that exertedby a col umn of blood seren and oue half fee himh. The pressure per equaro inch was estimutod by Poiseuille as four pounds threo ouuces. Othecs liave estimated tho pressuro as that of a column of water six fect in hizght. The results wary in difforent experiments, but they are sufficicutly accurato to give us an average that we may rely upon as within bonnds. They are also something more than acre estimates, as this pressure has been measured by pres. sure gayes inserted into tho blond vessels.
We shall cousidertlie irressure as that of a water column six feet inhight, the weight cif which would be nearly forty two ounces, which, for kinnplicity, we will consider forty-two ounces, or two pounds ten onnees a voirdu pois.
Tho everrage discharge of tho heart at eah pulsation may be estimater a tono andono half ounces, and itsnumber of beats ut seventy-five per minute ; making an argrerato of 112 omes, or seven pounds digechn:..ged per minute.
The averane intermal diameter of the aorta, or the first grecitartery through which the blood passes from the heart into tho guncral civeuls,tion, may be taken asbeiug in adults three quarters of an inch.
Stren pounds of blocd fer minnte is therefore forced through this artery against a pressure of forty-t wo ounees, "quivalent to waising seven pounds six feet cach minute "rual to raisiug forty-two pounds one foot, or forty two feot pounds.

From the dismoser of the aorta and the amount of blood forced though it we mighit compute the relocity of flow, but that is noti cessential to our purpose. All consideration of friction in the perkmonce of this woils is also omitted, so that the estimate of forty-two fort-pounds per minute must be considered as considerably less than the actual work performed, this result corresponding to what is called usefut work in the performance of machines.
Forty years of this work weuld be equol to the work of twenty-six thousand seven hundred and fifty sevea horses for one minute of time, or the work of one horse for forty fuu end one half days of ten hours.
'The nork of sever huudred s.ud cighty-six adult hearts is winal to one.horst: power; therefore seven hundred athe dighty-six thoustrd herits would perform the work of one thousand hoos s. The asgregato population of New York, Broolilyn, and Jersey City, was, according to the census of 1860, ons millinn ouc fiundred and twenty-two thousand, and it may be safely cestimated now at onc and one half millions. Considering this as equal to an adult population of twelve hundred thousand, their united heart-beats exert in power cqual to that of one thousand fivo hundred and twentereseven horses. Avoraring the power ef the nuited pulsations o adults and children as equal to shat of four ficths the outirc popmlation, and taking the census of 18600 as a basis for cal calation, tho work done by all the jumarar luents in tho Ouited States uearly ecjuals that of thirty-tiro thousand horses. 'fhe work cone by the beating of all the human hearts on the globe is equivalent to the power of ono million fortysix thoukend and fiftecn horses. The nominal horse power of the engines in the Great Eastcrn is fonr thoneancl; consideriug the a.ctual lorse power to be ten thousand, the power exerted by the enited laman heart-beat of the world is sinfficient to propel a flecet of ono hundred and four carout East cin's at full specd continually. This power conld only be gruerated in average steam engineering practice tun of coal per hour.

When we reflect that the haman family is small in comFarison cres with the great class of mammalia, of which it formsa part, and thent many of the eame class, as the whale.
the clephant, the rbinoccrons, lipperpotamus, giraffe, etc., have hesriss of very much greater size and power than the frman heart; und when we conceive of theonormons addition:sl worle perforned hey the hearts of reptiles, birds, fishes, mollusks, and inisects, and to this work add in imagination the porer expeddel in the movement of the respiratory apparatus of animste, and voluntary iutiscular movement, neceseary to olitain sustencuco for theso animals, we may gain some fechle conception of the emor:mous expenditure of mechauical power required to sustain a nimated existence on the carth.

PROKRESS OT INVENTION IN THE SOUTHERAN STATES
One of tho most unteworthy foatures of the revival of int dustry in tho Southern States, is the apparent disposition on the part of the people in that section to rculer themselves as faras prossible inck. pendent of other sections for their supply of utensils, urathines, and cther ensentials to the couluct of their agricnltural and uauwacturing pursuits.
One nit the most striking evidences of this fact is formel in the increased muntucrs of orjginal cierices calculated to ad vance the progress of the verious brancles of iudustry peenliar to that large. fertile, and, soon to be, most flomishing region. And not ouly are the bout hern inventions which come under our notice in tho course of our business applicable to the wants of the Sonth, but many of them will find at widely oxtended application throughont a.ll sectione of the country.

This is a must encouraglng sigus of filture prosperity, and one which alllovers of our comision country must rejoite to sec.

In this connection it will be interesting to notico some of the more reoent sulul prominent Southern inventions.
\triangle Mcenphis prper states that (ferrge IV. Grader, a citien of that city, has taken tho bull by the horns and inyented a zachine for ginning cotton and rallinting coiton seed fad cotton motes, prich promises to revolutiouize the: wiole system of cotton ginning in the country.
Thkiust citton fron the boll: ofr. Girader's mathine icaves
no motes, the falls comprising nothing but the dirt. Itcleans the sect, making them more valuable for nawnfacturing purposes, and saves the planter alarge per centago on his rop.
The Memphis paper promonnces tuis inrention of Mr. Gra Mre of the most extriordiuary of the present time.
Mr. I Ienry Thompson of Mobile. has invented, audobtained a patent on. a subumarine telescopic lantern, an ingenious cle sign admirably rdenpted to the purpose of cramining ob,jects atany depth under the surfice of tho water, as the bottoms of vassels, foundations of piers. sriving light nadser the water, and taking photographs of any cbjects, crou at the bottom of he sca. - At the same timeit is an invaluabo ald in cunblig almmarine divers to see how to work in laying pionering the bodies of persons drownell oiv valuable articles hidden unde the st:a.
Thus instrument is or simple ensiruction, similar to bilot's soundines poic, *ectional tubes joined together with re fectors, mirror, and light at one end, so artistically arranged as to reflect objecets ander the water to the eycoftheonserver

The same versatilo inventor has talsen out patents on at life
 7aily Trilneme, has anventet one of the most graceful, rapi and safe three-whecled velocipedes ever devispet.
The looden safety valve is nuother Sonthern incention Accortling to tho Lovisville Courier soumarl, it has been sub mitted to the most satisfaciory tests, and lus como out trimynany . It concists of two valves, one of which opens on fwill be secnl han and the other on the outsiac. Thas it. will be seent oy any one at an acquanteu with tho workol:en the outside valve, and a stutaion or cacum will opentho inside one.
Wo are in receipt or aumerous letters from Sonthern men making inguries in regand to projected improvements, which indicate that an active spinit of invention perrades the South ars mind.
Gen. G. T. Beauregred, of New Orkans, recently oltained etters patent through the Scientific Anerican Patent Agercy or improverneuts in apparatus for propeling cars aud other yobicles on land, aud boats on canuls or rivers, by means o rerlicad wire rope, opcrated by stationsary cagines or other wer placed at intervals along the route.
His invention comprises novel whel ingenious clamping de viecs and spring attachment for the same, attached to the car for engaging and disempring the propelling rope, in a man act to a voitl shocks and ja?s to the care or boats.
In a recent letter to us on the subject, he says: "rbenking yor for your prompt aterntion in ohtrinatur any patent, I wonla tate that this improment of mine is destion I believe, crate a repid iacrease in tho number of strect railways in
and about cities, and of canals in the countey, by materially and about cities, and of canals in the countiy, by materialy morthern hatituses, whene, owing to the ice,canals memain idle part of the winter, they will be nsad in connection with the stitionary chrinesy and encless wire ropes of my bysten, as Ermany railways for properly coustracted cars and boats When theso arrive at any locks they will be easily trans forred from one level to the other by a lifting platform.
We are happy to chronicle these signs of growing pro perity amoner the Southen people

EOOW SEOOE-PEGS ARE MADE.

Shoepegs were invented in 1818, hy Joseph Walker, of Hopkinton, Massachusetts. At least the invention is attrib ated to lim, thengh the evidence upon which this opinion is based is yot eltugother satisfiactory. Λ shoc-peg is a little affair, but its :urcntion whe hy no means an unimportant rent. It worked lerlays as great a revolution in a most important uranch of madubtry as was ever effected by a single deviec. Before its introdaction the soles of ail boots sud shoes were atiached to the uppers D. searingrin now, nearly nincty ber cent of all the boots and shoes manufactured are pegged.
it iuas given birth a.lso to numerous other important inven tion : perrexing awle of improved forn, rasps forcutting off the prats of tho pegs inside tho boot, pegging machines, whiel will peg on at sole almost before one can think aljeut it, machincs for cuting, polishing, and bleaching pege, tc., etc.
lt is within the memory of the vriter that shoe-pegs were made by hand. The timber from which they were made was savsed into blociss across the graik, of such a thickiuess a. would, wher the llock was split into pegs, mathe them of the right length. Slabs, or bolts, thinu as the body ot the pegs wanted, were then split off by the use of a long thin knife and a hammer; the, kuife veing ased like the instrument orslab was next bevcled on both sides of one cdge. The slaf thus prepared was next split into pegs oue by oue.
Of course such a ructe method as this pras destiued to supplanted by a far more rapid aud perfect one, and there is probably no article so well made aud finished that is sold chcaper than the modern shoc-peg.
It is worthy of remark that tho same principles are applier? to their monutacinue by the best monlorn machinery, as were adopted in the hand method.
The wood must be of some hard, closegrained varicty, which eplits casily. Hard maple aud birch are the favorite
woods for this purpuse ; birch, howerer; is, wo belicve, the woode for this purpuse; birch, however, is, wo believe, the
The rood is cut into Iengthe of ajont eight feet, and is sold by the cord, at theno or foriz times tha brice of the same
sinds of timber cat into firferwoud. The logs are received a the factory in the green state, and are worked up ats wanted 'Ihe first operation is peeling of the bark, an adse being cmployed for this purpose. Tho lors aro next sived into blocks across the grain, u little thicker than the length of peg. These blocks are placed on a planing machine aud the
side whieh is intended for the heads of the peess is planed side whi
smooth.
Tho bloclis are now reatly to be groovel. This is doue ery rapidly by at machine in which a cutting tool recipro. cates rapidly acress the face of the hlock, the block being at proper intervals of time carried along by feed rollers. After the blocks have been grooved one way, they are araiu grooved at right angles to the first grooves, and bot hets of grioves being V-sheped, the surfaces of tho blocks on one side, now present a regular succeszion of quadrangular pytamids, which are the points of the yet cmbryo pegs.
The next operation is splitting, which is clone on mohes perating rery rapidly and with great precision. The splitting luives on these machines aro pivoted at one end, and he etherend is madeto plas rapidly anp and donin, the me ion being similar to that of a shearshlado for trimming slocet iron. The pivoted cod mayy be raised or lowered so that the huife may only enter the wood as jar as requited, the object. loeing to not split the pegs cutirely apart, lut to have them hana, together at the heads. The blocks are fed to tirm slitting knivos by fluted rollers, the flutes of which fit the grouves in the hlecks made by the groaring machines. Thes bloclis are fed in with the planed side downward, and the eplitingel linife at cache etroke enters the sooci at the botoru the V.shaped grooves with great accuracy. Thus thet juliting is done from the points towards the heads of the
 caine once. it is turned and fed through again at right angles the direction in which it was first fed through, and after his operationther pess are very nearly split apari, bat they still hang together somewhat like a buach of split lucifer matches. Tue objest of leeping them tims together is to nablethem to be fed to the machinesin a mass. After the secend feeding the hloces is forcibly thrown of the table of the splitting mechino on to the fion, ant the pegs fall asuuch. The pegs at this sta ge are of dificrent colore, somewhet rough on their sides. unsea.soned and dusty. They are the refore dried in a tumbler heated by steam pipce, bleached with sulbhur tumes till they assunte a unilorm white color run through a fanning mill to frec them from dust, and final y pacled for market.
The extent of this manufacture is much greater than would हecn :unssible to most ; eople. It would seem at first that if all ilie losople in the world were shoemakers, they rust be overstocked with pegs. There are numerous lactorios in the lowtern Staiks furning ont from fifty to one huadre bushels and uphartl of shos-pegs per day, aud still the ale mand keens aus. Anything in universal demand even if individ nally the demand is small, must foot up large in tho adgre gato for thecivilised worla. The New Englaud States wanufacture the greater part of all tho shocepegs ased, fermany, weare informed, heiug oute of the best castomenco.

We notice that a resol ution was unanimously adopfod by the Louisrille Conveution reguesting Ex.Prosideut Fhmory to nppoint a delegation of six personsto attend the Russian Exposition in 1870, theso Commissioners to tako charge n all specimens that exhibitors in the Wuited States may desire to send, and they are specially instructed to
The papers containing the report of this procecding add that the suggestion came from Enrope, and that a hindred housand American epecimens are arked for, to show the importance and the diversity of production in our country.
A letter from Baron Osten Senchen, Consulate General of Rus sa to the United States, published in another column, state that the Exposition is intended only for the display of Rue sian products. We invite attention to this Iettes: Bestore the Commissinners are appointed by tho vencrablo Ex-Prea dent, in unight be well to first fund ont il they arse wanted.

a ketter Irom ify. Livingstone.

There can uo fonger be any reasor alle doubt of the suitety of Dr. livingstonc, and there cau le no doulut either, that it his lifo is spaced to marrate the incidents of lis last great tour in Africa, it will provea reost somarkalsle rarration lhe extracts from a letter of Dr. Lixixgstouc, ennt ly Dr Kirk from Zauzilar 10 Sir Roderick Murchisou. comain the following iuformation

Dr. Livingstome bad raced nchin of lakes. connected by tivers, from the tracts soutio of the Jalse 'langanyikat south latitude 10 degreeg to 12 rieferecs. and he cenjectaues that these numerons connected lakes nud rivers are the ulti mato sorthern senrees of the Ikile. When in wrote he was about to travel northwatds to Uijiji, on th eastern shore o Itake Tanganyika, whore he expected to fiad some informat tion from home of when he had been cutirely deprived for tho ycars, as well as to receire provisions and assistance.

Ous predictions in regard to the effect of hish-heeled shocs upon fumalo health have been verified. I Jrench pliysician states that this fashion "has produced distinct discases not ouly of the distorted foot, but of the body. Λ s the frume is thrown pennanel:tly into an munetural position, it affocta the
spiac, and as it is a nuestion of balancing, nervous irrination spiuc, and as it is a question of balancing, nervous irrintion
sometimes occurs. Yousce by the expression of the face how antuch a woman saffors who has walkel a hout or eren stood in high.heeled boots. Besides: wellavearcidents from falls very frequently."

'Fartaric and Citric Acids.

Tartaric acid, when pure, is in colorless, inodorous, very sou crystals. It is soluble in two parts of water, and also in alcohol. The watery solution has no smell, is perfectly limpid, and is very acid. The specific gravity is 1.59 and 1.75 . Heat ed on a piece of metal over the flame of a lamp, it swells up emits a very peculiar smell, and leaves a porous coal. The solution exposed to the air very soon mildews on the surface and turns to vincgar.
The composition of pure anhydroustartaric acid is: Carbon, $36 \cdot 50$; hydrogen, 802 ; oxygen, $68: 38$ parts in one hundred, but the crystals always contain $11 \cdot 84$ per cent of water.
Tartaric acid is manufactured from crean of tartar (bitartrate of pelassa), which latter, as we have stated in a previous article, contains 7018 per cent of this acid. The mode of its preparation is fully described in all recent works on chemis try applied to the arts and manufactares.
It is frequently adulterated ly admixtures of cream of tar tar, bisulphate of potassa or lime. These are readily detected as follows ;

1. The acid, if pure, dissolves without leaving the slightest sediment.
2. Alcohol must dissolve the whole"of the crystals, leaving no undissolved portion.
3. Aftercalcination, lime can be detected in the ash by its effervescing if a drop of any strong acid be allowed to fall on it.
4. Sulphureted hydrogen, sulphate of lime solution, or chloride of barium introduced into a solution of pure tartaric acid, will cause neither cloudiness, change of color, nor deposit.

The uses of tartaric acid are many, large quantitics being amnuaily consumed in the manufacture of lemonades, soda waťrs, and other sparkling drinks, where it replaces advan tagoously the more expensive "citric" acid. It is also much employed by calico dyers as a special mordant.
In conclusion we will only mention that tartaric acid combines with some other substances, forming what are called "tartrates" and "bi-tartrates," many of which are valuable in the arts or in the practice of medicinc
Tartaric acid itself, finds a place in the phamacopeeia.
Citric acid is feund in the juices of many plants, but in none is it wore plentiful than in the fruit of the lemon and its allies.

In a pure state it forms transparent, scentless, rhombic crystals, which do net alter by exposure, and have a very

Citric acid is largely used in bleaching cstablishments and laundries for removing rust and ink stains, and by the dyer for intensifying many red colors. The best class of artificial lemonades and sparking acidulated drinks and powders are made from it.
Accidental impurities are, sulphuric acid ane salts of lead they are not, however, of irequent occurrence.
The "trade" adulterations are with oxalic acid, tartaric acid, and occasionally sulphate of lime.
Tartaric acid and oxalic acid, from their low prices and somewhat similar aspect and favor, are generally found mixed in proportions varying from 30 to 80 per cent with the commercial citric acid. For the detection of this adultera tion, dissolve your sample in water and add gracually, stirring all the while, a solution of sulphats or carbonate of potash. If the citric acid be proe, no deposit whatever will show itself, but if it contain either tartaric or ovalic acids, a white crystalline precipitate of tartrate or oxalate of potash will fall to the bottom and tell the tale at once.
Citric acil is manufactured from the juice of lemons, limes, citrons, and other similar fruits. Lemon juice is frequently brought to maiket in barrels or in bottles from the warm countries where the tree prospers. It is used in its natural state for many domestic purposes, and also by the dyer in his profession.:
Lemon juice must be carefully clairified, as by neglect of this operation it will be sure to undergo fermentation and to acquire a very unpleasant odor and disagrecaile taste. It is often largely adulterated by the addition of water, besides which, vinegar, sour grape juice, citric acid, muriatic acid oz not unfrequently added to it.
The detection of these admistures needs the practical science of the analytical chemist.-Wero York Mercartile Journal.

Hyacinth Culture.

Many of our readers just now will be thinking of growing the.t beautiful winter flower, the hyacinth. Λ few bints given by a correspondent of the Journal of Horticulture may prevent failure, and consequent disappointment, in not a few cases. He says:
"I annuaily grow akout eighteen hyacinths in glasses, and invariably place them all in water at the same time. I have tried difterent times in the hope of insuring a succession of
bloom, but it has happened that those piaced latest in the bloom, but it has happened that those piaced latest in the
glass were among the first. to bloon. I have also ceased to put the bulbs in the water so carly as I used, and now do not think of patting them in till the middle or end of October. Fresh rain water is to be preferred, and the glass should be so filled that the water only just touches the base of the bulb. Rain water should not be ariper unless it is quite fresh, or otherwise it soon becomes purrid, and causes the roots of the bullus to decay. If there is no alternative but to employ hard water, if it can be exposed to the action of the sun or external air for a time, so much the better.

My exprence has taught we that hard water used directly after it is mins: tron the well is apt to canse the roote to be
come a mass of pulp, highly offensive, and fatal in its effects Two or three lumps of charcoal placed in the glasses about two or three days before they are occupied by the bulbs, in order to allow of the charcoal becoming saturated and sinking to the bottom, will keep the water from turning rank, and prevent the necessity for its being of ten changed. Some of my best flowers have been in glasses, the water of which was not once changed. Place the glasses in a dark and rather cool situation until the roots bave nearly reached the bottoms of the glasses, when they can be brought to the light
"A month or six weeks' imprisonment will loring the roots to this stage of development. The most airy and lightest part of a sitting room, but as far from the fire as possible, is the best position for them. When the bulbs have been in the water about a week or ten days, the base of tach should bs examined, andany decaying or slimy substance removed. Λs the shoot of growth increases in size, evaporation will take place, therefore the water should be replenished at intervals, care being taken that what is supplied is not lower in tem perature than that in the glass. The foliage of the plants should be kept scrupulously free from any dust or dirt; a smáll piece of sponge will remove this with but very slight trouble. When the flower spikes begin to show themselves the glasses should be kept filled to the rim with water, as at the point of llowering the bulbs absorb a great quantity of moisture."

Tonchhoven's Nesv Artificial Light.

Dr. Desire van Monckhoven recently demonstrated satis factorily its importance before a meeting of the Vienna Photo graphic §ociety, and delivered a lecture upon its mode of pplication.
One of the most intense lights to be obtained by oxidizing metalis or metallic compounds at a high temperature, is that derived from chloride of titanium, or chloro-chromic acid, when exposed to the action of au oxy-hydrogen flame; the light thus produced is of high actinic power, and capable of blackening chloride of silver paper to an appreciable degree in thirty scconds, the formation of titanic acid or chromic acid being brought about at a very higo temperature. It his description of light that has been chosen by $\mathrm{Dr} . \mathrm{M}$.
Several kinds of oxy-hydrogen lights have been devised
from timeto time ; the Drummond light, in which the fame from time to time; the Drummond light, in which the flame the constant presence of carbonate of lime, and the surface of the cylinder to be continually changing; the Tessie du Motay light, in which the lime cylinder is replaced by means of a compressed magnesia or zirconia cylinder; and the Carlovaris light, consisting of smail parallel pipes of hard charcoal moistened with chloride of magnesiun. Of all these lights lime cylinder another composed of titanic acid, magnesia, and carbonate of magnesia, a suitabie illuminating power is ob tained. Λ cylinder of this description, measuring three cout meters (1 inch) broad and ninc long (8 inches) lasts for three hours, and may be produced for the sum of threepence. In stead of hydrogen, ordinary coal gas is employed; and for the supply of oxygen, M. Deville's method of obtaining it. by heating a mixture ot calcined peroside of manganesc and chlorate of potash is cmplojed.

斯cosac wunnel.

The new railroad bridge across the Deerfiold river, at the castend of the Ifoosac Tunnel, has been completed, and the rock from the tunnei is now deposited on the other side of the river. The work at the west endof the tunnel progresses rapidly. Last week forty-three feet were completed, being twenty feet more tian during any week under the State management. Messrs. Shanly \& Co., are the contractors.
The Burleigh drills are used exclusively at this tunnel but The Burleigh drills are used exclusively at this tunnel, but with compressed air as the motor. The air is condensed three atmospheres, by means of Burleigh's air compressors, operated by stcam power, and the condensed air is carried nearly two miles in an iron pipe before it operates upon the drills. The air which exhausts from the drills gives perfect ventilation within the tumnel.
The progress made at the Hoosac Tunnel is nearly onc third greater than at Mont Cenis, notwithstanding the supposed superior and the costly nature of the French machinery

The First Man who had Gharge of a loconiotive in the United States, turns out to be, not Nicholas Darrell, as stated on pare 321, current volume, in an article copied from the Rural Carolinian, but John Degnen, 18 First street, New York. We had the pleasure of a call from Mr. Degnon a who took charge of the Best Friend on its way to Charleston, and that he ran this locomotive three months or thereabouts, meanwhile giving Mr. Darrell the necessaryinstructions to qualify him for the post. The following year he executed a similar commission with a second locomotive. In proof of his statement, Mr. Degnon referred us to Horatio Allen, and other prominent engineers and manufacturers of this cizy. " Inonor to whom honor is due."

Germaif Tinder.-Amedou, punk, or German tinder, is mate from a kind of fungus or mushroom, that grows on the tranks of old oaks, ashes, beeches, etc. It should be grat], ered in Λu ugust, or September, and is prepared by removing the outer bark with a knife, and separating carcfully the spongy, yellowish mass that lies within it. This is cut into slices, and beaten with a mallet to soften it, till it can easily be pulled asunder between the ingers. It is then boiled in a

N. B., of Ottava, Ca.-No method of trisecting an angle based apon priaciples of plane geometry lias ever been discovered, though many attempts have been made. Beliering the problem impossibie. the prizes offered at one time by several leairned societies for its sohution have all been officially withdrawn, notwithstanding ambitions geometers arestill busying themselves with the problem. An attempt a
its solution, recently made by Patricio w. Del, Rio ex-prufessorin the Pe ruvian Naval Acadewy, has been reccutly published, but it has since proved to be erroncous. You will find immortal fame sooner in other pursuits than in muddling your brains with thisquestion.
J. M., of S. C.-No simple rule has evenleen found for deter mining the size of a sccond pulley, only the distance between centers, length of belt, and dianneter of first pulley being given. A solution has and
tremely dificult, and involves the hishar mathematics for even an approximate solution. The practical and properway to workis to fix the size of bothpulleysand determine the length of belt accordingly; and actual measurement is the readiest way to determine the length of belt when the diameter of the pulleys in which it is to run are given.
J. W. M., of Ind.-The best .varnish we know for the preser vation of a portable boiler liablc to rust through exposure to out-door
influences is asphaltum. This substance readily dissolyes in turpentine influences is asphaltum. This substance readily dissolves in turpentine,
which forms a good vehicle for its application. We presume you can ob tain it ready mixed.
J. W. M., of Pa.-Nails are made of any size ordered, provided the order is large enough. We do not know whether the size you men-
tion is kept on hand or not by any dealers. but are inclined to think tion is ke
it is not.
W. B. L., of Vt.-There is no cheap metal that will withstand the action of salt water. You can obtain all kinds of rubber tubing from any dealer in rubber geods.
R. Λ. C., of Ky.-You can render brittle sheetbrass tough by annealing, that is, heating it and plungingit in cold water.
A. S. R., of Mass.-There is no gain in using high steam for heating purposes. The total amount of heat in staam at any pressure is
found by adding the tatent heat to the sensible heat or temperature and this is practically a constant sum for all pressures.

Busuts xal dersuni.

he Charge for Insertion under this headis One Dollar a Line. If the Notuces.
exceed Four Lines. One Dollar and Half per line will becharned.
To ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston commercial Bunt manaf turing news of the United States. Terms $\$ 400$ a year
Superheated Steam House Furnacc. Pure Lir. Efficient. Auto matic. Safe. Controlable. Unequaled. Tested. Cheap. Circulars. H. G Bulkley, New York.
Foot Lathes-II. P. Ryder's improved-220 Center st., N. Y. Read the advertisement of Λ. Daul, International Λ gent.
For Sale-The Undivided halfof U.S.Patent for Elastic Broon rron, Patented Juy, Wanted-Tough, heavy card board, in large quantities, 12×15 inches. Address, with sample and price, W. S. \& W.N. Poulson, Cadiz, O Tables to Compute Wages, by the day and by the hour-most For Sale Cheap-The entire interest of a new horse hay rake, warranted to be absolutely superior to all others. 81000 wanted to hire on
it, for which 25 per ocnt will be siven. H.N. Green, Whitney's Point, it, Kor which 25 per oc
Brome county, N. Y.
mproved Hydraulic Press, with elevating shaft attached. No. $83,421$. Rightfor sale. Address J. B. Tunstall, Boydton, Va.
Aguatic Veiocipede, invented by Lewis D. Bunn. Patent for sale. See advertisement on back page.
For best quality Gray Iron Small Castings, plain and fancy Apply to the Whitneyville Foundery, near New Haven, Conn.
Keuffil \& Esser 71 Nassau st.,N.Y.,the best place to get 1st-class Drewins Materials, Swiss Instruments, and lubber Triangles and Curve Peck's patent drop press. For circulars, address the sole manufacturers, Milo Peck \& Co., New Ha ven, ci.
Those wanting latest improved Hub and Spoke Machinery, address Kettenring, Strons \& Lauster, Defance, Ohio.
For Aluminum Bronze and Oroide Watches, Chains,and Jewelry, send to ©roide Watch Co., Boston, U. S. Price list sent free
For Sale-A patent for a composition for covering steam boil For tinmans' tools, presses, etc., apply to Mays \& Bliss, Brooklyn, N. Y.
Mill-stone dressing diamond machine, simple, effective, durable Also, Glazier's diamoads. John Dickinson,64 Nassau st., New York. Send for a circular on the uses of Soluble Glass, or Silicates of Soda and Potash. Manufactured by L. \& J.
and Drug Importeré, 50 Cedar st., New York.
Glynn's Anti-Incrustator for Steam Boiler-The only reliable preventative. No foaming,and does not attack metals of boil
terms to Agents. C. D. Fredricks, 587 Broadway, New York.
Cold Rolied—Shafting,piston rods,pump rods,Collins pat.double compression couplings,manufactured by ones $\&$ Laugllins,Pittsburgh,Pa.
For solid wrought-iron beams, etc., see advertisement. $\Lambda d d r e s B$ Union Iron Mills, Pittsburgh, Pa.,for lithograph, etc
Machinists, boiler makers, tinners, and workers of sheet metals read advertisement of the Parker Power Presses.
Diamond carbom, formed into wedge or other shapes for point. ing and edging tools or cutters for drilling and working stone, etc. Send
stamp for circular. John Dickinson, 61 Nassau st., New York. The paper that mects the eye of manufacturers throughout the Winans' boiler powder, 11 Wall st., N. Y., removes Incrusta

