in the time required for making the ordinary capital B with the pen. The number of motions required for spelling out word "Indestructibility" would require only twenty one motions, and it contains seventeen letters.
A system that could be more easily memorized might be devised, but it could not be executed so rapidly. With the alphabet we have given, it would be possible, after a little practice, to converse at the rate of one hundred words per minute, and as the motions are concealed by the position of the hands, eavesdroppers, if we may employ that term, would be counted out.
When a double letter is required, it is distinguished from other letters for which it might be mistaken by ihe touches being repeated more slowly. Thus, E , which is made by a sing'e pressure of the first finger of the right hand will, when doubled, resemble C, which is made by two pressures of the same finger, unless the pressures are made full and slow.

Numbers may be spelled out, therefore no provision is made for them.

A slight twist of the wrist indicates the close of a word and a brief hand-shake announces the close of a communication ; pauses are not indicated, but ready made, as in speaking,
The position shown in the engraving is that adopted while persons are standing side by side, as in walking. In conversations, when persons are seated, the persons face each other, and the wrists cross; and in the reclining position, when persons face each other, conversation is practicable and easy. The physical effort necessary to converse by this method is not nearly so great as in the ordinary sign language, a great advantage to sick mutes, who frequently are unable through failing strength to make their wants known.
We think our readers will agree with us that this is a very simple and ingenious method, and worthy the attention of those who are engaged in the care and instruction of dea and blind mutes.

SEASONING BOARDE.

A correspondent of the Building Nevos recommends the pil ing of floor boards as illustrated in the accompanying dia gram. Four long poles are planted in the ground, and the boards are placed at an angle against them as shown. By

planting posts at short interva總 betwen the corners many more boards can be stacked in the same space. This method cives a much freer circulation of air than the ordinary method, and consequently the drying proceeds with greater rapidity

Sound and Electric Figures

What are termed sound figures may be produced in various ways. One way is to fix a plate of glass at its center with Burgundy pitch to an upright support on a stand, then to dust the plate with fine dry sand or other suitable powder, such a lycopodium. If now the plate be made to vibrate by draw ing over its edge a violin bow, or some horse-hair tightly stretched from the two ends of a cane well rosined, the dust will in due time arrange itself into certain forms, lines, or figures. The same will occur by tying over a broak-mouthed glass or goblet with bladder that has been moistened and allowed to dry to a drum-like surface, and dusted with lyco podium or very fine sand, and then prt upon a piano. Cer pin lines aresoon visible after the instrument has been playe upon, particularly when one chord only has been struck, so as to lessen the vibration. The blowing of a cornet, using one key, or the tuning of one note of any instrument, near one key, or the tuning of one note of any instrument, near
the stretched membrane, will cause it to vibrate, and the dust the stretched membrane, will cause it to vibrate, and the dust
to arrange itself into form. Thus these experiments clearly exhibit the effects of sound; and by due study of the dust lines we may see what sound, one long passed, has been. A somewhat similar application of this experiment has recently been made by a erman philosopher to the study of the na uren of electrical discharges between metalic conductors. It is iound that when an electric discharge takes place between a horizontal plate of metal powdered with lycopodium, formng the positive pole, and a ball or point placed below it, the dust remains attached to the plate on a well-determined area. Scptimus Piesse.

Good Cider Vinegar.

Take ten gallons of apple juice fresh from the press, and uffer it to ferment fully, which may be in about two weeks, or sooner if the weather is warm; and then add eigh gallons like juice, new, for producing a second fermentation in two weeks more add another like new quantity, for pro ducing a third fermentation. This third fermentation is material. Now stop the lunghole with a! empty bottle with the neck downward, and expese it to the sun for some time. When the vinegar is come, draw off one half into a vinegar cask, and set it in a cool place above ground, for use when clear. With the other half in the first cask, proceed to make more vinegar in the same way. Thus one cask is to make in, the other to use from. When making the rinegar, let there be a moderate degree of heat, and fre access of external air.

AERIAL NAVIGATION.

UMBER FIVE.

We give herewith an account of an aerial steam machine designed by Joseph M. Kaufmann, a lusgow engineer, an account of which we condense from Engineering of March 6, 1868. Only about two ninths of the wings, which are long and narrow, are represented in our engraving. From this re mark the reader will understand they were of great length, and we may add that they were pointed somewhat like the wing of a swallow.
The actual machine, which the model was constructed to present, was designed to be of the following dimensions :
From stem to stern, 12 feet; from stem to tip of tail, 14 eet 11 inches ; greatest depth, 4 feet 6 inches ; greatest width, 5 feet 1 inch; length of each wing, 35 feet; area of each wing, 221 square feet ; length over the " gies," 17 feet 3 inches ; Length of pendule, 40 feet; weight at end of pendule, 85 lbs.; total weight of machine, $7,000 \mathrm{lbs}$.; nominal power, 40 H. P.; intended speed, 40 miles per hour, the tank or tender taking a supply of oil and water sufficient for five hours.

As will be inferred from the engraving, it is intended tha progress should be gained by flapping the wings, these wings being driven in such a manner that their motion resembles that of the wings of a bird as closely as possible. It is in tended that when the machine is rising, the wings should make 120 strokes per minute. The pendule, which can be aised and lowered as desired, is for the purpose of keeping the machine in a horizontal position. The machine repre ented is exclusively for flying over land, and it is furnished with wheels on which it can run when on the ground ; Mr Kaufmann states, however, that by a few simple alterations it can be made available for traveling over water, and in case
of its alighting be converted into a boat furnished with pad de wheels.
The model, to which we have already referred, weighed, complete, 42 lbs.; and during the experiments with it, its boiler, owing to its small size, was not fired, steam being supplied from an independent boiler. The model was made entirely to prove the correctness of the inventor's theory, and to ascertain if the connections to the wings could be made trong enough to withstand the violent twisting and bending trains to which they are exposed. In the model the motive power consists of a single vertical steam cylinder fitted with piston in the usual way, the piston rod carrying a cross head which is coupled by links directly to the wing beams The wing beams are fitted to shafts which run for about hree fourths the length of the machine. To these shafts are also connected the "regulators" by which the feathering motion of the wings is governed. Each wing is secured in our places, and has its center of oscillation directly opposite its working beam. The "gies" can be moved alternately so urbing jits horizontal position.
During the trial the model was securely fastened down and oaded with a considerable weight to prevent it from moving it being at the same time raised on supports so that its wheels were clear of the ground. Steam at a pressure of 150 lbs was then turned on, when the wings made a short series of furious flaps; but, through imperfect workmanship, the left wing suddenly gave way about two feet from its base, when the other wing, being subjected to extra strain, failed also Mr. Kaufmann states that these accidents were in a great measure caused by the wings having been lengthened three feet previous to the trial, and being thus exposed to a greater strain than they were constructed to resist. The wings hav ing been removed the machine was put to the final test of be-
ing run at a speed of 1,500 double strokes per minute, and it was found to be quite uninjured by this experiment. Altogether, Mr. Kaufmann considers the tr:als to have been satisfactory, and since the trial referred to he has been engaged in the construction of a larger machine on the same principle, but having the beams worked, through gearing and eccentrics, by a harizontal engine. This machine is also to be fitted with shifting aero-planes, and is to be accompanied by tank-car with accommodation for two persons. It is intended that this machine should rise into the air after a short race on terra firma, drawing behind it the tank-carriage; it is to be of 120 -horse power, and is to weigh $8,000 \mathrm{lbs}$ complete. The tender is to carry ten hours' supply of fuel and three hours' supply of water ; and with this tender and three cars the machine is intended to make fifty-six miles per hour.

Correspmaterce.

The Editors are

The Fossil-Man of Onondaga--opinion of an Anat omist.
Messrs. Editors:-I have read with a good deal of inter st the accounts I have seen in your excellent paper of the "stone giant," or the fossil man, found on the farm of a Mr stone giant," or the fossil man, found on the farm of a Mr.
Newell, by some laborers while engaged in digging a well. Newell, by some laborers while engaged in digging a well.
Many of the accounts I have seen in the papers are fanciMany of the accounts I have seen in the papers are fanci-
ful and wholly imaginary. At first we were told it was a ful and wholly imaginary. At first we were told it was a veritable petrifaction, and a full description of the same was given. Next we were informed that it was an "image," the work of the Jesuits ; then again it was the work of a Canadian, made in 1868, from Onondaga plaster. Recently I saw an extract from the Syracuse Journal, in which was an article signed by James Hall, State geologist, and S. B. Woolworth, Secretary of the Regents of the University, in which it is maintained that it cannot be a petrifaction, because the soft parts of an animal are never petrified, decomposition taking place so rapidly. Now, Messrs. Editors, the above-named gentlemen may be men of science, in their way; they ought to be, occupying the places they do ; but it is plain they are not anatomists, or they would never make the above state ment.
Decomposition is ordinarily the fate of all animal sub stances, hard as well as soft. But we have many well-authen ticated instances of human bodies, buried in certain localities, becoming petrified. It is not more than four or five year ago that we had an account in the New York papers of the removal of a man, or his body rather, that had been buried six or eight years, when it was found that complete petrification had taken place. No part had even begron to decompose except the end of the nose, and that was very slight
Besides, I can show Messrs. Hall and Woodworth, if they will call upen me, the half of a human heart petrified, plain ly and distinctly to be seen, as any one acquainted with anat omy will admit at once.
I have many other similar petrifactions in my possession None of these could, for a moment, be supposed the work of the cunning Jesuits or of a shrewd Canadian, hid in the earth to surprise somebody-but were picked up, some in Pennsylvania and some in Wisconsin-each partaking of the nature of rock common in the region where it was found The same thing, no doabt, is true of the plaster man of On ondaga. As plaster or gypsum is common in that region petritactions in that locality would, of course partake of the nature of gypsum. I have never seen the stone giant above referred to, but it would take more than I have yet seen to convince me that it is not a fossil man.
Dr. Westcott's communication in your last issue takes the most common-sense view of the subject of anything I have seen. One good anatomist is a better judge of the nature of the curiosity in question than a thousand State geologists or Regents of the University
Don't let us set a shoemaker to repairing a watch-every man is a judge of his own trade.

Geo. W. Stone, M.D Warren Center, Pa

The New Engiisn Method of Seting rires.
Messrs. Editors:-'The article headed "A New Method of Setting Tires," in the Scientific American, under date of Nov. 6, and which you describe as being patented in Eng land, and as to the utility and serviceability of which you seem to have some doubts, has come to my notice.
I not only share your doubts about its general utility, bu assert that its theory is all wrong. It is, in my opinion, an mposition upon the common sense of any intelligent wheel ight, and hundreds of them will bearme out $i x$ this asser tion. It is a violation of the common laws of nature ; thi alone would be sufficient to condemn the whole thing.
The nature of iron is such that heat will expand and co! will contract it. How could nature come to the assistance of man any way more favorable, especially in that class of machines which combine wood with mores or less iron
What is more simple or requires less time, than to meas ure the tire, weld it, and allow a certain amount of draw, ac cording to the size and condition of the wheel? Every intelli gent blacksmith knows exactly how to govern himself in or der not to let the action of the tire be too great in its con raction. I say the contraction should not be too great, as it would strain the wheel out of its natural position, and mor or less injure its strength by giving it a constrained dish, which we carefully seek to avoid.
Now this new method makes necessary a procedure which is entirely injurious to the strength and stability of a sound wheel ; namely, the unnatural contraction by force of the wheel in order to set the tire. A well put up wheel can only be contracted as far as its elasticity will admit, and to do this

