Tartaric and Citric Acids.

Tartaric acid, when pure, is in colorless, inodorous, very sou crystals. It is soluble in two parts of water, and also in alco hol. The watery solution has no smell, is perfectly limpid, and is very acid. The specific gravity is 1.59 and 1.75 . Heat ed on a piece of metal over the flame of a lamp, it swells up, emits a very peculiar smell, and leaves a porous coal. The solution exposed to the air very soon mildews on the surface and turns to vincgar.
The composition of pure anhydrous tartaric acid is: Carbon $36 \cdot 30$; hydrogen, 302 ; oxygen, $68: 38$ parts in one hundred, but the crystals alwa.ys contain $11 \cdot 84$ per cent of water.
Tartaric acid is manufactured from cream of tartar (bitartrate of pelassa), which latter, as we have stated in a previous article, contains 7018 per cent of this acid. The mode of its preparation is fully described in all recent works on chemis try applied to the arts and manufactares.
It is frequently adulterated by almixtures of cream of tar tar, bisulphate of potassa or lime. These are readily detected as follows ;

1. The acid, if pure, dissolves without leaving the slightest sediment.
2. Alcohol must dissolve the whole"of the crystals, leaving o undissolved portion.
3. After calcination, lime can be detected in the ash by its effervescing if a drop of any strong acid be allowed to fall on it.
4. Sulphureted hydrogen, sulphate of lime solution, or chloride of barium introduced into a solution of pure tartaric acid, will cause neither cloudiness, change of color, nor deposit.

The uses of tartaric acid are many, large quantitics being amuaily consumed in the manufacture of lemonades, soda waťrs, and other sparkling drinks, where it replaces advantagcously the more expensive " citric " acid.. It is also much employed by calico dyers as a special mordant.
In conclusion we will only mention that tartaric acid combines with some other substances, forming what are called "tartrates" and "bi-tartrates," many of which are valuable in the arts or in the practice of medicine.
Tartaric acid itself, finds a place in the phamacopeeia.
Citric acid is found in the juices of many plants, but in none is it wore plentiful than in the fruit of the lemon and its allies.

In a pure state it forms trausparent, scentless, rhombic crystals, which do net alter by exposure, and have a very acid flavor. The specine gravity is 1617 . It is soluble both in water and alcohol. Dry heat soon destroys it.

Citric acid is largely used in bleaching cstablishments and laundries for removing rust and ink stains, and by the dyer for intensifying many red colors. The best class of artificial lemonades and sparking acidulated drinks and powders are made from it.
Accidental impurities are, sulphuric acid ane salts of lead they are not, however, of irequent occurrence.
The "trade" adulterations are with oxalic acid, tartaric acid, and occasionally sulphate of lime.
Tartaric acid and oxalic acid, from their low prices and somewhat similar aspect and flavor, are generally found mixed in proportions varying from 30 to 80 per cent with the commercial citric acid. For the detection of this adultera tion, dissolve your sample in water and add gracually, stirring all the while, a solution of sulphate or carbonate of potash. If the citric acid be pure, no deposit whatever will show itself, but if it contain either tartaric or exalic acids, a white crystalline precipitate of tartrate or oxalate of potash will fall to the bottom and tell the tale at once

Citric acil is manufactured from the juice of lemons, limes, citrons, and other similar fruits. Lemon juice is frequently brought to maiket in barrels or in bottles from the warm countries where the tree prospers. It is used in its natural state for many domestic purposes, and also by the dyer in his profession.
Lemon juice must be carefully clarified, as ly neglect of this operation it will be sure to undergo fermentation and to acquire a vory unpleasant odor and disagyecable taste. It is often largely adulterated by the addition of water, besides which, vinegar, sour grape juice, citric acid, muriatic acid oz tartaric acid, and sometimes
not unfrequently added to it.
not une quenty added to it
The detection of these admistures needs the practical science of the analytical chemist.-Nero Jort Mercartile Journal.

Myacinth Culture.

Many of our readers just now will be thinking of growing the.t beautiful winter flower, the hyacinth. Λ few bints given by a correspondent of the Journal of Horticolleure may prevent failure, and consequent isappointment, in not a few cases. He says :
"I annuaily grow akout eighteen hyacinths in glasses, and invariably place them all in water at the same time. I have tried difterent times in the hope of insuring a succession of bloom, but it has happened that those piaced latest in the
glass were among the first, to bloon. I have also ceased to put the bulbs in the water so carly as I used, and now do not think of patting them in till the middle or end of October. Fresh rain water is to be preferred, and the glass should be so filled that the water only just touches the base of the bulb. Rain water should not be arijemea unless it is quite freste, or otherwise it, soon becomes purid, and causes the roots of the bulbs to decay. If there is no alternative but to employ hard water, if it can be exposed to the action of the sun or external air for a time, so much the better.
"My experince has taught me that hard water used directly after it is miks: trom the well is apt to canse the roets to be
come a mass of pulp, highly affensive, and fatal in its effects Two or three lumps of charcoal placed in the glasses about two or three days before they are occupied by the bulbs, in order to allow of the charcoal becoming saturated and sinking to the bottom, will keep the water from turning rank, and prevent the necessity for its being often changed. Some of my best flowers have been in glasses, the water of which was not once changed. Place the glasses in a dark and rather cool situation until the roots bave nearly reached the bottoms of the glasses, when they can be brought to the light
"A month or six weeks' imprisonment will bring the roots to this stage of development. The most airy and lightest part of a sitting room, but as far from the fire as possible, is the best position for them. When the bulbs have been in the water about a week or ten days, the base of tach should bs examined, and any decaying or slimy substance removed. Λ s the shoot of growth increases in size, evaporation will take place, therefore the water should be replenished at intervals, care being taken that what is supplicd is not lower in tem-
perature than that in the glass. The foliage of the plants perature than that in the glass. The foliage of the plants
should be kept scrupulously free from any dust or dirt; a should be kept scrupulously free from any dust or dirt, a trouble. When the fower spikes begin to show themselves the glasses should be kept filled to the rim with water, as at the point of flowering the bulbs absorb a great quantity of moisture."

Monchhoven's Nesy Artificial Light.

Dr. Desire van Monckhoven recently demonstrated satis foctorily its importance before a meeting of the Vienna Photo graphic Society, and delivered a lecture upon its mode of pplication.
One of the most intense lights to be obtained by oxidizing metals or metallic compounds at a high temperature, is that derived from chloride of titanium, or chloro-chromic acid, hen exposed to the action of al oxy-hydrogen hame; the ght thus produced is of high actinic power, and capable of backening chloride of silver paper to an appreciable degre in thirty scconds, the formation of titanic acid or chromis acid being brought about at a very higo temperature.
this description of light that has been chosen by Dr. M.
this description of light that has been chosen by Dr. M.
Several kinds of oxy-hydrogen lights have been devise from time to time; the Drummond light, in which the flame acts against a cylinder of unslaked lime, but which requires
the constant prosence of carbonate of lime, and the suafface of the constant presence of carbonate of lime, and the süface of
the cylinder to be continually changing; the T'essie du Motay light, in which the lime cylinder is replaced by means of a compressed magnesia or zirconia cylinder ; and the Carlovaris light, consisting of smail parallel pipes of hard charcoal that of Drum chloride of magnesinan. ORAtuting for the lime cylinder another composed of titanic acid, magnesia, and carbonate of magnesia, a suitabie illuminating power is ob tained. Λ cylinder of this description, measuringy three contimeters (1 inch) broad and ninc long (8 incines) lasts for three hours, and may be produced for the sum of threepence. In stead of hydrogen, ordinary coal gas is employed ; and for the supply of oxygen, M. Deville's method of obtaining, it. by heating a mixture of calcined peroxide of manganese and
chlorate of potash is craplojed.

(Troosac "unnel.

The new railroad bridge across the Deerfiold river, at the cast end of the Ifoosac Tunnel, has been completed, and the rock from the tunnei is now deposited on the other side of the river. The work at the west endof the tunnel progresses rapidly. Last week forty-three feet were completed, being twenty feet more tian during any wsek under the State management. Messrs. Shanly \& Co., are the contractors.
The Burleigh drills are used exclusively at this tunnel, but with compressed air as the motor. The air is condensed three atmospheres, by means of Burleigh's air compressors, operated by stcam power, and the condensed air is carried nearly two miles in an iron pipe before it operates upon the drills. The air which exhausts from the drills gives perfect ventilation within the tumnel.
The progress made at the Hoosac Tunnel is nearly onc third greater than at Mont Cenis, notwithstanding the supposed superior and the costly nature of the French machinery

The First Man who had Gharge of a loconotive in the United States, turns out to be, not Nicholas Darrell, as stated on page 321, current volume, in an article copied from the Rural Carolinian, but John Degnon, 18 Firsi street, New York. We had the pleasure of a call from Mr. Degnon a few days since, and he explained to us that he was the man who teok charge of the Best Friend on its way to Charleston, and that he ran this locomotive three months or thereabouts, meanwhile giving Mr. Darrell the necessary instructions to qualify him for the post. The following year he cxecuted a similar commission with a second locomotive. In proof of his statement, Mr. Degnon referred us to Horatio Mhen, and other prominent engineers and manufacturers of his ciry. "Honor to whom honor is due."

Germair Tinder.-Amedou, punk, or German tinder, is mate from a kind of fungus or mushroom, that grows on the trunks of old oaks, ashes, beeches, etc. It should be ghat]? ered in Λu ugust, or September, and is prepared by removing the outer bark with a knife, and separating carcfully the spongy, yellowish mass that lies within it. This is cut into slices, and beaten with a mallet to soften it, till it can easily be pulled asunder between the ingers. It is then boiled in a

Sumbles to equapmofats.

E. N. B., of Ottawa, Ca.-No method of trisecting an angle based apon priaciples of plane geometry has ever been discovered though many attempts have been made. Beliering the problem impossilution have all been aficially withdreawn leained societies for its so geometers arestill busying themselves with the problem. An attempt a its solution, recently madeb y yatricio M. Del, Rio, ex-prufessor in the Pe proved to be erroncous. You will find immortal fame sooner in other proved to be erroncous. Xou will find imaortal fame
J. M., of S. C.-No simple rule has evenpeen found for deter mining the size of a sccond pulley, only the distance between centers, length of belt, and dianneter of first pulley being given. A solution has,
however, beens sought by eminent mathematicians. The problem is ex. however, been sought by eminent mathematicians. The problem is ex
tremely dificult, and involves the hishar mathematics for even an tremely dificult, and involves the hisher mathematics for even an
approximate solution. The practical and proper way to workis to fix the approximate solution. The practical and proper way to workis to fix the
size of botlo pulleysand determine the length of belt accordingly; and actual measurement is the 1 eadiest way to determine the length of a belt when the diameter of the pulleys in which it is to run are given.
J. W. M., of Ind.-The best varnish we know for the preser vation of a portable boiler liablc to rust through exposure to out-door
influences is asphaltum. This substance readily dissolves in turpentine. influences is asphattum. This substance readily dissolves in turpentine
which forms a good vehicle for its application. We presume you can ob tain it ready mixed.
.W.M., of Pa.-Nails are made of any size ordered, provided the order is large enough. We do not know whether the size you men
tion is kept on hand or not by any dealers. but are inclined to think tion is kept on hand or not by any dealers, but are inclined to think $i t$ is not
W. B. L., of Vt.-There is no cheap metal that will withstand the action of salt water. You can obtain all kinds of rubber tubing from A. C
. $\boldsymbol{\Lambda}$. C., of Ky.-You can render brittle sheet brass tough by nealing, that is, heating it and plunging it in cold water
G. S. R., of Mass.-There is no gain in using high steam for heating purposes. The total amount of heat in staam at any pressure is
found by adding the latent heit to the sensible heat or temperature, and found by adding the latent heit to the sensible he
this is practically a constant sum for all pressures.

Gusuts xul deccunt

1 l Charge for Insertion under this head is One Dollar a Line. If the Notwes.
exceed Four Lines. One Dollar and Half ver line will be char Med. To ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston Commercial Bulletin's manufac turing news of the United States. Terms $\$ 400$ a year
Superheated Steam House Furnacc. Pure Sir. Efficient. Auto matic. Safe. Controlable. Unequaled. Tested. Cheap. Circulars. H. G. Bulkley, New York.
Foot Lathes-II. P. Ryder's improved—220 Center st., N. Y. Read the advertisement of Λ. Daul, International Λ gent.
For Sale-The Undivided halfof U.S.Patent for Elastic Broom Iron, Patented July, 1869. J. M. Allison, Crinberry P.O., VenangQÇo.,Pa Wanted-Tough, heavy card board, in large quantities, 12×15 inches. Address, with sample and price, W.S. \& W. N. Poulson, Cadiz, O Tables to Compute Wages, by the day and by the hour-most For Sale Cheap-The entire interest of a new horse hay rake, warranted to be absolutely superior to all othcrs. 81000 wanted to hire on
it, Yor which 25 per ocnt will be siven. H.N. Green, Whitney's Point, it, for which 25 per
Bro me county, N. Y.
mproved Hydraulic Press, with elevating shaft attached. No. 83,4ą. Right for sale. Address J. B. Tunstall, Boydton, Va.
Aguatic Veiocipede, invented by Lewis D. Bunn. Patent for sale. See advertisement on back page.
For best quality Gray Iron Small Castings, plain and fancy Apply to the Whitneyville Foundery, near New Haven, Conn
Keuffic \& Esser 71 Nassau st.,N.Y.,the best place toget tst-class Drawinm ararials, Swiss Instruments, and lubber Triangles and Curve Peck's patent drop press. For circulars, address the sole manufacturers, ZHiloPeck © Co., New Haven, Ct.
Those wanting latest improved Hub and Spoke Machinery, address Kettenring, Strons: \& Lauster, Defiance, Ohio.
For Aluminum Bronze and Oroide Watches, Chains,and Jewelry, send to ©roide Watch Co., Boston, U.S. Price list sent free For Salc-A patent for a composition for covering steam boil For tinmans' tools, presses, etc., apply to Mays \& Bliss, Brook-
lyn, N. Y.
Mill-stone dressing diamond machine, simple, effective, durable Also, Glazier's diamoads. John Dickinson, 64 Nassau st., New York. Send for a circular on the uses of Soluble Glass, or Silicates of Soda and Potash. Manufactured by L. \& J.
and Drug Importere, 55 Cedar st., New York.
Glynn's Anti-Incrustator for Steam Boiler-The only reliable preventative. No foaming,and does not attack metals of boil
terms to Age.nts. C. D. Fredricks, 587 Broadway, New York.
Cold Rolied—Shafting,piston rods,pump rods,Collins pat.double compression couplings,manufactured by ones \& Lauglins,Pittsburgh,Pa.
For solid wrought-iron beams, etc., see advertisement. $\Lambda d d r e s s$ Union Iron Mills, Pittsburgh, Pa.,for lithograph, etc.
Machinists, boiler makers, tinners, and workers of sheet metals read advertisement of the Parker Power Presses.
Diamond arrlom, formed into wedge or other shapes for point ing and edging tools or cutters for drilling and working stone, etc. Send
stamp forcircular. John Dickinson, 61 Nassau st., New York. The paper that meets the eye of manufacturers throughout the Winans' boiler powder, 11 Wall st., N. Y., removes Incrusta

