Wire and Picket Fence.
The use of wire as a substitute for bars between posts of fences, has gone the way of plank roads. It was "weighed in the balance and found wanting." The reasons for this termination to the experiment are too well known to need dis cussion here. Theinvention shown in the annexed engraving, employs wire only as a connector between upright pickets in lieu of the rails between posts, to which pickets are ordinarily nailed, and also reduces the number of posts required as will be seen in its description below.
It is intended to furnish a cheap, neat, and durable fence, that can be rapidly constructed, and dispenses with the use of nails.
The saving in posts is claimed to be sufficient to pay forthe wire, as the posts are set from twenty tothirty feet apart.

Two wires are drawn tbrough a hole in the first post set, and through simi post set, and through simi-
lar holes in the other posts, lar holes in the other posts,
to any convenient distance. to any convenient distance.
The wires being fastened at The wires being fastened at
the first or starting post, are the first or starting post, are
left slack along the line for the insertion of the pickets, and wound around the last post of the section of fence under construction to keep them from being drawn back during the insertion of the pickets. The wires are then tightened by laying weights on the slack between posts, the palings distributed along the line answering perfect ly for this purpose, one end being allowed to rest upon the ground and the other lying upon the slack wire, and as many being used in

a bunch as may tighten the wire sufficiently.
The slack being thus taken up, the butts of the palings are successively set in a shallow trench dug between the posts on the fence line, and the tops.being inclined laterally, until they will enter between the wires from the under side, they are brought to the vertical position, the wires being crossed between each picket, care being taken to keep the same wire always at the top.

The wires may be tightened if they should ever become slack by simply putting a twist in them, using a pair of palings for this purpose, turning them in opposite directions. As fast as the patings are instrtied, their butts are held by filling in and packing the earth in the trench.
This fence is impassable to all kinds of domestic animals, as nothing but a rat or similar burrowing animal can get under it, and a squirrel is about the only living thing which woulả attempt to climb over it. No domestic animal could crowd the pickets apart to get through it. The palings can not be pulled off, nor can the wind blow it down. The pickets take the strain off the posts, each one being, in fact, itsolf a post. The corner posts only require to be of greater strength than the other posts. Each post saves a paling, and may be made to look like it. The sides of the fence are uniform in appearance.
The fence represented in our engraving is a rude farm fence made with split palings; but with sawed palings of equal widths, it can be made very tasteful in appearance, and any form of either wood or metal palings may be used, to suit the taste of the builder. The inventor states that three hands can easily put up six hundred yards of this fence per day. He estimates the actual expense of a complete farm fence with top-sharpened split palings, with butts coated with tar or petroleum, as less than fifty cents per rod.
The palings need only be set from four to eight inches in the ground, according to the character of the soil. When stones are plenty they can take the place of a trench, in which case the butts of the palings do not need any protective coating.
Whether this invention was called forth by our article on cheap fences, published on page 9 , current volume, or not, we ars unable to say, but it meets a want therein set forth. At any rate, men of inventive genius will find in that and the numerous similar articles we publish, hints that will guide them to important and profitable inventions.
This fence was patented through the Scientific American Patent Agency, June 29, 1860, by P. Davis, of Newport News, V a., whom address for further information.

Paper Hangings.

When an amateur attempts this kind of domestic decoration it is desirable that he should attend to the following instructions, otherwise the work, when finished, will show blemishes and stains. First, pum ce-stone the wall to remove all irregularities of surface, then wash over the size, about one ounce of glue to a gallon of water, and when dry, the wall is ready to ready to receive the paper. The paste should be well boiled and then passed through a hair sieve to extract the lumps, a fruitful source of stains. If the walls are inclined to show damp, add a little corrosive sublimate to the paste to prevent mildew forming on the surface of the paper The most important matter is to allow the paper to remain pasted for about ten minutes before hanging, in order that it may be well stretched before being placed on the wall. Stout parer hangings such as the "flocks," etc., re-
quire a longer time. If these directions are attended to the thinnest papers will hang without a crease or the objection able water stains which characterize bad workmanship.

Gluing in Veneers.

I have advised the use of waterproof cements for fine in laying, so that dampness will not affect them, but as this is not always convenient, it is well to make the glue so that it can be used and the work finished off in a short time. This is easily done by making the glue as thick as it will run, or so that it is like a jelly. If applied in this condition, it will set hard in thirty minutes, and the work may be cut down without fear or danger of its moving. I bave done this fre-

communication with and between deaf mutes

The sign language, used as a means of communication be tween deaf mutes, is of course unavailable in tise dark, and is also unadapted to the use of blind mutes. It is, moreover unadapted for private communications, as the language spok en to one is spoken to all present who understand it. Spoken language can be whispered, or its volume can be so re duced as to be inaudible to other ears than those for which it is intended; but the force of the sign language cannot thus be modified, and when private conversations are held, written language is generally employed. Besides the tedious ness of this process, it cannot always be resorted to, and therefore inventors have tried to derise means whereby con versations may be carried on under all circumstances except the fatal and insurmountable one of separation.
We have within a year or two read in some foreign journal the name of which we cannot at present remember, of an in strument employed for effecting communication between dea mutes, or between them and those not versed in the sign language.
We have before us a slip which describes this instrument, and which states that the invention was made by Mr. Bertram Mitford, of Cheltenham, England. "He uses a hollow case of any convenient form or size, made of wood or other suitable light material, and this case is provided with a handle by which it is to be held in the hand of the person using it. On the side of the case which faces the user there are contained the letters of the alphabet, numerals, or other signs useful to persons holding conversation with one another; and upon the opposite side, which faces the person communicated with, there is provided an opening protected by glass. In the interior of the hollow case are placed a number of slides worked by buttons which traverse along slots arranged each imme diately above a different letter or sign. The upper end of each of these slides carries the corresponding letter or sigu to that marked on the case opposite to the particular button; and when any slide or button is pushed along the slot, the corresponding letter or sign will be presented at the glazed aperture on the opposite side of the case. By successively raising and lowering or moving the slides it is obvious that words can be easily spelt and communication be established with the deaf and dumb without necessitating the knowledge of the signs known as the deaf and dumb alphabet.'
While it is evident that this machine will answer the purpose designed; it does not, of course, supply the want we have stated. Sight is absolutely necessary to its employment. We bave only noticed it as illustrating the fact that mome simple, and easily-formed alphabet is absolutely essential. and

this alphajet must be capable of being read and communicated by the sense of touch.
Such an alphabet, which, so far as we know, is new, it is our present object to lay before our readers. It is the invention of a gentleman living in Brooklyn, and he permits us to make it public property.
In reading or communicating this alphabet the hands are placed, as shown in the accompanying engraving, to bring like fingers of the hands together. The hands are nearly closed as shown, and the balls of the five fingers are placed together, as indicated. The fingers of each hand may be numbered from the thumb, the thumb being called 1 and the 1. ttle finger 5.

The letters are made by a quick strong pressure of the balls of the fingers of the individual communicating upon the balls of the fingers of the person addressed, the hands of the latter remaining passive; the letters being indicated according to the following system. The touches will be indicated by dots, the number of touches by the number of dots, the fingers with which the touches are made by its number; those on the right hand being further indicated by the letter R and those on the left being indicated by the letter L. Thus:

The word " Brate" would be, spelled out, - . 4, L; - 2, L,
$5, \mathrm{~L}, ; 2, \mathrm{R} ;-\mathrm{i} 1, \mathrm{R}$; only six motions, which can be made
in the time required for making the ordinary capital B with the pen. The number of motions required for spelling out word "Indestructibility" would require only twenty one motions, and it contains seventeen letters.
A system that could be more easily memorized mirgt be devised, but it could not be executed so rapidly. With the alphabet we have given, it would be possible, after a little practice, to converse at the rate of one hundred words per minute, and as the motions are concealed by the position of the hands, eavesdroppers, if we may employ that term, would be counted out.
When a double letter is required, it is distinguished from other letters for which it might be mistaken by ihe touches being repeated more slowly. Thus, E , which is made dy a sing.e pressure of the first finger of the right hand will, when doubled, resemble C, which is made by two pressures of the same finger, unless the pressures are made full and slow.

Numbers may be spelled out, therefore no provision is made for them.

A slight twist of the wrist indicates the close of a word and a brief hand-shake announces the close of a communication; pauses are not indicated, but ready made, as in speaking,
The position shown in the engraving is that adopted while persons are standing side by side, as in walking. In conversations, when persons are seated, the persons face each other and the wrists cross; and in the reclining position, when persons face each other, conversation is practicable and easy. The physical effort necessary to converse by this method is not nearly so great as in the ordinary sign language, a great advantage to sick mutes, who frequently are unable through failing strength to make their wants known.
We think our readers will agree with us that this is a very simple and ingenious method, and worthy the attention of those who are engaged in the care and instruction of dea and blind mutes.

SEASONING BOARDE.

A correspondent of the Building Nevos recommends the pil ing of floor boards as illustrated in the accompanying dia gram. Four long poles are planted in the ground, and the boards are placed at an angle against them as shown. By

planting posts at short interva緻 betwen the corners many more boards can be stacked in the same space. This method gives a much freer circulation of air than the ordinary method, and consequently the drying proceeds with greater rapidity

Sound and Electric Figures

What are termed sound figures may be produced in various ways. One way is to fix a plate of glass at its center with Burgundy pitch to an upright support on a stand, then to dust the plate with fine dry sand or other suitable powder, such a lycopodium. If now the plate be made to vibrate by draw ing over its edge a violin bow, or some horse-hair tightly stretched from the two ends of a cane well rosined, the dust will in due time arrange itself into certain forms, lines, or figures. The same will occur by tying over a broail-mouthed glass or goblet with bladder that has been moistened and allowed to dry to a drum-like surface, and dusted with lyco podium or very fine sand, and then put upon a piano. Cer podin lines are ser upon, particularly when one chord only has been struck, so as to lessen the vibration. The blowing of a cornet, using one key, or the tuning of one note of any instrument, near one key, or the tuning of one note of any instrument, near
the stretched membrane, will cause it to vibrate, and the dust the stretched membrane, will cause it to vibrate, and the dust
to arrange itself into form. Thus these experiments clearly exhibit the effects of sound; and by due study of the dust lines we may see what sound, one long passed, has been. A somewhat similar application of this experiment has recently been made by a erman philosopher to the study of the naturen of electrical discharges between metallic conductors. It is found that when an electric discharge takes place between a horizontal plate of metal powdered with lycopodium, formng the positive pole, and a ball or point placed below it, the dust remains attached to the plate on a well-determined area. S'c⿻timus Piesse.

Good Cider Vinegar

Take ten gallons of apple juice fresh from the press, and suffer it to ferment fully, which may be in about two weeks or sooner if the weather is warm; and then add eight gallons like juice, new, for producing a second fermentation in two weeks more add another like new quantity, for pro ducing a third fermentation. This third fermentation is material. Nowstop the bunghole with a! empty bottle with the neck downward, and expese it to the sun for some time. When the vinegar is come, draw off one half into a vinegar cask, and set it in a cool place above ground, for use when clear. With the other half in the first cask, proceed to make more vinegar in the same way. Thus one cask is to make in, the other to use from. When making the vinegar, let there be a moderate degree of heat, and fre access of external air.

AERIAL NAVIGATION.

vUMBER FIVE.

We give herewith an account of an aerial steam machine designed by Joseph M. Kaufmann, a lasgow engineer, an account of which we condense from Engineering of March 6, 1868. Only about two ninths of the wings, which are long and narrow, are represented in our engraving. From this re mark the reader will understand they were of great length, and we may add that they were pointed somewhat like the wing of a swallow.
The actual machine, which the model was constructed to present, was designed to be of the following dimensions: From stem to stern, 12 feet; from stem to tip of tail, 1 feet 11 inches ; greatest depth, 4 feet 6 inches ; greatest width, 5 feet 1 inch; length of each wing, 35 feet; area of each wing, 221 square feet ; length over the " gies," 17 feet 3 inches ; Length of pendule, 40 feet; weight at end of pendule, 85 lbs.; total weight of machine, $7,000 \mathrm{lbs}$.; nominal power, 40 H. P.; intended speed, 40 miles per hour, the tank or tender taking a supply of oil and water sufficient for five hours.

As will be inferred from the engraving, it is intended tha progress should be gained by flapping the wings, these wings being driven in such a manner that their motion resembles that of the wings of a bird as closely as possible. It is in tended that when the machine is rising, the wings should make 120 strokes per minute. The pendule, which can be aised and lowered as desired, is for the purpose of keeping the machine in a horizontal position. The machine repre ented is exclusively for flying over land, and it is furnished with whoels on which it can run when on the ground ; Mr Kaufmann states, however, that by a few simple alterations it can be made available for traveling over water, and in case
of its alighting be converted into a boat furnished with padof its alight
The model, to which we have already referred, weighed, complete, 42 lbs.; and during the experiments with it, its boiler, owing to its small size, was not fired, steam being supplied from an independent boiler. The model was made entirely to prove the correctness of the inventor's theory, and to ascertain if the connections to the wings could be made trong enough to withstand the violent twisting and bending trains to which they are exposed. In the model the motive power consists of a single vertical steam cylinder fitted with piston in the usual way, the piston rod carrying a cross head which is coupled by links directly to the wing beams The wing beams are fitted to shafts which run for about three fourths the length of the machine. To these shafts are also connected the "regulators" by which the feathering motion of the wings is governed. Each wing is secured in four places, and has its center of oscillation directly opposite its working beam. The "gies" can be moved alternately so urbing its horizontal position.
During the trial the model was securely fastened down and oaded with a considerable weight to prevent it from moving it being at the same time raised on supports so that its wheels were clear of the ground. Steam at a pressure of 150 lbs was then turned on, when the wings made a short series of furious flaps; but, through imperfect workmanship, the left wing suddenly gave way about two feet from its base, when the other wing, being subjected to extra strain, failed also. Mr. Kaufmann states that these accidents were in a great measure caused by the wings having been lengthened three feet previous to the trial, and being thus exposed to a greater strain than they were constructed to resist. The wings hav ing been removed the machine was put to the final test of be-
ing run at a speed of 1,500 double strokes per minute, and it was found to be quite uninjured by this experiment. Altogether, Mr. Kaufmann considers the tr:als to have been satisfactory, and since the trial referred to he has been engaged in the construction of a larger machine on the same principle, but having the beams worked, through gearing and eccentrics, by a harizontal engine. This machine is also to be fitted with shifting aero-planes, and is to be accompanied by tank-car with accommodation for two persons. It is intended that this machine should rise into the air after a short race on terra firma, drawing behind it the tank-carriage; it is to be of 120 -horse power, and is to weign $8,000 \mathrm{lbs}$ complete. The tender is to carry ten hours' supply of fuel and three hours' supply of water ; and with this tender and three cars the machine is intended to make fifty-sis miles per hour.

Correspmaterce.

The Editors are
respondents.
The Fossil-man of Onondaga-opinion of an Anat omist.
Messrs. Editors:-I have read with a good deal of interest the accounts I have seen in your excellent paper of the "stone giant," or the fossil man, found on the farm of a Mr. Newell, by some laborers while engaged in digging a well. Many of the accounts I have seen in the papers are fanciful and wholly imaginary. At first we were told it was a veritable petrifaction, and a full description of the same was given. Next we were informed that it was an "image," the work of the Jesuits ; then again it was the work of a Canadian, made in 1868, from Onondaga plaster. Recently I saw an extract from the Syracuse Journal, in which was an article signed by James Hall, State geologist, and S. B. Woolworth, Secretary of the Regents of the University, in which it is maintained that it cannot be a petrifaction, because the soft parts of an animal are never petrified, decomposition taking place so rapidly. Now, Messrs. Editors, the above-named gentlemen may be men of science, in their way; they ought to be, occupying the places they do ; but it is plain they are not anatomists, or they would never make the above statement.
Decomposition is ordinarily the fate of all animal sub stances, hard as well as soft. But we have many well-authen ticated instances of human bodies, buried in certain localities becoming petrified. It is not more than four or five year ago that we had an account in the New York papers of the removal of a man, or his body rather, that had been buried six or eight years, when it was found that complete petrification had taken place. No part had even begrn to decompose except the end of the nose, and that was very slight.
Besides, I can show Messrs. Hall and Woodworth, if they will call upen me, the half of a human heart petrified, plain ly and distinctly to be seen, as any one acquainted with anat ly and distinctly to be se
I have many other similar ${ }^{*}$ petrifactions in my possession None of these could, for a moment, be supposed the work of the cunning Jesuits or of a shrewd Canadian, hid in the earth to surprise somebody-but were picked up, some in Pennsylvania and some in Wisconsin-each partaking of the nature of rock common in the region where it was found The same thing, no doabt, is true of the plaster man of On ondaga. As plaster or gypsum is common in that region petritactions in that locality would, of course partake of the nature of gypsum. I have never seen the stone giant above referred to, but it would take more than I have yet seen to convince me that it is not a fossil man.
Dr. Westcott's communication in your last issue takes the most common-sense view of the subject of anything I have seen. One good anatomist is a better judge of the nature of the curiosity in question than a thousand State geologists or Regents of the University
Don't let us set a shoemaker to repairing a watch-every man is a judge of his own trade.

Geo. W. Stone, M.D Warren Center, Pa

The New English Method of Seting Gires.
Messrs. Editors:-'l'he article headed "A New Method of Setting Tires," in the Scientific American, under date of Nov. 6, and which you describe as being patented in Eng land, and as to the utility and serviceability of which you seem to have some doubts, has come to my notice.
I not only share your doubts about its general utility, bu I assert that its theory is all wrong. It is, in my opinion, a mposition upon the common sense of any intelligent wher right, and hundreds of them will bearme out $i x$ this asser tion. It is a violation of the common laws of nature ; thi alone would be sufficient to condemn the whole thing.
The nature of iron is such that heat will expand and co. will contract it. How could nature come to the assistance of man any way more favorable, especially in that class of machines which combine wood with more or less iron
What is more simple or requires less time, than to meas ure the tire, weld it, and allow a certain amount of draw, ac cording to the size and condition of the wheel? Every intelli gent blacksmith knows exactly how to govern himself in or der not to let the action of the tire be too great in its con raction. I say the contraction should not be too great, as it would strain the wheel out of its natural position, and more or less injure its strength by giving it a constrained dish, which we carefully seek to avoid.
Now this new method makes necessary a procedure which is entirely injurious to the strength and stability of a sound wheel ; namely, the unnatural contraction by force of the wheel in order to set the tire. A well put up wheel can only be contracted as far as its elasticity will admit, and to do this

