pratt 's patent vent stopper.

Within the past six or eight years, the great improvements made in the use of tin plate in the manufacture of cans, and every rariety of articles for domestic use, have excited the wonder of all who have not made themselves familiar with this subject. The enormous consumption of cans for different purposes, has led to many patented improvements tending to reduce their cost, or to add to their utility and convenience. The constantly increasing price of oak timber for staves, and the difficulty of obtaining such as are suitable for the render the substitution of cans almost a necessity. Nature has given us an unfailing supply of iron, the basis of tin plate, and the cost of the latter, notwiths anding the large plate, and the cost of the latter, notwiths anding the large
duty upon it, has become so low, that with the advantages of duty upon it, has become so low, that with the advantages of
improved machinery, and the economy of a well organized improved machinery, and the economy of a well organized
business, packages for the transportation of oils, can be furbusiness, packages for the transportation of oils, can be fur-
nished at almost the same price in proportion to capacity as well-seasoned barrels. For these reasons, together with free dom from leakage, and the avoidance of danger and loss by spilling, or changing of goods from barrels or casks by the dealer or retailer, it has now become a universally acknow edged fact that it is cheaper to buy oil, spirits of turpentine etc., in such cans, than in barrels.
Among the many candidates for public favor in this line Pratt's Guaranty Patent Can," of which wegive herewith an engraving, has gained an enviable reputation, and is proba bly as perfect a device for the purpose designed as has ever been invented.

From the extended usc of these cans a necessity has arise or some simple and cheap means for overcoming the difficulty, which has been experienced in emptying cans and smell ves sels without spilling some of the contents, resulting principally from the fact that there was no vent or conduit for ad mission of the air to the can, while the liquid was being poured out. To remedy this difficulty, vent-nozzles or othe like devices have hitherto been used with cans or vessels; but such appliances have always been costly, and their use ha been attended with inconvenience, while they require cans o special construction, and indeed, arepermanently united with and form parts of the cans.
A device of this kind, however, has been recently invented and patented by Charles Pratt, 108 Fulton street, New York city, which is worthy of attention. It is simple in construc tion, can be easily and cheaply made, may be readily removed from or applied to the can, and used with any can of ordinary or suitable construction, and may be manufactured and sold as a distinct article, not necessarily accompanying the can.
The invention consists of a stopper, also shown in the en gravings, for oil cans, or other liquid-holding vessels (for whatever use), provided with an opening or spout for the out fow of the liquid, in combination with a vent for the ingress of the air.
The manner in which this device can be constructed and used will be readily understood by reference to the drawings

The body of the stopper, which is here represented as com posed of cork (but which may be made of any other suitable matcrial), carries a tube or spout for the outfiow of the liquid, and another and smaller tube to act as a vent. The two tubes pass down through the body of the stopper and open into the interior of the vessel, the smaller, or vent-tube, being ar ranged upon one side of, and so as to follow the curve of the larger tube, so that when the vessel is tipped to pour the liquid, the larger tu be"will be beneath, by which arrangement the oil or fluid will flow only through its proper channel, the larger tube, or spout, leaving the smaller tube or vent free for the passage of the air.
The tubes are fastencd to the cork by means of metal disks, which are soldered tothe tubes at such a distance apart as to compress the body of the cork between them, the turned-upedges of the lisks entering the cork and holding it tight. As already stated the device may be formed of cork or of any other suitable material capable of closing the orifice
in the can, it may also be of metal and can be screwed int or upon the neck of the can.
In any event, however, a detachable stopper will be obtained, in which the spout or opening for outflowis combined with a vent; and this device can be applied to any can, vessel, or receptacle for liquids, whatever its shape or size, provided that such receptacle be provided with a neck or mouth into which the stopper can be fitted.

For the Scientific American

IGUANAS.

Iguanas, or guanas, are a genus of lizards, one species of which is known to zoologists as the Iguana tuoderculata. They are of a bright, green color when young, that hue changing o a dusky brown as the reptile advances in age. According to Webster, the term, Iguana, is derived from the Spanish name given to the animal by the natives of Haiti, in which sland the iguana abounds. They are found also in the other West India islands and in some parts of South America. The size of these creatures varies from that oi the common lizard or nuto, to over four feetin length from the nose to the end of the tail. The head is similar in shape to that of an ordin ary lizard, and is covered with a scaly armor of a pink color tinged occasionally with blue and brown. The eyes resemble those of a fowl, and though small are very bright. The back is provided with a serrated comb, which extends from the nape of the neck to within a few inches of the end of the tail. The animal can elevate this or depress it at will, and with its tail can deal a lusty whack, inflicting sometimes a severe gash with this saw-like comb, some anecdotesof which peculiarity will be given further on. In old age, the skin assumes the appcarance of old leather, being wrinkled in many parts, and it is so tough that with difficulty. can it be penetrated by a shot.
Iguanas inhabit, generally, thickly wooded spots, where they perch on high trees, and, as they are of a green color, they can easily conceal themselves among the branches and leaves while they await their prey. Unlike chameleons, they are very lively in their movements, and will even pounce from a tree to the ground in order to seize what they want.
The food of guanas consists of herbage, insects, and poul try and their eggs, the latter of which they devour with grea avidity and are very cunning in percciving them. I once saw one of these reptiles attack a hen with her brood of chickens. Darting from a tree, it made a rush at the chickens, on which the mother flew at it and pecked it ; but Mr. Guana was not to be outdone, so, though evidently smarting

with pain, it turned round and dealt the hen a lusty blow with its tail, thereby stunning her, and seizing its desired ood it made for its haunt there to devour the poor chicken at ase. When it had finished this, it returned with full intent o pursue the same course, to which, however, I put a stop by discharging one barrel of my fowling piece at the rapacious monster. As soon as the smoke caused by the discharge had leared away, I was much surprised to see the guana spring into a neighboring tree. But I wasnot thus to be foiled; so raising my gun, I discharged the second barrel at it, which took effect killing it instantly. The spot from which the guana sprung when ascending the tree was marked with blood, therefore I felt assured that the first shot hit it, the more so as there were perforationsin the skin of the reptile hat had assumed a whitish tinge, which is the case after the charge has been in the body some time.
How true it is, I do not know, but it is asserted that the guana is provided with a pouch under its throat, in which it conceals eggs very often. It happened on one occasion that was out hunting, accompanied by my dog; and, returning, I thought I would pass through my poultry yard to ascertain if I could shoot any more of these destructive creatures. I had not long entered the gate when my attention was attractd by a cackling among the fowls, and soon found it to be occasioned by the presence of a huge guana, which was disputing the right of a hen to some eggs upon which she was sitting. Wishful of seeing the procedure of the reptile, I watched it narrowly; it deliberately raised its whip-like appendageand brought it down on the back of the poor fowl f course, she could not stand that, so she dashed upon it with all her force; the guana taking advantage of the opporunity was going to soize an egg to make away with it when started my dog at it. Ready for defense, the agile lizard aised its tail, and laid it two or three times over the dog, ending her away howling, while it made for the bush hard by Although applied with considerable force, the blow given by means of the tail of the guana cannot make an incision
through the hair of an animal, or feathers of a bird; but it inficts a most unsightly wound in the fiesh of a man, if the guana be large and if it apply the serrated portion of the whip the object of its rage.
The flesh of this disgusting creature is esteemed by some emblance to chicken when stewed. The egrs. I heilore are
eaten by some cpicures, but I think the former has too strong a likeness to that of frog's flesh, and the latter to the ggs of serpents to be relished by persons not accustomed to uch diet.
I have noticed several specimens of the guana exhibited in some of the druggists' windows in this country, seme of which, I presume, have been brought from the island St. Thomas, D. W. I., to which place the foregoing narrative has reference.
J. R. G.

שextcypotalluct.

The Eleitors are
respondents.
Extinguishing Fires in Ebuildings.
Messrs. Editors:-I send you a plan of apparatus for ex. tinguishing fires, which is original with me and may be new tinguishing fires, which is original withe me and may be new thing better. It is this: In constructing the walls of a build ing, carry up within the wail, cast-iron or other metal pipes, ne for each story, each pipe of the capacity of at least on steam fire engine; the lower ends opening near the ground to

which a hose can be attached, the upper ends opening in upon the several floors above. If there is no dead wall in the front or rear, the pipes can be constructed within the partition walls (see drawing), the dotted lines showing the posi tion of pipes within the partition wall. The openings in the street necd not be cxposed, but may be placed in the sidewalk, nclosed, numbered, ctc.
Now the successful application of this plan is upon the heory that if the fioor of a building is flooded with water, its destruction (by fire alone) is prevented, and all above may be consumed whilst the submerged floor and all below are safe and that all of the upper floors' are made water-tight as near as possible, the openings, stairways, partitions, etc., contructed to insure the complete flooding of the floor-one wo inches is sufficient; and no matter it the floor is wel tored with combustibles, water will find its way before fire It has always been a mystery to me why more attention has not been paid to the construction of water-tight floors, when we so often witness the destruction of large and costly stocks of goods by water alone, when fire occurs in upper stories, which are often occupied for hazardous occupations. These fires always prove most destructive because inaccessible.
A building being constructed as before stated, on the break ng out of fire above, the fireman attaches his hose to the pipe leading to the floor on which it originates, and although t is not entirely extinguished, is greatly retarded when other rdinary means can be used.
This idea was suggested to me by the burning of the Lindell Hotel in this city nearly three years ago. In this cas the fire commenced in the seventh story, and continued for nearly one hour before any serious apprehensions were felt or the safety of the building.
The following is an extract from the Chicago Tribune, in reference to a fire nearly two years ago, and I have notice ecent destructive fires in other cities in which this plan would have been applicable and saved a large amount of property: " The great conflagration of Tuesday evening, which has shocked the entire community, and which will be remembered hereafter as an epoch in the city's history, will be worth all thas cost if it shall compel us to mend our system of constructing buildings. It is time that our penny-wise and pound-foolish economy in building was abolished, and that stores and warehouses were constructed under a system of
public inspection, and with heavy penalies to insure them at public inspection, and with heavy penalies to insure them a least against external fires, and to kecp the destruch consist
in the walls where it begins. Burch's Block, though cons ing of nine stores, four fronting on Wabush avenue and five on Lake street, burned as freely and scientifically as if the the entire builaing had consisted of one room. One reason
for this-and the same reason will apply to nearly all the commercial blocks of this city-is that the buildings are allit ton high, renderins rit impossible to employ the fire apparatus effectively, or to raise the water to the reyuired ele vation. This was painfully evident at the fire on Lake street." The plan I propose is practicable and cheap (the latter may be its riost prominent feature); however, as beiore stated, it might be perfected, and I would suggest that althougly the might be porfected, and may wate suggest that a to endanger the ends of the jeists or timbers, metal baseboards perforated ove each timber would retard its destruction by keeping the wond saterated with twater.
archibald Douglass.
Sit. Louis, Mo.

Cracrmonnetric experiments.

Mesers. Editors :-I would like an explanation of the results of some thermometric experiments, the objec ${ }^{3}$ being to ascertain by Fahrenheit's thermometer the temperature of may liquid.
My apparatus is a glass jar and two thermometers, one o Which is immersed, the other partially so (see annexed sketch) I fill the jar with a warm liquid, temperature 114° Fah., then I subject the apparatus to outdoor atmosphere, which indi

I now reverse operations somewhat by filling the jar with Id lignid temperature 4 -und subject the same appara tus to indoor atmosphere, time $9: 40$ o'clock A. M.

"

to crown his brow and fill
much needed machine.
Since the publication in the Scientific American, of my firs's letter on the subject, hundreds of letters have been written to me by inventors from Canada to Texas, some of them announcing the actual discovery of the machine-one claim ing to pick as much per day, as can be done by one hundred hand old more modes in their making inquiry in reference to the plant and process gathering, etc., etc
This argues that there is an interest in the subject, and I am not willing that friend A. D. C. shall kill it ; let it go on for a while, and if we do not have a picker soon, 1 will join him in his horticultural problem.
Allow me, in closing, to say that I cannot correspond with very body on the subject of the cotton plant and picker. have already cxhausted time and patience, and in future (without intending offense) must claim the privilege of an wering only such letters as strike me
Winnsboro, So. Ca.
T. W. Woodward.

Care of Carpenters, Tools - - Filing and Sctting Saws.
Messis. Fditors :-Your article on " How to File and Set a Saw " gave me mach gratification. I have long wished that something upon this and cognate subjects might appear in your paper. Much has been said, from time to time, upon the use and care of machinists tools, but the carpenter has not received so much attention. I will venture to say that the carpenters' trade contains more botches than any other in this country. Raw country boys are employed at a few dollars month and their board, and, having worke one seaso ers and joiners in their own outimation
But a prominent source of botches is want of knowle g g how to properly sharpen and keep tools in order. This, oupled with caresesness and slovenliness, is a common fault. I find frequently the most common tools shamefully out of shape. This great evil might be, to a great extent, remedica
my proper instructions in the columns of such papers as the gimeriric Amprican
The article I have referred to is in the main correct as far as it goes, but a few words more about the saw may y t t be o encfit.
I always file my rip saw from point to handle instead o from handle to point. I claim that in so doing the teeth can be kept at a more uniform length, which is all-important for straight running saw. I file all from one side, and squar hande of the file a triffe above the point, say at an angle of wodegres. I have found that if I held the file horizonta I would get the edges of the teeth ncarest to me a triffe lower thau those on the opposite side, and the result would be the that saw would run crooked. Then I file the teeth for about six or cight inches at the point at a much less angle than I do the rest of the saw, and give them about the same pitch that I do a crosscut saw ; the object in this is to facili tate sawing through knots, as a rip saw catches too much in linots. A great many are in the habit of changing saws When they come to a knot and saw through it with a crosscut; but if a rip saw is file at the point, as I have stated, it will readily work through knots, by simply raising the han and sawing with short strokes until the knot is cleared. Al saws (back saws excepted) will be fou --fourth incl swell in a keep mine in thost impossible for any one to maintain a parallel stroke forward and back; the hand will naturally fall a little in pushing a saw forward, and rise in drawing it back, so a saw that is full in the center will counter-balance that rocking motion of the hand, but that motion should be avoided as much as possible
In filing crosscut saws too much pains cannot be taken to keep the teeth of a uniform length, and this can only be done by often jointing the saws. They do not necessarily need much jointing at a time, but little and of ten is my plan, and the same in filing. I would rather file twice or three times, and file but little at once, than filc a gooi deal at one time. I have often heard mechanics complain that they would in variably get the teeth the shortest on the side they filed first and this, in fact, used to be my fault ; but I found the remedy is to not file the first side quite up to the points, then turn and file the other side, then turn back and finish the first side-if necessary, turn again and finish the second side But if a saw is not very dull, three times filing across is sufficient; if it is very dull better go over it the fourth time. After a saw is filed, round off the last tooth at the point; this will prevent this tooth catching in the kerf as the hand is drawn clear back and at the instant of starting it forward,
and lessen the danger of bending or breaking. Almost any and lessen the danger of bending or breaking. Almost any
one can saw (or rather tear) a board in two, but few can han ale a saw nicely
Much might be said upon this point, but I have already made this communication too long. I will only add that a saw should always be used with great care, and with even, steady strokes, not short and quick, and all jerking either up or down should be avoided. The full length of the saw should be used as much as possible, and the saw should not be crowded, but given a chance to clear itsclf of sawdust Whoever will follow out the above directions will have as ice, smooth, and straight running saws as he will wish for Cleveland, Ohio.
a. A. Frademburg.

Preservation of Brown Stone Fronts.
Messas. Edifors:-I read in your paper. No. 20, current volume, page 313, an article, entitled, "What is to Become of our Brown Stone Fronts?" I also find on page 30% of the same issuc ail article headed "Damp Wails," May not the lathen
paragraph be considered as an answer to the former? Is there any reason why the discovery of Mr. Fredorick Pan some, therein described, cannot be used for this purpose? If so used, would the stone retain its natural appearance or be covered with a glossy, vitreous coating?
New York city.
. H. Hamersley.
[There is hope that Mr. Ransome's process will answer for the purpose mentioned by our correspondent, but it must be borne in mind that the trial of any process esigned to effect this object must extend through a considerable period, and it would not be safe to assume that Mr. Ransome's process has yet been suficiently tried to test its efficacy as a protection to brown standstone in our climate.-EDs.

Friction or Percussion?

Messrs. Editors:-Your correspondent, " C. c. H.," in your issue of November 13, page 310, failing to agree with me in the conclusions arrived at in my former article on this subject, published on 246, current volume, and evidently wishing some further explanations, with your consent I will say a few words in reply.
First, he says that while I consider the heating of a nail on a grindstone to arise from the percussion produced by its raping from one granule of the stone to another, I" estimate foin friy, that in the majority of cases heat clai
If he will again refer to the article alluded to, he will see that I merely suggested that it is impossible to show at what point, in cases similar to the "nail and grindstone," percussion ceases and friction begins, intimating that friction and percussion may often be one and the same thing; not that the result should be considered as produced by percussion instead" of friction.
Again, to quote-"Let ' Splectrum' take in his fingers a mooth brass button and rubit briskly up and aown a planc pine board, and he will soon drop it," ctc., "if he does not he th ory."
"C. C. H." seems to think that in this case, under these conditions, nothing like percussion could possibly occur, and I grant that apparently such would be the result; however, let him examine his "smooth brass button" under a rowerul microscope, and he will see that its apparent smoothness a delusion. It is true that in this case there would be no perceptible percussion of bodies as in the grindstone experiment; still, it the button be applied with any degree of press re, it would not only produce waves in the wood immediate in front of it, no matter which way it be moved, and gainst which the particles of the button would strike or impinge, but the microscopic roughness of the button-its rooves, indentations, and prominences-wouid produce a like esult, for the clastic wood being forec into these grooves ad depressed by the minute promiaences, alternately, would acquire a very rapid undulatory motion, which, by contact, would be communicated to the button, rendering it unpleasantly warm to handle.
Now, to say that there would be in reality no percussion in such cases is to affirm that if a huge boulder be rapidly dragged over a rough, stony picce of land there would in the result be no percussion between it and any other against which it might he impelled-one is but an exaggerated illus ration of the other. I hold that so long as we are unaible to produce a body or mass of material which shall be of perfect produce a body or mass of material which shall be of perfect in rapidly rubbing any two solid bodies together moreor les percussion, whether perceptible or not to our imperfect enses
Again, if, as he suggests, the superior heat-conducting power of the large hammer, owing to its being longer in contact with the metal hammered, prevents the iron from becoming as hot as with the small one, why, after it has become too hot to
Lastly, he says, "Will' Spectrum' inform me why it is that while iron can once be heated by percussion [?], but if suffer to cool, the heat cannot be reproduced in the same manne antil after the iron has been heated by the absorption of for eign caloric?"
Now, the words last quoted show that "C. C. H." evidently makes no distinction between the heat produced by percus sion and that rendered sensible by compression. Iron, in its ordinary state, contains a certain amount of heat which is insensible both to the hand and to the thermometer, calle its latent heat, and by changing the condition of the iron, by ndensing it, more or less of this heat is expelled according the degree of pressure sustained.
Iron in this condensed state cannot be made to assume its former bulk by any other known force then that internal an agonism of its particles cansed by the intensely rapid molec ular agitation known as heat, butif "C. C. H." should take the same piece of iron which, as he thinks, has " once been heated by percussion," though in reality it is scarcely more than condensed, and submit it to the action of a scries of minate hammers, the blows of which succeed cach other with great rapidity-for instance, let him apply it to the grindstone, and I think he will find that it can be heated without the aid of foreign heat," and that, too, by means of true percussion. I have been somewhat prolix, but the subject is an interesting one ; and hoping that the "percussion" or " friction" ideas may produce sufficient light for the discernment of ruth, I again sign myselif

Spictrug.
Havana, N. Y.

oscillation of Rallway Carriages

Messrs. Editors:-On page 280, current volume, Scien ific american, I notice a picce entitled "Why do Railway part of his heory, namely, cffect of cone-shaped wheela upor
a straight track. There is no doubt but wheels of this form
will caused a greater oscillation than cylinder-shaped
But in passing around curves, give me the cone shape.
But in passing around curves, give me the cone shape.
To substantiate my theory, let me ask Mr. C. F., if his assertion is correct about the running of a car around a curve, why is it that the inner side of the shortcr rail is always rusty and not worn ofrlike the opposite one? What experience I have had with cars, is that it would be far more dan gerous upon curves to use cylinder wheels, and I think that the friction and wear would be double what it now is. I the triction and wear would be double what it now is. I
make the assertion that the cone shape does lessen the danger upon curves. The cone-shaped wheel is not altogether ger upon curves. The cone-shaped wheel is not altogether
the cause of the oscillation on a straight line. I have measured one thousand new wheels with a metal tape-measure and hardly found any two of them the samesize, although many of them were cast in the same chill. You will perhaps say, "Why is this difference?" I reply that the iron when it fiows from the cupola into the different ladles, is rarely of the same quality in cach, and when poured into the molds the temperatures vary widely. The hottest iron will shrink the most, and if the mold is not set to a dead level, the wheel will become oblong in cooling. I have frequently found them one eighth of an inch out of round. Furthermore, the men who have charge of pressing on these whecls, ore usually common laborers, who make no pretensions to mechanical skiil. They are supplied with an old, rusty, rickety pair of skill. They are supplicd with an old, rusty, rickety pair of
callipers (which a truc mechanic would not use a moment), and with this tool they begin to opcrate, first applying one leg with this tool they begin to opcrate, first applying one leg
near the fiange and passing the other down the opposite side. near the fiange and passing the other down the opposite side.
The rickety old machine will hit about the same anywhere The rickety old machine will hit about the same anywhere
from the tread next the fiange out to the edge, and the confrom the tread next the flange out to the edge, and the con-
clusion is, "She is all right, lets shove her on." Now this clusion is, "She is all right, lets shove her on." Now this
I know to be the case in thrce prominent railroad shops, and I know to be the case in thrce prominent railroad shops, and
at oncoif these same shops I measured two new wheels upon the same axde, and one was three cighths of an inch smaller in circumererence than the other.
No wonder escillations occur under such circumstances. If, as The 'Times' correspondent says, a cone shapedoes no good in passing around curves, why are street cars raised on to the fiange to reund corners? Cone-shaped wheels have been exfiange to round corners? Cone-shape whecls have been ex-
perimented with, and the proportion one in twenty, I beperimented weenth, las been taken as the standard. What is wanted is a lieve, has been taken as the standiard. What is wanted is a
romedy for the cvils I have specifed. If cylinder wheels are romedy for the cvils I have specifed. If cylinder wheels are
used, a train of cars will ceritianly haul harder around a curve used, a train of cars will certainly haul harder around a curve
becauss there will be more back slip to the inside train of becauss

On Murch 28, 1805, through the unrivaled ofice of the Scienjific Anerican, I had a patent issued on a car axle Thich obviates all diflicultics herein mentioned. Upon this plan, the old cailipers may be thrown aside, the common laborers cye is good for determining the size of wheel. No matter what the size of whecls no oscillation can possibly occur.
J. W. Hard

Decorah, Iowa.

Mesisis. Editors :-Maving some two years ago discovered a process for removing the sulphur compounds of petroleums -such as are found in Canada, Fentucky, and Tennessecand as my process has ben disclosed to some of the refiners
of oil in Canada, by a workman I then had cmployed, I deof oil in Canada, by a workman I then had employed, I d $c-$
sire through your columns to give it to all who choose to use sire through your columns to give it to all who choose to use
it. I am aware that certain persons lave discovere the use of it. I am aware that certain persons lave discovercd the use of
pInnbite of soda independent of me, but I believe none can claim priority, as my discovery was mate as early as June, 1807; cvidence of which fact I have on record. 'The details of my process are as follows
The crude oil should be distilled in the usual manner, making the proper specific gravity for burning oil. The distillate should be allowed to remain in open tanks for one or two days, to allow the free sulphureted hydrogen to escape, and thereby saving chemicals in its removal. The oif should then be pumped mon an agitator and the treatment should then be pumped monto an agitator and the treatment
begun, first, with a solution of plumbite of soda-made by sat begun, first, with a solution of plumbite of so -mace by sat
urating a boiling solution of caustic soda of 20° sirength, urating a boiling solution of caustic soda of 20° Strength,
with litharge. About one quart of this solution to the barwith litharge. About one quart of this solution to the bar-
ral is quite sumiont. The oil, in a few minutes after the solution is added, and brisk agitation made with air, becomes brown and then black. The arritation should be continued for aboat fifteen minutes, and the oil allowed to settle. The formation of a heavy brown deposit of sulphide of lead is the phenomenon to buthen looked for. Sometimes it occurs by the time agitation is finished, at other times several hours afterward, and again not until a further treatment is given it. The eil is allowed to remain in the agitator 12 hours, in case the precipitate does not fall sooner, and at the expiration of that time; if no precipitate has formed and the oil becomes clear, then the following treatment:
A solution of penta-sulphicac of soda is made by boiling 2 llbs. of sublimed sulphur in 10 galls. of a solution of caustic soda 20° strength, until it is all taken up, and the liquid becomes of a clear
tion to every bbl. of oil, is added to the oil in the agitator. tion to every bbl. of oil, is added to the oil in the agitator,
atiter the settled plumbite of soda has been withdrawn, and agitation with air condinued for half an hour. If the precipitate does not form in that time, the solution of soda is allowed to settle, drawn out, again boiled with half its original sulphux, returned to the agitator, and agitation made for half an hour. This seldom ever fails to cause the precipitate.
The oil is then carefully run off the precipitate, by tapping the side of the agitator, into the proper tankage, where it can be pamped lack again. The agitator thoroughy cleaned mont, as follows:
Sulphute acid in the wopotion ot one 1b, to the berrel of
oil, is added, and agitation with air begun. The air before \dagger against counter-causes, such as artificial drainage and remov ing forests as begu I off in large quantities, and continues until every trace of sulphur is oxidized in the oil. After 18 hours' agitation the tar is allowed to settle for an hour drawn off, and a tres amount of acid added, and agitated again 18 hours. This reatment is continued until a sample of the oil will not be inged, when shaken with a solution of plumbite of soda nd left to stand for six hours. Three or four treatments of his lind are generally sufficient, though it varies with the sind of oil under treatment. After the acid treatment, the usual amount of caustic soda is added, and the oil thoroughly washed. The chemical reactions which take place I have noticed very closely, and will at some other time give you
my theory.
H. T. Yaryan.
Supt. Tenn. Oil Works, Nashville, Tenn.
Naphthaline.-merthe Cause of serious Aceidents.
Messrs. Editors :-When hearing of the first explosion hat occurred last spring in Jersey City in saturating wood with carbolic acid oil for the purpose of making it fit for preservation, I was not in doubt for one moment as to the
true cause of this accident. A second explosion followed soon after in San Francisco, where this process was being introduced, causing, as you state, the loss of scven lives and more than $\$ 00,000$ worth of property; and now a thired sad accident is reported, resulting in the death of the chemist and an operative employed in the wood preserving cstablishment.
I do not propose to enter into any of the many hypotheses forwarded in regard to the probable cause of theseexplosions, but shall simply relate some facts which I have observed in distilling the same kind of oil employed in the process re ferred to. This process consists, so far as I am informed, in the impregnation of timber by the hot vapors of "dead oil," which, in being the source of carbolic acid, is sometimes, but improperly, termed carbolic acid. This oil is produced as a
by-product in the manufacture of gas from coal, and is com-by-product in the manufacture of gas from coal, and is com-
posed of from five to fourteen per cent of carbolic acid, a posed of from five to fourteen per cent of carbolic acid,
large and varying quantity of neutral oils, and from twenty five to forty per cent of naphthaline. This latter is deposited by the oils distilled from the tar in granular crystalline masses, called "salts" by the workmen. It is then thrownaway or, at best, burned for lamp-black.
In sulbjecting dead oil to distillation, naphthaline comes over during the entire distillation, and, according to Bow ditch (vide his " Analysis, Technical Valuation, Purification, and Use of Coal Gas "), hardly a sample of commercial benle can be obtained which does not contain naphthaline, al hough the boiling point of the latter substance is 410° Fah. nd of the former but 176 Fal
This hydrocarbon (the naphthaline) has a very great tend-
ency to stop up the coils of the stills, especially in cold ency to stop up the coils of the stills, especially in cold weather, and, in accumulating there very rapidly, it is easy to comprehend that explosion must occur, when the tension of the vapor inside of the still becomes greater than the resist-
ing power of the shell. I have had tuns of naphthalized oils distilled, luat being acquainted with the facts by previous exper:ments, and fully aware of the danger attendant upon a neglect on my part, I never failed to keep the water of the condensation tank at a temperature of about $160^{\circ} \mathrm{Fah}$. At this degree of heat there is never any danger of obstruction, the oils run of fluid, but, after having left the coil they will soon assume a buttery consistency. In order that I might at any time be able to liquefy the naphthaline, should emergencies require it, I had a stean pipe attached to the upper part of the coil. This proved to be a very efficient arrangement. Naphthaline is a constituent part of our gas, and readily stops up the gas pipes in winter. Besides for lamp-black, it is
now employed to a limited extent for the preparation of dyenow employed to a limited extent for the preparation of dye-
stuffs as a carbureting material, and quite recently has been proposed by a chemist in this city as an ingredient of an ex plosive in combination with chlorate of potassa. As to its efliciency as a preservative, I still entertain some doubts. It is by no mcans an explosive material, as little as charcoal in gunpowder, since it may be thrown into a red-hot crucible, when it volatizes and decomposes, condensing in the air in snowy spangles.
I append a table indicating the boiling points and specific weights of various constituents of the oils from coal tar :

Adolph Ott.
New York city.
都
Has the Pacife Failroad Changed the Climate of the Plains?
Messrs. Editors :-Without presuming to fully answer he interrogatory of Mr. Whitford, on page 214, current volume of Scientific american, I will offer an opinion, founded on years of obse
I have for the last four or five years advocated the idea that the extending of railroad tracks through the country, was changing the climate from the destructive droughts, we form. crly experienced to the salubrious climate we have been enjoying for seven or eight years. The facts in the case are that here, in Central Ohio, the farmers have quit calculating complaints and remember them as thingsthat were, the an opportunity to craltivate crops; and all this is happening

The cause of the change I have assigned as aforesaid ; the reason is this: Railways, as now constructed, clamped together at the meeting of rails form complete and powerful onductors of electricity, and having contact with other rail roads at crossings, etc., make a network of electrical con ductors wherever they go, which, no doubt, has a tendency to promote electrical equilibrium. I believe it is now gener ally conced that aerial disturbances and meteorological henomena are lependent on electricity; and may not a more equablestate of electricity in the air be productive of more equable and uniform falls of rain?
I have no doubt but the extending of the iron rails of the Pacific Railroad has produced the effect noticed by said ob servers. The turning' up of soil and comparatively slight elevations and excavations in grading, could have no appreciable effect.
l have written the foregoing in hopes of eliciting the ricws of observing and practical meteorologists.

West Mansfield, Ohio.

The Kussian Fair Not a byorid's Fainc: Consulate-General of Russia to the

Messrs. Munis \& Co., Gentlemen:-In reply to yours of yesterday, I beg leave to state that I have not received any official notification of the Fair in preparation in St. Petcrsburghi for 1870. But I read in Russian newspapers that it is not intended to be a coorld's fair, but merely an exhilition of Russiun products. I am, very respectfully yours,
R. Osten Sacken, Consul-General

Wiener Kale--'The Roroiogical Journal states that the material generally used by watchmakers on the continent for polishing hard and soft steel, as well as brass, is a white for polishing hard and soft steel, as well as brass, is a white substance called wiener kalk; it polishes much quicker than
crocus, and with a beautiful black gloss. It is used in the crocus, and with a beautiful black gloss. It is used in the
following manner: The piece to le polished is first put on a following manner: The piece to be polished is first put on a
piece of cork fastened in the vice and rubbed with a piece of piece of cork fastened in the vice and rubled with a piece of
plate glass, on which is put a little oil and oilstonc dust, till it is perfectly flat and all the file marks have disappeared. It is then cleaned with a brush and soap and water, and dipped in spirits of wine, and, after being dried with a clean cloth, put on another clean piece of cork, in the same way as before, and rubbed briskly with a flat polisher, made either of bell metal or block tin, in which is put a little wiener lsalk and fine oil, mixed to the consistency of a thick paste. It is necessary to prevent any dust getting in the poiishing stuff or on the piece to be polished. Wiener kalk can be had at Mr. Ehnhuus' watchmakers' tools and materiais warehouse, in Frith street, Soho square, London, where it is sold under the nemu of diamantine, and perhaps at some of the tool shops in of diamantine
Clerkenwell.

The Bhker's Oven Thermoneter.-This useful instrument for indicating the temperature of an oven, is the invenment for indicating the temperature of an oven, is the inven-
tion of Mr. J. Bailey, of Salford. Bakers have hitherto gention of Mr. J. Bailey, of Salford. Bakers have hitherto gen-
erally baked bread satisfactorily; neverthcless, house keepers erally baked bread satisfactorily; nevertheless, house keepers
know that sometimes the bread is slack baked, while at others know that sometimes the bread is slack baked, while at others
it is burnt ; thef actbeing that the bakers judge the right heat of their ovens by the appearance only, and, as a consequence, they must sometimes be deceived; but by the use oí' a proper
thermometer (heat measure) no error can well occur. This thermometer (heat measure) no error can well occur. This instrument is also usef ul to the japamer and others who use

We learn from the London Mining Journal that England has sent more locomotives to Russia, Egypt, and Australia this year than heretofore, but in many other directions thero has been a falling off. In August, steam engines were ex ported from the United Kingiom to the value of only 5169 , 495, as compared with $£ 189,639$ in August, 1868, and $\mathcal{L 1 8 7 , 7 8 1}$ in August, 1867. In the eight months ending August 3i, $£ 1,128,541$, as compared with $£ 1,07^{5}, 685$ in the corresponding period of 1868.

There is a papiermaché church, says the Churchman, actually existing near Bergen, Germany, which can contain nearly 1,000 persons. It is circular within, octagonai without. The relievos outside, and statues within ; the roof, the ceiling, the corinthians capitals, are all papier-maché, rendered water-proof by a saturation in vitriol, lime-water, whey, or the whites of eggs.

As tallow-melters, oil-boilers, varnish-makers, and others, are very liable to accidents by fire, Dr. Piesse suggests to them the application of Sir Humphrey Davy's discovery of wire gauze, as in the miner's lamp, for the prevention of accidents, by covering the loilers and vats during operation with a drum-head or dome of wire gauze.
Hemming Seamless Baes.-A correspondent complains hatit is a common fault to hem seamless bags with a singlethread machine, and that the thread breaks, the hem speedily unravels, the bag cannot be sccurely tied, and its con-
tents get wasted in handling, and asks why the lock-stich is tents get wasted in handling, and asks why the lock-stich is
not employed in the hemming of such bags. Will manufacturers answer why?

Petrolevm oil, such as is used for lamps, is an effectual preventive against the destructive propensities of worms in timber The timber is to be wasbed over with it.

