passed through the upper portion of the ornamental work, and were secured by attachment to four plates of iron, which were built into the tomb itself, under the slab on which the effgies rested. These four iron plates, notwithstanding their protection, first by the work of the tomb itself, and, secondly, by the bailding which sheltered the tomb from the chief vicissitudes of atmospheric temperature, had developed, on eith rer side of each, solid plates of rust, of from three to four tim of this oxide had acted as an irresistible wedge, riving the fabric asunder, and threatening in course of time the entire overthrow of tais noble monument.
Specimens of thess plates of oxide, as well as one of the originaliron plates, were exhibited at the meeting of the Roy 11 Archæological Institute, on the 2d of July last. The dangrous metal has now besn replaced by plates of copper and the tomb has been restored to its original beauty, but the lesson as to the conduct of iron when included in masonry or in mortar, even under circumstances which might be pre sumed to be more than ordinarily favorable, is not one of which any prudent architect or engineer will lose sight.

METAL SPINNING.

There is a system of operations for altering the shape of malleable metals, namely that of causing the sheet metal to conform or flow into hemispherical, oval, or irregular forms by motion, which was invented in France a few years ago, but wbich is now extensively adopted in Eugland. The process is called "spinning," and is rapidly superseding the diestamping method 'wherever it can be employed advanta geously, because it acts more kindly on the metal. It is the result of gentle pressure combined with rapid motion, and involves a great principle; the effect is due to motion in connection with time. The chief feature in all such changing of form is the giving suflicient time for the particles to move or flow. To press the flow too rapidly would cause the sheet to tear from rupture of particles. In the operation of spinning, this tendency to tear is defeated by communicating a very rapid circular motion to the sheet of metal, and then by means of au instrument or instruments held in the hand, a gentle pressure is brought to bear on one point, thus causing a slight depression; but as the sheet is spinning at high velocity, the depression at once forms a circle, and so by continuing the
prassure of the instrument it is molded into any form ac prassure of the instrument it is molded into any form ac cordingly.
The operation of spinning is performed in a species of lathe A moldof the required form is generally fixed on the end or facs plate of the revolving spiadle; the sheet or disk of metal is held by pressure from another headstock against the mold, and by the local prossure of the instrument
On the table before us are specimens of the progressive On the table before us are specimens of the progressive
manufacture of the lids of powder-cases, as they are made in manufacture orsan by this principle of operation, termed "spinning," by examining which its nature will be under stood; it will also be seon how much change of form or rather movement among molecules, is requisite to produce the rigid.or brittle condition that necessitates the annealing pro-
cess, in order to restore the malleable and ductile property, cess, in order to restore the malleable and ductile property,
which is required to still further change the shape. There is first the entire mouthpiece of the case in the form, here shown in Fig. 1, ready to be attached to the flat surface of the case

Fig. 1.

top ; the stationary part has reached its present peculiar shap A, through five stages. It is first cut into the flat disk, B, then the disk is spun, so far as C ; it is now required to be aunealed, and after this, it is turned into the third condition it is then span into the fourth stage, D, and from that to the finished article A. The lid which fits into A is composed of both pieces, when complete, are united by spinning over a lap of one upon the other. It will be observed that certain cor ragations are produced by the process; these add greatly to the strengtb, but scarcely anything to the cost. It will also be seen how nicely the lid fits into the mouthpiece; this nice fit does not depend on the workmen, but wholly on the mold in the lathe, from which it is correctly transferred by copying by the pressure of the spinning instrument.
The French, who were the originators of the process, em ploy it with great dexterity in a variety of ways, more espe cially in the production of such articles as large oval dishcovers. The sheet is secured to the center of what may be called an oval chuck, and by a dexterous use of two pieces of greased box-wood held in both hands, the workman very an oris prents thus giving it rigidity as well as a neat finish. The time required for the operation is so sholt as to be scarcely credible and has to be seen to be appreciated.

The motal wrourrlt-iron, as used by the smith, is also exeedingly malleable, both hot and cold, but especially when it is hot. All are familiar with this method in the condition called "tin plate," which is a thin sheet of iron spread out with rollers, afterwards cleaned, then covered with tin as a aration from oxidation as hands of the tinman.
In the Great Exhibition of 1851, a foreign exhibitor had an iron book, in which the leaves were made of iron as thin as tissue paper; and iron may be seen of any substance or shape, every variety of bar, or, worthy of Vulcan, up to armor plates of 15 inches in thickness, or 25 feet long, 5 feet wide, and 8 inches thick, as made at the well-named "Cyclops" Works Iron or steel may be drawn into gun barrels like dough over a mandrel, but one ofthe most marvelousillustrations of the malleable, ductile, and flowing properties of wrought-iron, is shown by the manufacture of quicksilver bottles. These bottles are made in various ways; in the process referred to, the bottle is made out of a circular disk of iron plate, which contains the quantity of iron necessary to form the article. By the stamping process already described, the disk of iron is gradually brought round to be of a cylinder shape, resem bling the form of drinking glass called a tumbler. This cylinder is then put upon the end of a steel pin or mandrel, and by mechanical pressure, is pushed through a hole, which hole is smaller than its own dimension, thereby roducing its exterior diameter, but at the same time drawing or rather pushing the iron over the mandrel in the same manner as a
piece of dough could be drawn over the finger to fit like a piece of dough could be drawn over the finger to fit like a
glove. This process is repeated through a succession of glove. This process is repeated through a succession of
smaller and smaller holes, one after the other, until at length it becomes a long cylinder, close at one end but open at the other. The neck of the bottle has nest to be formed on the same principle, by an often-repeated pressing and twisting at the open end into a conical die, by which means it is gradually and successfully brought to the form of the bottle neck, in which a screw is afterwards formed for the stopper by the ordinary means.
During the Crimean war, a large manufacture of wrought ron shells was carried n in the Royal Arsen al, not precisely, but nearly in the same man in. They were made in an elongated form and of an oval section as shown on the dia-
gram, Fig 2. These shells were made out of a single piece of iron, in which to form the cylinder, welding inti so far employed, lu were then brought to the bottle shape by what may be called hammers. The mouth of the shell was attacked sim altaneously by a circle of hammers, whose united surface afforded the required shape, while the other parts of the ma chine prevented the shell from flinchingduring theoperation, and thus it gradually came into the bottle sime without any puckering, which most men would previously have expected uch a result was entirely due to the uuiform effect of the combination oì hammers, thus constituting a sort of die
The elongation of a quicksilver bottle over a mandrel partly anticipates the nature of the ductile property, yet not entirely so. Ductility is that natural property by means of which a solid substance, such as iron, steel, and other metals, can be drawn or pulled out to almost any degree of fineness This property, although often accompanying malleability, does not do so in some cases, such as in lead, possibly for want of tenacity, as lead can be squirted into any thread of any fineness by pressure. This natural property of ductility is taken advantage of to produce endless variety of form, but in all the mechanical principles employed are nearly alike-namely, to pull the metal through a rolling or stationary hole, and thus to alter its form or dimensions.
To take the simplest and most familiar case, that of common wire-making-the iron or other metal is first rolled outinto a long bar of small diameter; the end of this bar is reduced in pointed fashion so as to enter a conical hole in a steel "draw-plate," as it is termed, the hole being smaller than
the remainder of the bar; a pair of pincers worked by mathe remainder of the bar; a pair of pincers worked by ma-
chinery seizes hold of the small end of the bar; the drawplate is held rigidly; then the force applied is sufficient to overcome the unwillingness of the particles to move, but the lowing property permits the change, and the iron rod is thereby drawn out into a smaller and longer wire, which is epeated through smaller and smaller holes in succession, with occasional annealing, until at length the requisite fine ress is arrived at. From this it will be seen that the shape of the wire depends on the form of the hole in the draw-plate and may be to any pattern-sprigs of flowers for the calico printer, toothed-pinion steel wire for the watch and clock
maker, or even tempered steel wire of all sizes for the piano maker, or ev
forte maker.

How Phosphorus is Made.
The earthy matter of bones consists of three equivalents of ime united with one equivalent of phosphoric acid. It is what chemists term " a tribasic phosphate of lime." Phoswith five equivalents of oxygen. In order to obtain the phos phorus, it is only necessary to take away those five equivawith charcoal after some preliminary operations, and heating them together. The charcoal takes away the oxygen and
forms carbonic oxide with it, while the phosphorus distils over. In this way we get phosphorus in the condition in which you are very familiar with it. It is a wax-like substance, which must be handled with care, because if you allow it to
flame it.
Now observe what this substance looks like. It is semiNow observe what this substance looks like. It is semi-
transparent ; it is soft ; you can cut it like wax. It is exceedingly poisonous, and in the making of lucifer matches it ceedingly poisonous, and in the making of lucifer matches it
is found to be a very insidious poison. Lucifer maich makers are apt at first to be subject to an aflection which does not draw much attention. They complain frequently of too ${ }^{+} \mathrm{h}$ ache, but they do not know the insidious disease which is creeping unon them. The lucifer match makers who make lucifer matches from this phosphorus, are subject to the most distressing of all diseases ; the jawbone becomes destroyed, and frequently disappears or becomes useless, and sume of them spend the greater part of their lives in the wards of hospitals. It therefore became an important point for science to find some way by which this phosphorus should be deprived of its poisonous properties without losing those chemical characteristics which make it so useful in making matches for instantaneous light.
Prof. Schrotter, of Austria, met this want of science in a very skillful way, as follows: By taking common phosphorus and exposing it for some time to a temperature of 47°, this yellow, waxy, transparent substance transforms into a dark, brick-like substance. It is no longer so inflammable as to ignite spontaneously. It may be packed up in boxes without danger of spontaneous combustion ; but what is more important, it has lost all its poisonous properties. The phosphorus, which was poisonous before, is no longer poisonous in this condition, and it is still capable of being used for making lucifer matches.

Raising of an Old war Ship.

In October 1779, says the Philadelphia Age, a British fleet, consisting of the Roebuck, 44 guns; Meslim, 18 guns, and a galley of 3 guns, commenced from the mouth of the Delaware a gratual approach to our city, which they proposed bombarding. To prevent this movement, the colonists had the famous little Wasp and the Lexington, with a few tenders; but they could only harass these vessels. But to prevent their upward progress, the Americans, as a further defense, constructed a fort on the lower end of Hog Island, and between that and the fort on the Jersey shore just opposite they sunk a number of hulks, thus preventing the passage up the river of any heavy vessel. On the 20th of October, 1779, the Brit ish vessels named attacked these forts, but a fleet of fire rafts drove them down the river.
On the 22 d of the same month the new frigate Augusta, direct from England, reinforced the British force. She was one of $\mathrm{t}^{\text {t/ }}$ g old-fashioned, cumbersome double deckers, with high sides, bristling with guns. She was loaded with ammuhigh sides, bristling with guns. She was loaded with ammu-
nition, shot, and a surplus armament for light ships, which the British hoped to construct on this side of the Atlantic. The fleet, thus increased, re-attacked the fort on the Jersey shore, above Woodbury Creek, being coöperated with by shore, above
2,000 Hessians on shore, under command of General Danupe. 2,000 Hessians on shore, under command of General Danupe.
The commander of the American galley Chatham, had twelve The commander of the American galley Chatham, had twelve
smaller galleys lying just below our city, and hearing of the approach of the British, dropped down stream, and on the afternoon of the 24th, opened the engagement with the four British frigates. This engagement lasted into the night, during which the Augusta grounded, and her consorts fled down the river. The Argusta was on the next morning dis covered, attacked, and set on fire. Of the 300 men she had on board, just one half were drowned, by leaping ashore or being carried own by the frigate when she sunk. Here, in thismud bank, lying near the Jersey shore, opposite Hog Island, she has been embedded-the deposits accumulating, until the hull sat in the mire to the depth of fourteen feet. About two weeks ago, James Powell, Joa. Moore, Geo. M.ar hy, Gabriel Sheppard, and Chas. Meyers, conceived the idea of raising the wreck and reaping pay for their labors by selling whatever it might contain. Submarine workers were em ployed; chains were passed beneath the old frame, and atached to canal boats on either side. The latter were partiall, filled with water, the cables passing under the hull of the wreck were tightened, and the water pumped out of the boats. The latter becoming buoyant rose up, and with them the re mains of the Augusta, which finally were towed to Gloucester Here, within the past few days, three of the old-faghioned guns were taken from her ; a number of skulls, remnants of the ill-fated British; sixty tuns of shot, used in the small smooth bore cannon of the time ; a great quantity of Kestlidge ballast, consisting of blocks of cast iron, and a large number of relics, which will be highly prized. Among these were a silver spear, marked "H. W., 1'748," a fat old bull's ye watch, with its works eaten up by rust, a number of guineas with a raised profile of veorge III., and some silver coin dated 1760. The frame of the Augusta is of Irish oak, and the wood is sound and proof against decomposition.

Curious Phenomenon in Artillery Firing.
A phenomenon connected with the fire of riled artillery has lately been illustrated afresh by the experiments of the British Indian Equipment Committee. It is popularly beieved that the projectiles from a ri fled gun will have left th muzzle before any sensible recoil can take place; this is an
error which was detected as follows: It had frequently been error which was detected as follows: It had frequently been
noticed that when rifled guns were fired point blank, or with noticed that when rifled guns were fired point blank, or with ise after it had left the muzzle, and the range was much greater than the theory would lead us to expect. This was
at first ridiculed; the idea of a shot rising was preposterous $\left\{\begin{array}{l}\text { and raisng it; or if it cannot be brought up by this means, } \\ \text { and contrary to the first principles of dynamics. One might } \\ \text { a solid wrought iron breaking bar, of very great weight is }\end{array}\right.$ and contrary to the first principles of dynamics. One might as well expect Newton's apple to rise in the air instead of tumbling to the ground. Facts, however, are stubborn, and
it was asserted that, although theoretically it should not, practically the shot did rise. The first careful experiment in this direction made in this country were carried out by the late Ordnance Solect Committre in 1864. The 12-pounder breech-loader rifled gun of eight cwt. was fired with an elongated shot of $11 \frac{1}{2}$ lbs., and a charge of $\frac{1}{2}$ lb., at an upright wooden target of forty yards. The gun was laid with the axis of the bore truly horizontal, that is, parallel with the ground, and the exact level of the center of the muzzle was would fall by gravity in passing over the forty yards, and its could fall by gravity in passing over the forty yards, and it have struck about two inches below the level center should have struck about two inches below the level; practically, however, it was found to strike ten inches above
it! This fact once established beyond all doubt, many theoists set about accounting for it ; their speculations, however cannot here be recapitulated. The probable explanation is that the recoil is sensibly felt before the shot has left the gun, and that the resultant of the forces acting on the gun and carriage tends to throw the muzzle up-thus the projectile, although seemingly fired point blank, really leaves the gun at au angle. With the 12 -pounder breech-loading gun this angle was found to equal about thirty minutes, while with the 9 -pounder muzzle-loading Indian gun it equals only about thirteen minutes. The difference is probably due to the projectile taking a longer time to pass through the bore of he breech-loading gun. It may be mentioned that when the gun is swung as a pendulum and fired with its axis horizontal the shot strikes below the level.-London Globe.

Well Boring and Pumping Machinery

An interesting paper on the above subject was recently read before the Institution of Mechanical Engineers, at Birming ham, England, by William Mather. In the operation of ex cavating boreholes for wells and other purposes, the principle adopted and carried out by the writer for all depths of boring has been the use of a rope for working the boring tool in the hole; and this principle obviates the serious expense and delay attending the plan of using rods for working the tool when great depths of boring have to be executed. In the plan described in the paper, the boring tool is worked by plan described in the paper, the boring tool is worked by ing engine, and on quitting the drum passes over a large pulley carried in a fork at the top of the piston-rod of a verti cal single-acting steam cylinder. The boring tool having been lowered by the winding drum to the bottom of the bore been lowered by the winding drum to the bottom of the bore
hole, the rope is clamped secure at that length; steam is then hole, the rope is clamped secure at that length ; steam is then
admitted underneath the piston of the vertical cylinder, and admitted underneath the piston of the vertical cylinder, and and on arriving at the top of the stroke the exhaust valve is opened for the steam to escape, allowing the piston-rod and carrying pulley to fall freely with the boring tool, which fall with its full weight to the bottom of the borehole. A cushion of steam prevents the piston from striking the bottom of the cylinder, and the steam and exhaust valves are worked by tappets on a plug-rod; a rapid succession of blows is thus given by the boring tool on the bottom of the borehole. The oring toel is composed of a number of chisels or cutters, fixed in the cast-iron head at the bottom of the long wrough-iron boring bar, which is guided vertically in the borehole by a couple of collars; and it is made to rotate a little between èach. blow, so as to strike in a fresh place each time, by means of a simple self-acting arrangement. The ifting shackle at the top of the boring bar is allowed to slide up and down through a short distance on the neck of the boring bar between two fixed collars; the upper face of the ower collar is formed with ratchet-teeth, and the under face of the top collar is formed with similar ratchet-teeth, but set half a turn in advance of the teeth on the lower collar. The intervening boss of the lifting shackle is also formed with corresponding ratchet-teeth on both its upper and lower faces, hese teeth being in a line with one another. When the boring tool falls and strikes the blow, the lifting shackle which during the lifting has been engaged with the rachet teeth of the top collar, falls upon those of the bottom colla and thereby receives a twist backwards through the space of half a tooth; and on commencing to lift again, the shackle rising up against the rachet-teeth of the top collar receives a further twist backwards through half a tooth. The flat rope s thus twisted backwards to the extent of one tooth of the atchet, and during the lifting of the tool it untwists itself gain, thereby rotating the boring tool forwards through tha extent of t wist between each successive blow of the tool; and this turning is found to be quite certain and continuous in action during the working of the tool. When a sufficient quantity of material has been broken up at the bottom of the borehole by the blows of the tool, the working of the percus sion cylinder and pulley is stopped, the rope unclamped, and the boring tool wound up witl great rapidity by the winding rum. A shell-pump is then lowered down the borehole by the rope, consisting of a long cylindrical shell or barrel, with a clack valve at the bottom opening inwards, and a bucket containing flap valves opening upwards. The rope is attached to the bucket, and when the pump reaches the bottom, the bucket is worked up and down by the rope several times, o as to draw in the broken material through the bottom clack; after which the pump is drawn up again with the maerial contained in it, and the boring tool again lowered into he hole for continuing the boring. In the event of accidents rom breakages or from any of the implements sticking fast in the borehole in rising, grappling tools with hooked claw
of suitable shape are employed forlaying hold of the obstacle
a solid wrought iron breaking bar, of very great weight is
lowered into the hole, and allowed to fall upon the obstacle from a sufficient hight to break it up into fragments, which are then raised either by grappling tools or by the shell pump.

Ransome's Induration Process.

We learn from Endineering that Mr. Ransome's method of waterproofing walls by means of successive solutions of siliate of soda and chloride of calcium, which has been applied with so much success to many public and private buildings in England, is being used extensively in India to arrest the decay of many brick structures upon railways in that coun ry. Among others it mentions the Waree Bunder Works upon the Great Indian Peninsula Railway, which were con structed of such inferior material that a rapid deterioration speedily followed the construction of the works, and the crumbling of the bricks left no alternative apnarent save hat of rebuilding. It was, however, determined to experi ment with Mr. Ransome's process, and accordingly, in 1868 , ment with Mr. Ransome's process, and accordingly, in 1868
it was extensively applied to the failing buildings, with the esult of effectually stopping the decay, and of placing s ine and hard a surface upon the bricks that the material which before could be crumbled by the touch, received a sur ace so hard as to resist the scratching from a steel point. In this manner extensive workshops and a chimney shaft were t an insignificant outlay,

Heating Surface of Bollers.

The quantity of steam generally produced on every 39 inches square of surface or cylinder boilers, is from 44 to 66 pounds per hour. In marine boilers it averages about 77 pounds per hour.
For high-pressure cngines, the heating surface is generally alculated, per horse power, as follows: Small boilers, 85 nches ; medium size, 55 inches; large size, 40 inches, and even less.
For low-pressure engines, per horse power, as follows: mall boilers, 60 inches ; medium sized, 40 inches; large size 39 incies, and even less.
Recent comparative experiments have shown that 42 feet of boiler surface made 22 pounds of steam from $35 \cdot 2$ pound of coal ; $52 \cdot 5$ feet surface made 220 pounds of steam from $30 \cdot 75$ pounds of coal ; 63 teet surface made 220 pounds of steam rom 29 pounds of coal ; 84 feet surface made 220 pounds o steam from 27.55 pounds of coal ; 105 feet surface made 220 Vade λ eicum.
Preservation of Eggs.
解 some experiments by M. H: Vimleite, on the best method of preserving eggs, a subject of much importance to France Many methods had been tried : continued immersion in lime water or salt water ; exclusion of air by water, sawdust, etc. and even varnishing had been tried, but respectively con demned. The simplicity of the method adopted in many arms-namely, that of closing the pores of the shell with rease or oil had, however, attracted the attention of the athor, who draws the following conclusions from a series of xperiments on this method: Vegetable oils, more especialiy
inseed, simply rubbed on to the egg hinders any alteration or a sufficiently extensive period, and presents a very simple and efficacious method of preservation, eclipsing any methods and efficacious method of preservation
hitherto recommended or practiced.

Watch Repairers' Shop.

A correspondent in the Horological Journal makes the fol owing practical suggestions
" How vexatious to drop a small article and spend a quar er of an hour of valuable time in fruitless search for it-get ing on your knees, dirtying your pants, growing red in the ace, partly from your inverted position, and partly from an er. All this may be easily avoided. Thus

First, sweep very clean every nook, and corner, and crack about your bench and window, then get a pound or two of putty (no matter 'what's the price of patty'), and a few strip of nice soft pine, then putty up every crevice that is larg nough to conceal a jewel screw ; the large cracks stop par ially with bits of pine and finish with putty; don't miss single place. The whole job won't take you longer than you ill be searching for a lost second-hand, and then when any hing does drop, you can find it in a moment by sweeping your floor with a little broom brush.'

Our Impending Doom.

A public lecturer in this city recently argued that religion as anseless because "man's existence on the earth is mo mentary. Science teaches us that in 6,300 years more a gran deluge will end his race and make him a fossil. You may himk this an idle tale, but it is not. Astronomy shows that he earth is oscillating in the angle of its axis to the sun in periods of 21000 years. The zones are undergoing a constan change. Now, at the North Pole it is growing colder each ear, and at the South Pole warmer. Thus, an immense ac cumulation of glaciers or icebergs at the N orth Pole will re sult, while at the South they will not form at all. In 6,300 years the glaciers will have accumulated so much that they will suddenly over-balance the earth. Then the waters of the sed will rush from the south to the north, and there will be deluge." Stand from under!

THE yearly mortality of the globe is $33,333,333$ persons This is at the rate of 91,554 per day, 3,830 per hour, 62 pe minute.
H. W. STAPLES' AUTOMATIC LAMP-FILLER.

In our description of this in vention published on page 344, current volume (issue of Nov. 27, 1869), an imnortant point claimed by the inventor was omitted. If the reader will again refer to the engraving he will see that the vent tube, whiti also acts as a brace bewteen the nozzle and breast of the can terminates at the letter A, which represents an opening in the side of the nozzle, through which air enters while the oil s flowing out of the nozzle. As soon, however, as the oi ises in the lamp as high as the vent hole, A, it covers this holv, and the flow of cil from the filler is checkel. The fluid as it flows over the end of the vent tube, produces an audible whistling sound, which ceases when the vent hole is stopped by the rising of the fluid in the lamp, as the flow then ceases Thus a metal lamp or one made of any opaque material, a well as one of transparent glass, can be filled without dange of its running over, the filler stopping automatically when he lamp is filled to the proper hight. The advantage of con rolling the flow is gained by the simplest means, and all danger of cverflow prevented.

Editarial mumanti.

Frost Crystals upon Dried Grass.-Soveral persons have by this time laid up to put into bouquets the beautiful grasses which they gathered in the autumn and summer of the present year. In order to add variety and some pleasing effects to portions of such grasses, they may be covered with mitation frost-crystals, some white, others blue-green, and mber. To crystallize dry grass white, steep it in a solution of one pint of hot water containing one pound of alum. As it becomes cold, crystals will adhere to the grass, which wil increase in size if left for a day or more; but small crystals look the best ; and in order to keep them so, the grass should be often moved and turned about. When taken out of the olution and dried in the air, they are fit for mounting with the other crasses, and greatly add to their beauty. For the blue-green crystals use sulphate of copper, and for ambe crystals use chromate of potash instead of the alum. Feath may also be crystallized in the same way. Art and tast will arrange them into forms of beauty.-Septimus Piesse.

A New Theng in Postage.-'The Austrian Governmex as introduced a novelty in postage, which might be intro duced with great benefit in all countries. The object is to en able persons to send off, with the least possible troukle, mes ages of small importance, without the trouble of obtaining pa per, pens, and envelopes. Cards of a fixed size are sold at al the post offices for two kreutzers, one side being for the ad ress and the other for the note, which may be written eithe with ink or with any kind of pencil. It is thrown into the ox, and delivered without envelopes. A halfpenny post o his kind would certainly be very convenient, especially in arge towns, and a man of business, carrying a few such ards in his pocketbook, would find them very useful. There an additional advantage attaching to the card, namely hat of having the address and postmark inseparably fixed to the note.

To Curb the Rank Sagel of Horse Stables.-Saw ust, wetted with sulphuric acid, diluted with forty parts of ater and distributed about horse stables will, it is siid, ro move the disagreeable ammoni cal smell, the sulphuric: acid ombining with the ammonia to form a salt. Chloride of lime lowly evolves chlorine which will do the same thigg, lut hen the ehlorine smells worse than the ammonia. Sulplur ic acid on the contrary is perfectly inodorous. The mixture pould be kept in shallow earthenware vessels. The sul phuric acid used alone, either diluted or strong, would al sor more or less of the ammonia, but there would be danger of spiling it about and causing serious damages, and besides this the sawdust offers a large surface to the floating gas. The experiment is easily tried, and it may prove successful.

THE Boston Advertiser reports that a curious phenomenon is frequently taking place at Machiasport, Maine, in the har bor opposite the wharves. It is an upheaval, by some powe altogether unknown, of vast quantities of water, mud, and tones, to the distance of many feet, and with a furious rush ng noise. This phenomenon has occurred quite a number o times during the summer. and once as late as a month ago.

Patent Claims.-Persons desiring the weekly official list of patent claims, are referred to a notice concerniog the sup plying of them in our advertising columns. The Commis ioner of Patents would deem it a special favor if partie who intend to subscribe would order immediately, so that he may know how large an edition to publish.

A correspondent of the Mechanics Magazine etates that the Moncrieff system of mounting artillery, which has lately ttracted so much attention abroad, was anticipated 1811, by French officer, who published a system of mounting gun not essentially different from that of Capt. Moncrieff.

Black Paint for Ironwork.-A varnish for ironwork can be made as follows: Obtain some good clean gas tar, and boil for four or five hours, until it runs as fine as water; then add one quart of turpentine to a gallon of tar, and boil an other half hour. Apply hot.

The following is a German recipe for coating wood with a substance as hard as stone: 40 parts of chall, 50 of resin and 4 of linseed oil, melted together; to this should be adde one part of oxide of copper, and afterwards one part of sul phuric acid. This last ingredient mast be added carefully The mixture, while hot, is applied with a brush.

