "In 1865, Mons. Deloigne made some experiments, under on the deck of a vessel, or on rocky ground, it is put upon a The lower or inner end of these arrows nearly fills the bore; the authority of the French Minister of Marine. The guns, rough solid block of wood shaped like a quoin. This block may also be useful to use on very sandy soil or anywhere where the heaviest charges are used. As the arrows pro ect considerably from he gun, there is n dificulty iPaiming suf ficiently well to throw a line across a vessel in ordinary times

This system of com municating by throw ng lines is not onl vailable to establis ommunication wit wrecks, but will b found very useful fo tugs, wrecking vessels revenue cutters, and vessels of war. The system is carried out extensively in Franc all. along the coast, an t bathing places, an is not limited to an ize of arm. The wood n arrow can be use from any gun, smooth bore or rifie, down to ommon carbine out of which Deloigne throw rrows as long as th gun itself, carrying mall line of about 100 yards. Mr.Forbeswrite that he saw at Vin cennes an arrow of the size of a handspike, hrown from a commo 4-pound rifie field-gun about 300 yards. Acros he outer end of th rrow, when it started traight bolts, 12 an straight bolts, 1-2 an nch to $5-8$ in. diamete nd about a foot long These bolts stand 9 right angles to the arrow; the shock at the as angle of 45 degrees and forms a grapnel.
The coulant, or becke, consists lin round the arrow, iust tight enough to allow line which over ides these turns by ouble leop, to pull i down to the butt of tho arrow, and thus steady on its mission ot mercy.

Any project of th people of Washington to raise $\$ 200,000$ $\$ 300,000$, or any otbe sum, to hold an Inter national Exhibition i hat city, is very praise worthy. But appealing o Congress for author ty to raise half a mil lion by taxation, forth ame purpose, is quit another matter

