Srientitic Smotian,

MUNN \& COMPANY, Editors and Proprietors
PUBLISHED WEEKLY AT
NO. 37 PARK ROW (PARK BUILDING), NEW YORK
O. D. MUNN, S. H. WALES, A.E. BEACH
"' The American News Company,", Agents.121 Nassa
" The New York News Company," 8 Sprute street.
VOL. XXI., No. 23...[New Series.]...TWenty-fourth Year.
NEW YORK, SATURDAY, DECEMBER 4, 1869.

Contents :

OSCILLATIONS OF WATER IN STEAM BOILERS.
The peculiar oscillations of water in steam boilers, as indi cated by the steam gage, have been a subject of common remark. The causes for these oscillations are imperfectly understood by many in charge of such boilers, and in conversations with engineers of justly high reputation, we have found that certain causes of this fluctuation in hight are unrecognized
We may regard the following propositions as thoroughly established laws.
First, the pressure of a homogeneous liquid is as its depth Second, a liquid subjected to pressure from a supernatant fluid, obeys the same laws of pressure as though it were free from the pressure of the over-lying fluid, and the degree of pressure thussustained upon its surface does not modify orcre ate exceptions to this rule. Third, if the supernatant fluid be a gas, and the liquid upon which it rests be water, a certain amount of the gas, increasing with the pressure, will be dissolved in the water. Fourth, in the absence of nuclei, which serve by their adhesion to assist the escape of a gas from a liquid supersaturated by that gas, the escape will be
irregular, unequal, and will partake of the nature of an exirregular, unequal, and will partake of the nature of an ex-
plosion. Fifth, in the absence of nuclei, the boiling points plosion. Fifth, in the absence of nuclei, the boiling points
of liquids are higher than when such nuclei are present. Sixth, when a liquid is agitated so as to render it of unequal depths in different parts, the pressure upon the bottom of the containing vessel and upon the sides against which the liquid rests will be unequal.
A pressure gage, attached to any one point in the side of a vessel thus agitated, would show by its fluctuations the vari ations of pressure at that point, provided they did not succeed each other so rapidly as not to give time for this gage to act, in which case it would only show the mean pressure

A water gage is only a form of pressure gage, communi cating at the top with the supernatant steam, and at the bottom with the water upon which the steam rests. The pressure of the column in the gage back toward the interior of the boiler is equal to the weight of a column of wate having for its base the section of the aperture which connect the boiler and gage at the bottom, and of a hight equal to the hight of the water in the gage above that aperture, add ed to the pressure of steam upon the upper end of the col umn. The pressure outward toward the gage is equa to the weight of a column of water having the same base as before, and of a hight equal to the depth of the water in the boiler above the aperture connecting the boiler and gage at the bottom, added to the pressure of the steam upon the top of the water column as before.
When both steam and water are at rest, the water, obeying the same laws of pressure as though there were no superna tant steam pressing upon its surface, seeks and finds a com mon level in both boiler and gage.
In a boiler supplying steam to an engine, or blowing of steam, the state of internal affairs is never one of rest. To suppose the contrary would be to suppose a uniform pressur maintained, a constantly uniform heat applied to all parts o its heating surface, and the escape of steam from the wate unattended by ebullition.
That the pressure is never a constant quantity where steam is generated in a closed vessel, any one may see by watching a steam gage attached to such a vessel. The indi cation of fluctuations in pressure may also be detected in the variable sound of the steam when a boiler is blowing off. It is for this reason that in testing the evaporative power of boilers, it has been found necsssary to eliminate the elemen of variable pressure, by allowing free escape to the steam, so that the pressure is constantly that of the atmosphere only

We do not, however, regard the constant short bubbling of ough order and cleanliness in their works, and enceurage it water in boiling as of much effect in producing the fluctua- in the habits of their employés, they would get more and ion if war causes, however, which are sufficient to account for such oscillations.
In the absence of nuclei the steam is generated under te sion and escapes with a sort of explosive action; this occur ing at one end of a boiler would raise a wave on the surface which wave would travel along the surface of the water pre cisely as it would in an open vessel, and when this wave reaches the end of the boiler where the water gage is attached, the water would rise in the gage and recede with the recession of the wave.
Where a boiler is supplying steam to an engine performing variable work, the supply of steam will not be uniform, and the pressure in the boiler cannot be uniform. Whenever the pressure is diminished suddenly the steam escapes from the surcharged water like the gas from so-called soda water and the volume of mingled steam and water expands; the water in the gage, obeying the same law as the water in the boiler, except in so far as its temperature may be less.
These causes would account for the oscillations of the water even admitting a uniform heat to be maintained in the furnace, a supposition which variations in draft, variable con dition of the fire, and quality of the fuel, etc., forbid.
Where two or more boilers supply steam through a com mon supply pipe, connected to the boilers by branch pipes, the elements of variation in pressure must be still more mul tiplied, a point upon which it is unnecessary to dwell.
A consideration of the facts we have thus explained coupled with observation, will enable the intelligent reader to determine the causes of peculiar oscillations in individual boilers.

DIRTY SHOPS AND SLOVENLY WORKMEN.

Charles Reade has asserted that workmen are a dirty set and a reckless set. Is this true of American workmen? His observations have been confined to English workmen ; would he have occasion to modify the general character of his statement were he to visit and inspect American shops?
Candidly we must say there would be too much in the gen eral want of cleanliness and order in our workshops to justi fy the assertion. The shops in which cleanliness and order prevail are rather the exception than the rule; and the individual workman who, in the midst of all the carelessness which prevails in this regard, maintains a scrupulous care for personal cleanliness, order in the arrangement of tools, and method in the performance of his work, may be regarded as a rising man.

On our occasional journeys in those most disagreeable conveniences of the age, horse cars, at times when workmen are returning from their daily work, we frequently notice them with begrimed faces and smutty hands, on their way to homes perhaps no less attractive than their persons.
If this were compelled by circumstances, and the unavoid able conditions of their toil, it would be unkind indeed to find fault with it. We should indeed be the very last to look down upon the necessary accessories of honest toil, and, if any American workman is so situated that he must utterly disregard cleanliness, let it be distinctly understood we do not complain of him. But cases of this kind are rare, if they exist at all. What then is the reason for the inexcusable slovenliness of a large majority of workmen?
The first reason is that proprietors and overseers do little or nothing to encourage tidiness in their subordinates. They too often look upon a man who is making attempts to keep himself and his work-bench tidy, as a cat in gloves who will catch no mice, and speak contemptuously to him of being afraid to dirty his hands, although his hands may at the time bear the honorable evidence that his duty has been faith fully performed. But tell us pray, is it necessary that they should bear that evidence home with them? Is it necessary that the face should be soiled as well as the hands, and othes should be smirched as well as hands and face
In imagination we hear some mechanic exclaim, " I shoul ike to see that editor do my work a little while, and keep himself clean! I guess he would find it harder work than
sitting in his comfortable office and finding fault with us sitting in his comfortable office and findin
poor fellows, who have no such good luck!"

To whom we reply that, good luck or not, we often sigh for the light-hearted days, when we did just such work, and earned thereby a good appetite and the means wherewith to gratify it ; and further we know that you can't get down on your knees in sand, and face your molds with powdered char coal, and perspire amid a cloud of black dust, and keep you faces and shirts white. Bless you, we know all that, learned it years a go,but it is not you we find fanlt with. It is that slovenly hap who goes in to work at his lathe, on M has a clean shirt on, and who, in less than bil has managed to get two or three streaks of black oil down
his back, and sundry patches of it \bullet nhis face, while the handle to every tool on his lathe and even the lathe itself is japanned with the same unctuous material. We can see the use of the black dust and perspiration in a foundery, but we on't see the necessity of a man in a well-ordered machine shop, painting himself up like an Indian on the war-path, and carrying it home with him to the annoyance of those
who are, perhaps, obliged to sit in the same seat with him, nd who 1 grease and oil.
Personal cleanliness leads to order in work and business and elevates the moral character of alì who exercise it. It enign ine second only to godliness, and exercises not only but upon intellectual growth.
upon intellectual growth.
Wonld proprietors and superintendents enforce more tho
better work for their money, would render their help more manly and honorable in the discharge of their duties, elevate the character, and increase the welfare of the working classes throughout the world.

ANNOTNCEMENT FOR 1870...-A SPLENDID WORK OF ART AND CASH PREMIEMS TO BE GIVEN.

frlhe Saientify Americay enters its twenty-fifth year on the dirst of January next, and to mark this period of a quarter of a century in which it has maintained its position as the leading journal of popular sciences in the world, we have purchased from the execotors of the estate of the late John Skirving, Esq., and propose to issue on New Year's day, the fine stoel engraving exceuted by John Sartain, of Philadolphin, entitled
cien of procress-amertcan inventors."
The plate is 22×36 inches, and contains the following group of illustrious inventors, namely, Prof. Morse, Prof. Henry, Thomas Blauchard, Dr, Fott, Isaiah Jennings, Charles Goodycar, J. Saxton, Dr. W. T'. Morton, Erastus Bigolow, IIenry Burden, Capt. John Ericssun, Elias Howe, Jr., Col. Henry Burden, Capt. John Ericssun, Elias Howe, Jr., Cot. Samuel Coit, Col. R. M. Ihon, Peter Cooper, Jordan I. M
C. II. MeCormick, James Bogardus, Frederiek E. Sickles. C. Il, MeCormick, James Bogardus, Frederick E. Sickles.
The likenesses are all excellont, and Mr. Sartain, who The likenesses are all excellent, and Mr. Sartain, who
stands at the head of our American engravors on steel, in a stands at the head of onr American engravers on ateel, in a
letter addressed to us bays " that it would cost $\$ 4,000$ to en grave the plate now," which is a sufficient guarantee of the very high character of the engraving as a work of art.
The picture was engraved in 1808, but owing to the death of Mr. Stirving, a few copies ouly were printed for subseribors at $\$ 10$ each, A work embracing so much merit and permanent interest to American inventors, and lovers of art, de serves to be much more widoly hnown. Wo propose, therefore, to issue, on heavy paper, a limited number of copies at the original price of $\$ 10$ each, to be detivered free of expense. No single picture will be sold for less than that price, but to any one ctesiring to subscribe for the Scientifie Ambrican, the paper will be sent for one year, together with a copy of the engraving, upar receipt of \$10. The picture will also be offered as a premiom for clubs of subscribers as follows to those who do not compete for cagh prizes

For	10	names	one year	$\$ 30$	one picture.
$"$	20	$"$	$"$	$"$	50
$"$	$"$				
$"$	30	$"$	$"$	$"$	75
two pictares.					
$"$	40	$"$	$"$	$"$	100 three
$"$	50	$"$	$"$	$"$	125 four

In addition to the above premiums we also offer the tollow ing cash prizes :

\$300	for	the largest	list	subscribors
250	"	" second	do	do
200	"	" third	do	do
150	"	" fourth	do	do
100	"	fifth	do	do
90	"	" sixth	do	do
80	"	seventh	do	do
70	"	" eighth	do	do
60	"	" ninth	do	do
50	"	" tenth	do	do
40	"	" eleventh	do	do
35	"	" twelfth	do	do
30	"	" thirteent	h do	do
25	"	" fourteent	th do	do
20		fifteenth		do

Subseriptions sent in competition for the cash premiums must be received at our offece on or before the 10th of Febru ary next. Narnes can be sent from any post office, and sub scriptions will be entered from time to time until the abovn date. Persous competing for the prizes should be particular to mark their letters "Prize List" to enable as easily to distinguish them from others.
Printed prospectuses and blanks for names furnisherl on application.

WORK PERFORMED RY THE HUMAN HEART ESTI MATED IN HORSE POWERS.

That wonderful little pumping engine which we all carr round in our bosoms, and which runs without cessation til death ruthlessly closes the throttle, performs an amount o work so great as to be almost beyond belief till substantiate by arithmetical calculation.
If we scrutinize the mechanism of the heart, we shall find that it involves in its operation nearly all the principles of hydrociynamics. It may, therefore, be brought within the do main of mathematics as well as any other machine.
In the attempt to calculate the power of the human heart for a given time, we shall arrive at some carious and interesting, not to say astonishing results. Few would credit, at irst, the statement that the hearts now beatingin and around the city of New York, exert an aggregate power ample to propel a large steamer across the Atlantic ocean at a fair rate of speed, yet we shall be able to demonstrate that this is a much a fact, as that any of these steamers ever crossed that much a fact, as
storm-torn sea.
Blood is heavier thar water ;its specific gravity being, ac cording to Booth, of from 1.0527 to 1.057 . For convenience however, we shall consider it as being of the same weight as water, extreme accuracy not being essential to our purpose nd in our computations we shall, for the most part and fo the same reason, throw out fractions and use round numbers.
The pressure required at the mouth of the aorta to force the blood through the vessels of the human body, is esti mated by Hales, as being equal per square inch of surface, to
that exertedby a col umn of blood seren and oue half fee himh. The pressure per equaro inch was estivuatod by Poiseuille as four pounds threo ounces. Othecs hiave estimated tho pressuro as that of a column of water six fect in hizght. The results vary in difforent experiments, bat they are sufficieutly a:ccurato to give us an arerage that wo may rely upon as within bonnds. They are also something more than acre estimates, as this pressure has been measured by pres. sure gaces inserted into tho blond vessels.
We shall cousidertlie irressure as that of a water column six feet inhight, the weight of which would be nearly forty two ounces, which, for kinnlicity, we will consider forty-two ounces, or two pounds ten onnees a voirdu pois.
Tho everrage discharge of tho heart at eah pulsation may be estimater a tono andono half ounces, and itsnumber of beats ut seventy-five per minute ; making an argrerato of 112 ource or seven pounds digethn:..ged per minute.
The averane intermal diancter of the aorta, or the first grece, artery through which the blood passes from the herat into tho general circulstion, may be taken as beiug in adults three quarters of an inch.
Suren pounds of blocd fer minnte is therefore forced through this artery against a pressure of forty-t wo ounees, "luivalent to waizing seven pounds six feet cach minute "rual to raisiug forty-two pounds one foot, or forty two feot pounds.

From the dimmoter of the aorta and the amount of blood forced though it we mighit compute the relocity of flow, but that is noti cessential to our purpose. All consideration of friction in the perkmonane of this wors is also omitted, so that the estinaste of forty-two foot-pounds per minute raust te considered as considerably less than the actual work per fornex, this result corresponding to
work in the pe:foromence of machines.
Worty years of this work would be equol to the work of twenty-six thousand seven hundred and fifty-sewes horses for one minute of time, or the work of one horse for forty-fuur end one hallf days of ten hours.
'The nork of sever huudred s.ud cighty-six adult hearts is diqual to one.horst: power; therefore seven hundred athe dighty-six thousard hearts would periorm the work of one thousand hooss's. The assoregato population of New York, Broolilyn, and Jersey City, was, according to the census of 1860, ons million ouc fiunked and twenty-two thousand, and it may be safely crtimated now at onc and one half millions. Consideringt this as equal to an adult population of twelve hundred thousand, their united heart-beats esert in power cqual to that of one thousand fivo hundred and twente-seven horses. Avoracring the power ef the nuited puisations of adults and childen as cepual to that of four firths the outire $p^{(r) p r l a t i o n, ~ a n d ~ t a k i n g ~ t h e ~ c e n s u s ~ o f ~} 1860 \mathrm{as}$ a basis for cal calation, tho work done by all thes hanmarer hearts in tho Onited States uearly equals that of thirty-tiro thousand horses. The work cone by the beating of all the human hearts on the globe is equivalent to the power of ono million fortysix thoukend and fiftecn horses. The nominal horse power of the engines in the Great Eastcrn is fonr thoneancl; consideriug the actual loorse power to be ten thousand, the power exerted by the uevited laman heart-beat of the world is surfficient to propel a fleet of ono hundred and four Circut East cin's at full specd continually. This power conld only be semerated in arerage steam enginecring practice by the
combustion of foe thoukand six handted tud eighty tuns of coal per hour.

When we reflect that the haman family is small in comFarison crem with the great class of mammalia, of which it formsa part, and that many of the eame class, as the whale.
the clephant, the rbinocerons, lipprenotamus, ginaffe, etc., bave hearts of very much greater size and power than the human heart; und when we conceive of the cincrmons addition:sl worle perforned hey the hearts of reptiles, birds, fishes, mollusks, and inisects, and to this work add in imagination the porer expendeal in the misvement of the respiratory appa ratus of animste, a:id voluntary uliscular movement, nceseary to obtain sustcncuco for theso animals, we may frain some fechle conception of the emor:mous expenditure of mechauical power required to sustain animated existence on the earth.

PROGRESS OT INVENTION INS THE SOUTHERN STATES
One of tho most unteworthy foatures of the revival of int dustry in tho Southern States, is the alpparent disposition on the part of the people in that section to rculer themselves as faras prossible inck. pendent of other sections for their supply of utensils, urathines, and cther ensentials to the couluct of their agricnltural and uauwacturing pursuits.
One nit the most striking evidences of this fact is formel in the increased munhers of original cierices calculated to ad vance the progress of the verious brancles of iudustry peenliar to that large. fertile, and, soon to be, most flomishing re gion. And not ouly are the bout hern inventions which comu under our notice in tho couss, of our business applicable to the wants of the Senth, but many of them will find at widely oxtended application throughont a.ll sectione of the country.

This is a must encouraglng sigu of fiture prosperity, and one which alllovers of our comimon country must rejoice to sec.

In this connection it will be interesting to notico some of the more reoent sulul prominent Southern inventions.
\triangle ITenphis paper states that (fernge IV. Grader, a citigen of that city, has taken tho bull by the horms antl invented a zachine for ginning cotton and ralinting coiton seed fad cotton motes, prich promises to revolutiouize the: winole system of cotton ginning in the country.
Thking cation frone the boll: ifr. Giraders manhine igaves
no motes, the falls comprising nothing but the clirt. Itcleans the seoc, making them more valuable for nawnfacturing purposes, and saves the planter alarge per centago on his rop.
The Memphis paper pronounces tuis inrention of Mr. Gra Mr of the most extraordiuary of the present time.
Mr. I Ienry Thompson of Mobile. has invented, audobtained a patent on. a submarine telescopic lantern, an ingenious de sigu admirably adenpted to the purpose of cramining ob.iects at any deptly under the surfice of tho water, as the bottoms of ressels, foundations of piers. sriving light nader the water, and taking photographs of any cbjects, crou at the bottom of he sec. - (t the same timeit is an invaluabia pier or othe
 bodies of persons drowned oi• valuable articless hidden unde the sta.
Thlis instrument is or simple ensiruction, similat to a bilot's soundines poic, ectional tubes joimed together with re fectors, mirrox, and light at one cnd, so artistically arranged as to reflect objects ander the water to the eycofthe ohserve
The same versatilo inventor has talsen out patents on at life surf, busincss, and pleasure boat, and, aceordiug to we Mubile Daily Trimeme, has inventex one of the nost graceful, rapit and safe three-whecled velocipedes ever devispet.
The looden safety valve is nuother Southern inrention Accortling to tho Lovisville Courier soumarl, it has been sub mitted to the most satisfactory tests, and lus como out triinfyanl. It concists of two valves, one of which opens on it will be secn by biter and the other on the outsiac. Thas it. will be seent y any one at an acquanteu with tho workol:en the outside valve, and a stuttion or vacumm will operntho inside one.
Wo are in reteipt or aumerous letters from Southern men making juguries in regand to projected improvements, which indicate that an active spinit of invention perrades the South ars mind.
Gen. G. T. Beauregrard, of New Orkans, recently oltained ctters patent through the Scientific Anerican Patent Ager.cy or improverneuts in apparatus for propeling cars aud other yobicles on land, aud boats on cannls or rivers, by means o rerlicad wire rope, opcrated by stationsary cagines or other wer placed at intervals along the route.
His intention comprises novel eud ingenious clamping de vices and spring attachment for the same, attached to the car tor engaging and disempring the propelling rope, in a man nicl to avoikl shocks and ines to the care or lonate

In a receent letter to us on the subject, he says: "Sbenking oit for your mompt aterntion in olitnjangen matent, I wonla state that this improvement of mine is destion it believe, io crate a renid iacrease in tho number of strect railways ing
and abont cities, and of canals in the countay, by materially diminishingy their curvort or runniug expenses. Morcover, in Horthern hatitukes, where, owing to the ice,canals yemain idle part of the winter, they will be nsad in connection with the stationary chinines and endess wire ropes of my bysten, as Ermany railways for properly coustracted cars and boats When theso arxive at any locks they will be easily trans arred from one level to the other by a lifting platform.
Weare happy to chronicle these sigus of growing pro perity amoner the Southem people

ENOW SEOOE-PEGS ARE MADE.

Shoepegs were invented in 1818, hy Joseph Walker, of Hopkinton, Massachusetts. At least the invention is attrib ated to him, theugh the evidence upon which this opinion is based is not elturother satisfiactory. 1 shoc-peg is a little affair, but its :nvention whe hy no means an unimportant vent. lt worked lerlaqus as great a revolution in a most important branch of indubtry as was ever cffected by a single deviec. Before its introdnction the soles of ail boots sud shoes were atiached to the uppers b.y Sewingrin now, nearly nincty ber cent of all the boots and shoes manufantured are pegged.

It inas given birth a.lso to numerous of her important inven tions: perraing awls of improved fornn, yasps forcutting off the prats of tho pegs inside tho boot, pegging machines, wiich will peg on a sole almost before one can think alyeut it, machincs for cutting, polishing, and bleaching pege, tc., etc
It is willin the memory of the vriter that shoe-pegs were made by hand. The timber from which they were made was sawsed into blociss across the graik, of such a thickiuess a. would, wher the llock was split into pegs, mathe them of the right length. Slabs, or bolts, thinu as the body ot the pegs wanted, were then split of by the use of a long thin knife and a hammer; the, kuife veing ased like the instrument or slab was next bevcled on both sides of one cdge. The slaf thus prepared was next split into pegs oue by oue.
Of course such a ructe method as this pras destiued to
supplanted by a far more rapid aud perfect one, and there is probably no article so well made aud finished that is sold cheaper than the modern shoc-peg.
It is worthy of remark that tho same principles are applier? to their monutacinue by the best monlorn machinery, as were adopted in the hand method.
The wood must be of some hard, closegrained varicty, which eplits casily. Hard maple aud birch are the favorite
woods for this purpuse; birch, howerer; is, wo belicve, the woode tor this purpuse; birch, however, is, wo believe, the
The rood is cut into Iengthe of ajont eight feet, and is zold by the cord, at thre or fora times tha brice of thes same
kinds of timber cat into fire-wood. The logs are received a the factory in the green state, and are worked up ats wanted. 'Ihe first operation is peeling of the bark, an adse being imployed for this purpose. Tho $\mathrm{l}_{\text {ons }}$ aro next siwed into blocks across the grain, u little thicker than the lenghth of a peg. These blocks are placed on a planing machine aud the
side whieh is intended for the heads of the peess is planed side whi
smooth.
Tho Hocks are now reatly to be Erooved. This is done ery rapidly by at machine in which a cutting tool recipro. cates rapidly acress the face of the hlock, the block being at proper intervals of time carriced along by feed rollers. After the blocks have been grooved one way, they are argaiu \%roored at right angles to the first grooves, and both sets of grioves being V-shaped, the surfaces of tho blocks on one side, bow present a regular succeszion of quadrangular pyta mids, which are the points of the yet cmbryo jegs.
The next operation is splitting, which is done on mehines perating rery rapidly and with great precision. The split ting luives on these machines aro pivoted at one end, and hectherend is madeto plas rapidly a:p and doma, the me ion being similar to that of a shearshlado for trimming sloet iron. The pivoted end nusy bo raised or lowered so that the kuise may only enter the wood as jar as requited, the object lecing to not split the pegs cutively apart, but to have them hanis together at the heads. The blocks are fed to thr: blitting knivos by fluted rollers, the flutes of which fit the grouves in the hlecks made by tho grouving machines. Thes blockssare fed in with the planed side: downward, and the spliting linife at cache etroke enters the sood at the botoru the V.shaped grooves with great accuracy. Thus thet sjuliting is done from the points towards the leads of the
 cine once. it is turned andfect through arain at right qugles th the direction in which it was first fed through, and after his operationther pess are very nearly split apari, bat they still hang together somewhat like a buuch of split lucifer matches. The objest of keeping them tims torgether is to nablethem to be fed to the machinesin a mass. After the seceond feeding the hlocts is forc: bly thrown of the table of the splitting mechino on to the fioor, ant the pegs fall asuuctr. The pegs at this sta ge are of diferent colore, somewhet rough on their sides. unsea.soned and dusty. They are the refore dried in a tumbler beated by steam pipce, bleached with sulbhur fumes till they assume a uniform white color run throught a fanuing mill to frec them from dust, and final y pacleed for market.
The extent of this manufacture is much greater than would हecun :nossible to most ; eople. It would seem at irst that if all ilie losople in the world were shoemakers, they rust pe overstocked with pegs. There are numerous lactories in the fowtern Strites furning out from fifty to oue huadre bushels and upharcl of shos-pegs per day, aud still the ale mand keens up. Anything in universal demand even if individ nally the clemand is small, must foot up large in tho aggre gato for thecivilised worla. The Nesw Englaud States wanufacture the greater part of all tho shocepegs ased, fermany, weare informed, heiug oute of the best castomento.

The Exustizal sixitosilion.

We motice that a resol ution was unanimously adopfod by the Louisrille Conveution reduesting Ex.Prosteut Fhmont to sppoint a delegation of six Presonsto attend the Russian Exposition in 1870, theso Commissioners to tako charge n all specimens that exhibitors in the Euited States may desir to send, and the y are specially instructed to
The papers containing the report of this procecding add hat the suggestion came from Enrope, and that a hindred thousand American specimens are asked for, to show the im portance and tice diversity of production in our country
A letter from Baron Osten Seucken, Consulate General of Rus sa to the EVited States, published in another column, state that the Exposition is intended only for the display of Rue sian products. We invite attention to this Iette): Posiore the Commissioners are appointed by tho vencrablo Lx. Prea dent, it anight be well to first find ont il they ars wanted.

There can uo fonger be any reasor alle doubt of the suitesty of Dr. livingstonc, and there cau le no doulit either, that it his lifo is spaced to marrate the incidents of lis last great tour in Africa, it will provea reost somarkalsle rarration The extracts from a letter of Dr. Lixixgstouc, sent ly Dr Kirk from Zauzilar 10 Sir Roderick Murchisou. comain tho following iuformation
${ }^{2}$ Dr. Livingstone luad racedr chuin of lakes. connected by rivers, from the tracts soutia of the lalse 'langanyika to south latitude 10 degreeg to 12 referecs. and he cenjectaues that these numerons connected lakes nud rivers are the ulti. mato sonthern seurees of the Ikile. When ie wrote he was alonet to travel northwatcle to Ujiji, on the eastern shore o I akie Tanganyika, whore he expected to fiad some informat tion from home of whieh he had been cutirely deprived for two y cars, as well as to receive provisions and assistance.

Ous predictions in regard to the effect of hish-heeled shocs upon fumalo health have been verified. I Jrench playsician states that this fashion "has produced distinct discases not only of the distorted foot, but of the body. Λ s the frame is thrown pernanel:tly into an mane tural position, it affocts the spiuc, and as it is a question of balancing, nervous inrintion
sometimes occurs. Yousce by the capression of the face how antuch a woman saffors who has walkel a hout or eren stood in high.heeled boots. Brsides: welraveacidents from falls very freatementy."

