erly stand near the poor representation of the depot than in way of the advancing train.
Commodore Vanderbilt is widely known as a "self-made man," and he has stuck to the one idea of self with wonderful pertinacity. On the whole, we conclude that this brassy compliment, in its gross unfitness in purpose and execution, can only be regarded as a huge joke in brass.

ELECTRO-PLATING WITH IRON

The Hon. Cassius M. Clay, late U. S. Minister to Russia, has recently returned from St. Petersburg, bringing with him some fine specimens of iron electrotypes, done after the pro ess of Prof. Jacobi and Klein. We have before alluded to this important discovery. By its use, nearly all forms of electro-plating, such as engravings, stereotypes, medallions and ornaments, may be done in iron, with a fineness of tex ture which is really surprising.
Its importance and value will be appreciated when we re flect that the iron electro-plates are about five times more durable than the ordinary copper electro-plates.
Mr. Clay has presented us with an iron electro-plate copy of a copperplate engraving of the Prince Imperial of Russia This plate is six inches square, and beautifully done. It is one thirty-second of an inch in thickness, and has a colo closely resembling that of zinc. These iron electrotypes are now used by the Russian Government with complete succes for the printing of bank notes.
The process was patented in this country through the Scientific American Patent Agency, Sept. 29, 1868, and furthe information can be had by addressing C. M. Clay \& Co., 45 Liberty St., New York
The following description of the process we copy from the patent specification :
Our invention consists in the application of a practical galvano-plastic process as to the deposits of iron on molds or any other form, for reproducing engravings, stereotypes and for other useful or ornamental purposes.
" The galvano-plastic bath we use is composed of sulphate of iron, combined with the sulphates of either ammonia potash, or soda, which form with sulphate of iron analagou potash, or so

The sulphate of iron may also be used, in combination with the chlorides of the said alkalies, but we still prefer the use of sulphates.
" The bath should be kept as neutral as possible, though small quantity of a weak organic acid may be added, in orde to prevent the precipitation of salts of peroxide of iron.
"A small quantity of gelatin will improve the texture o the iron deposit.

As in all galvano-plastic processes, the elevation of the temperature of the bath contributes to the uniformity of the deposit of iron, and accelerates its formation.
"For keeping up the concentration of the bath, we use, as anodes. large iron plates, or bundles of wire of the same metal.
"Having observed that the spontaneous dissolution of the iron anode is, in some cases, insufficient to restore to the bath all the iron leposited on the cathode, we found it useful to combine the iron anode with a plate of gas-coal, copper, platinum or any other metal being electro-negative toward iron, and which we place in the bath itself
"As a matter of course, this negative plate may also be placed in a separate porous cell, filled with an exciting fluid as diluted nitric or sulphuric acid, or the nitrates or sulphates of potash and soda.
For producing the current, we usually take no more than one or two cells of Daniels' or Smee's battery, the size of which is proportioned to the surface of the cathode.
"It is indispensable that the current should be regulated, and kept always uniform, with the assistance of a galvanometer, having but few coils, and therefore offering only a small resistance.
"The intensity of the current ought to be such as to admit only of a feeble evolution of gas-bubbles at the cathode, but it would become prejudicial to the beauty of the deposit i as-bubbles were allowed to adhere to its surface.
"The same molds, as employed for depositing copper, may also be used for depositing iron, only it is advisable, in em ploying molds made of lead or gutta-percha, to cover them previously with quite a thin film of galvanic copper, formed in a few minutes, in the usual way, and then oring them, after having washed the molds with water, immediately in the iron-bath.
"The film of copper may be removed from the deposit either by mechanical means, or by immersion into strong nitric acid

The deposited iron is very hard, and rather brittle, so that some precaution must be taken in separating it from the mold. By annealing, it acquires the malleability and soft ness of tempered steel.

Condensed Food.

Experimentshave recently been made with satisfactory results to test the practicability of supplying the North German army and navy with compressed or condensed food. The principal object was to ascertain the bes, reduced to a minimum of weight and bulk. It has been reduced to a minimum of weight and bulk. It has been found that a sort of meat-bread is admirably adapted for
this purpose, as it may either be eaten dry in the form of cakes or can be converted with very little trouble into soup Similar attempts have been made to compress hay and othe provender for horses.
[We find the above item in a recent number of the Evening Post. The idea of using condensed food in the manner de-
scribed was first patented in 1850 , by Gail Borden, Jr., then a
esident of Galveston, Texas, since better known in connex on with Borden's Condensed Milk, an article of large con umption in this and other cities. Mr. Borden has devoted reat deal of attention to the preparation of condensed food and may be regarded as the pioneer in that branch. His patent of 1850 consisted in the concentrated extract. of ali mentary animal substances, combined with the vegetable flour and meal, made into cakes and baked into bread, and was readily converted into a wholesome food.-EDs.

AERIAL NAVIGATION.
 number three.

Mr. Porter considers the proper form of an aerial float to be the " revoloidal spindle," round in its transverse section, it sides curving uniformly from end to end, and having its length ten times its diameter. But this may be varied ac cording to the business for which it is intended, and made longer for great speed, or larger in diameter for carrying freight. It should be made of the strongest linen cloth, varnished on both sides with a varnish that will not injure the stiength of the fiber; and the strips of cloth should be sewed together with double seams, the seams being covered with thick elastic varnish. The cloth issupported inside by twenty rods of white spruce, extending the entire length, the joints being secured by tin tubes, and the cloth being attached to the rods by tack nails, driven through strips of white oak or elm, half an inch wide and one-eighth thick; the tacks being two inches apart.
A medium-sized float should have a capacity of 266,796 cubic feet. The longitudinal rods for a float 400 feet long should be one and one half inches in diameter, but tapering to three fourths'at the ends. The buoyant power of 266,796 cubic feet of hydrogen gas, is 19,051 lbs. The weight of the cloth, including two transverse partitions, is $2,000 \mathrm{lbs}$., and hat of the rods $2,000 \mathrm{lbs}$. , leaving a net buoyancy of 15,05 lbs. The proper proportional length of the saloon is 133 feet and its diameter 10 feet; being square in its transverse sec
tion, and having its four sides covered with painted duck, and curving to a point at each end. The engine room should be in the center, 10 feet long by 6 feet wide, leaving a passage way of two feet on each side. There would then be space for
two cabins 20 feet long, and a ladies' room, and kitchen, each two cabins 20 feet long, and a ladies' room, and kitchen, each for bagrage and stores. The saloon would have ten windows on each side, the central two being each seven feet long, and sufficiently prominent at the center to enable the pilot to look forward or downward. The engine room should have in their position by very light frame work, and 100 steel or copper wires, whereby it should be connected to various parts of the float. The floor should be made of spruce boards 3 inches wide and one eighth thick, supported by sleepers 40 inches long, 2 wide, and three eighths thick, and 6 inches
apart; and these should be supported by four longitudinal apart; and these should be supported by tour longitudinal
sills, 28 feet long, 4 inches wide, and seven eighths thick. These sills should be supported at every ten feet by wire from the float above. The floor or platform which surports the boiler should also be connected to the float by wires, independent of the saloon, and so arranged as to be readily de forwa and 39 inches wide, surrounded with a balustrade and fur nished with seats; the floor of this car constituting a part of the floor of the cabin, but not connected thereto. This ca should be supported by four ropes attached to its four corners, passing up over four pulleys to a revolving wind ass connect
ed to the engine, which may be disconnected at pleasure Upon this windlass shaft, should be placed a grooved wheel round which is a coiled cord, one end of which should be at tached to the grooved periphery, and the other end to a small
crank windlass, in the center of the said car, so that parties crank windlass, in the center of the said car, so that parties
may thereby, either lower or elevate themselves, as occasion may require.
The form of rudder preferred, is a hollow square, ten feet long and five"feet in diameter, made of painted cloth stretched er a light frame, open at poth ends, with a rod of wood in to the float by a universal joint. From the four forward cor ners of this rudder, four cords, steering lines, extend forward, pass over four pulleys, and thence down to the pilot's window in the saloon below.
Every alternate longitudinal rod of the float is connected the alternate nine at each end; but the other ten have a slight longitudinal liberty, so that they may occasionally be drawn toward the longitudinal center for the purpose of re-
ducing the size and capacity thereof ; and for this purpose a ducing the size and capacity thereof; and for this purpose series of cords are attached to the free rods, and passing
the center, and over a corresponding number of central pul leys, unite in one cord, which, passing centerward and over another pulley, extends down toward the bottom of the float and connects to a vertical wire, which, passing through an sets of cords and pulleys are arranged at different points, and Il uniting at the main center as described, the engineer can may so require.
In addition to this arrangement, two flexible pipes or hose, ascend from the engine room to the float, and passing to the interior, and longitudinal center, turn right and left, and ex tend to both ends of the float and up through the upper
side; so that the exhaust steam from the engine may be oc casionally turned- into those pipes, for the purpose of warm ng and thus expanding the gas within the float; the compressing cords being slackened for that purpose. By these means the float may be made more or less buoyant, withou
increasing the quantity of gas, or discharging ballast. But in general the float may be readily made to ascend by maans of the helm only.
The engine room should be furnished with a self-regulating gas replenisher, which may be described as follows: A square box, four feet long, two feet wide, and twenty inches deep, is made of pine boards fastened with copper nails, coated out side with shellac varnish and inside with beeswax. Within this box is another, in length and breadth two inches less than the first, and six inches deep, covered without and within with beeswax, and open at the top. This box should contain twenty plates of zinc, each plate being five inches wide, one fourth of an inch thick, and long enough to extend across, onter, and be secured to vertical grooves in the sides of the box. Both ends of this box should be half an inch higher than the sides, so that being inverted within the larger box, the ends only rest on the bottom. In the center of the top of the smaller box should be a hole one inch in diameter, to admit the end of a lead pipe, which, passing up through the top or lid of the large box, is to be cemented air tight thereto, and the said lid is to be screwed down air-tight and covered with beesiwax cement. This lid should have another hole near one end, through which a fluid may be poured in. A waxed cork or lead stopple may be used to stop this hole. This vertical lead pipe, ascending one inch above the lid, should have a lever valde at its top, mounted on a fulcrum pivot at or near the side of the pipe, and having an arm or beam of the lever extending horizontally eight inches. The valve end should be a flat plate, having attached to its under side a disk of leather, fitting and pressing upon the top of the pipe. Around this valve, and attached to the box lid, should be a circular ledge eighteen inches in diameter, two inches high, and one inch thick; and having attached to the top one edge of a flexible leather circular belt nine inches high; the upper edge being attached to the periphery of a disk of pine board of the same diameter, thus constituting a circular bellows that will collapse by the weight of its top To this bellows' top the end of the valve lever should be connected by a cord or chain; so that by the inflation of the bellows and elevation of the disk, the valve would be closed. Through one side of the circular ledge, is to be pierced a hor izontal hole, having one end of a small flexible pipe fitted to it, which extends up to the float. The box below is to be furnished with a mixture of one part sulphuric acid to fiveparts water, to the depth of from five to six inches ; thisimmediately acts upon the zinc plates, and hydrogen gas is produced, and ascends through the bellows and flexible pipe to the float; but when the float is sufficiently full, so as to produce a reaction down through the pipe to the bellows, the top will be lifted and the valve thereby closed. The accumu lation of gas within the box of plates will then expel the fluid from the box, and relieve the plates from the action of the acid, until the top of the bellows descends, and thus opens the valve, liberating the gas and allowing the acid to renew its action upon the plates. The effect of this arrangement is to hold the valve so nearly closed, that no more gas can be produced than sufficient to keep the float uniformly inflated The zinc plates will require to be renewed aboutonce a month

The two propelling wheels would be each twelve feet in dameter, having each eight radial fans; each being four feet wide at the outward end, and set at an angle of 45 degrees with the shaft. Each fan would be also curved forward so as to counteract, in a measure, the tendency of the air en countered, to escape radially by its centrifugal force. The fans are best made of light-painted cloth, each stretched be tween two arms radiating from a shaft five feet long and six inches in diameter at the part where the arms are set, and tapering thence to the ends. Their pivots should be.two inches long and half an inch in diameter, running in composition boxes, each of which has four short radial arms. Each arm should have a small hole through the end to receive a .wir whereby it is supported; two of the wires ascending to the float, and two descending to the saloon. The pivots should have heads or nuts to prevent drawing out of the boxes ; and upon each shaft should be a wheel 16 inches in diameter with chain cogs six inches apart, to receive the links of a chain belt, whereby the fan wheels are made to revolve in contrary directions, the upper fans moving outward from the main center. Upon the top of the engine room, two othe chain wheels should be placed to receive the lower bout of the chains, having cranks, which are operated by two pitman connected to two engines below. The pitman cranks are to be placed at the rear ends of the wheel shafts, and at the for wards ends are two other six-inch cranks set in opposite directions and connected to each other by a rod of wood, the two ends of which are mounted upon the two crank pivots To the center of this rod is connected by a pivot a vertica rod, suspended from a pivot six feet above. The horizonta rod is three inches wide and half an inch thick, sharpened a its edges to obviate resistance, and supported by wire braces of this below to give it the requisite stiffness. The effect cons arrangement is to cause the two-wheel shafts to revolve contrary directions; and the two pitman cranks being ad ansted right angles with each other, the application of the power of the engines
It has been remarked that one main obstacle to aerial navgation by steam power has been the excessive weight of team boilers; but the boilers invented especially for this se have been repeated 1 proved to produce five times a much power in proportion to their weight as any other boile in use. A twelve-horse power boiler is described as follow by Mr. Porter: Two iron pipes, five feet long by an ittch and ne half in diameter, are placed pardllel, three and a halffee apart, and each end of each pipe is screwed into one side of a three-inch cube of cast iron. Three other parallel pipes are
artanged at equal distances between the two first, and each most conspicuous objects on the earth will be reflected upon end of each is attached by a nipple to a transverse pipe three the dial, and their movements thereon will plainly indicate feet and four inches long, the ends of which are inserted into . both the direction and velocity of the aeroport; and the size the corner cubes, and an iron rod three eighths of an inch in of the objects upon the dial, will in measure indicate the alti diameter, passes through each short pipe and through the tude. For this purpose, the compass dial should be partly corner cubes, and terminates in a screw nut at each end. An other like arrangement of seven pipes is placed four feet above the first, and secured in that position by one hundred vertical copper tubes, two inches in diameter, made of No. 24 copper plate; and each end of each copper tube has a brass head brazed in, with a projecting nipple one inch in diameter, extending an inch and a half from the end of the tube. These nipples are hollow nearly to the ends, and have a half-inch aperture on one side of each, in the center of an indenture curved to fit the sides of the long horizuntal pipes above and below ; one side of each pipe being perforated to match the corresponding holes in the sides of the nipples; and the nip ples being attached to the side of each pipe by short brass straps, the two ends of each of which are fastened to the pipes by screws, while the center, being curved, passes over the nipple, holding it fast to the pipe. Twenty vertical tubes in each of five rows, are thus attached to the ten horizontal pipes above and below, and thus all the pipes and tubes have free communication with each other, and are so connected that one or more of the tubes may be readily detached without disturbing the others; or all the tubes and pipes may be taken apart for cleansing, and reconnected as occasion may require.
A grate nine inches wide, is placed between each two rows of pipes, at the bottom ; and the lower portion of the tubes, to the uight of two feet, is incased in a double casing of sheet iron, lined with thin plates of soap-stone, or fire brick. Between each two rows of tubes, is a hollow lid two inches thick, with a handle, to be removed for feeding the fire with charcoal. The edges of these lids rest upon strips of iron plate, fitted to each side of each row of tubes, and plastered over with clay. The entire weight of this boiler is 550 lbs The water required to fill it half full is 30 gallons. The amount of fire surface is 100 square feet; its working capacity, twelve-horse power. The smoke-pipe-four inch tinextends horizontally 200 feet, rearward. The two light brass engines, are plain and common, possessing no special novelty The buoyant power of the float, as estimated, is $15,051 \mathrm{lbs}$ The weight of the saloon $1,000 \mathrm{lbs}$; weight of boiler 550 lbs . weight of engines, propellers, and other machinery, 200 lbs . weight of replenishers, 200 lbs ; weight of smoke-pipe, rud der and wires, 201 lbs ; weight of water, fuel, and furniture 900 lbs ; thus leaving a net balance of $12,000 \mathrm{lbs} .$, suficient to carry 140 passengers with light baggage.
When the float is inflated, the saioon must be partly freight ed with boxes of sand provided for that pnroose; and when passengers or freight are received, an equal weight of ballast will be discharged, and vice versa. When .not in use, the aeroport will ce safely moored at a convenient hight, to some
permanent object. A large screw, on the principle of a corkscrew, to be screwed into the ground by means of a hand spike, will be employed for holding the aeroport when moored. Moreover, for better security, a small line connected to the large safety valve of the float, will be brought to the ground with a small weight attached: so that should the aeroport escape by any means trom its moorings, the weigh will hold the valve open until it descends to the earth
Whenever there is occasion to come to land, the rudder i depressed so as to turn the head of the float downward until the saloon comes near enough to the earth to send down the elevator. If there is wind, the aeroport will be brought to head to the wind, and the motion of the engine slackened until the aeroport becomes horizontally stationary, and de tion the tendency of the gas will be towards the highest part, and this tendency must be sometimes counteracted by means of the compressing ropes.
It will not be expedient, generally, to run higher than from 500 to 1000 feet; but in case of an approaching squall, or thunder gust, the aeroport may readily ascend high enough to pass over them. Prof. Wise has on several occasions, en joyed a beautiful sunshine, and serene atmosphere, while ning above the clouds, or in foggy weather, the altitude may ning above the clouds, or in foggy weather, the altitude may sometimes requisite, especially for the purpose of ascertaining sometimes requisite, especially for the purpose of ascertaining
the course, or direction of the wind, to drop an arrow-shaped rod of light wood, which will descend perpendicularly while the wheels are stopped ; and as soon as it strikes the earth or water, the change of the direction of the twine attached to the rod, will show both the direction and velocity of the wind. But when the earth or water is in sight, a simple plano-con vex lens, with a piece of semi-transparent paper placed in its focus will promptly show both the direction and velocity of the aerial vehicle.
With regard to guiding the aeroport, when a side wind pre vails, the pilot has only to head the float to windward, accord ing to the relative velocity of the aeroport and the wind For instance, if the aeroport is running due west, with a speed of eighty miles an hour, while a gale from the north is trav-
eling at the rate of forty miles, the float must be headed four points, or twenty-two degrees, to windward, in order to hold its westerly course. The pilot will know what direction he is moving, by the direction which the trees and other objects on the earth, apparently move.
A compass wit'l a large dial, may be mounted at the hight of two feet from the floor of the saloon; and near it, an ap. perture, two inches in diameter, may be made through the by adjusting a mirror one foot above the compass dial, the
shaded from the direct light of the windows; and if the central part of the dial be crossed with lines one fourth of an inch apart, crossing each other at right angles, these indications will be the more readily comprehended.
Whirls or circular currents in the air will be readily indicated by the variation of the course of the aeroport, which will be counteracted by a change of helm; and if not, the aeroport will quickly shoot out of the whirl. And in case of encountering vertical currents in either direction, it is well known that they never occur suddenly, but so gradually as not to change materially the horizontal position of the float ; and a ready counteraction may be effected by the rudder without either expanding or compressing the float.
It has been supposed by some that common linen cloth, either French or Holland, would not be strong enough to sus tain so much weight. To refute this conjecture, it may be proper to explain, briefly, the nature and principles of the buoyant power, which is to sustain the aeroport and its freight. Aerial buoyancy, does not, as generally supposed, consist in the tendency of the hydrogen gas to ascend, and press against the upper interior of the float; but in a greater pressure of the atmosphere against the bottom of the float, than upon the top thereof. The weight o? a column of air, oneasquare foot and forty feet high (the diameter of the float) is three pounds; therefore, the atmospheric pressure against the bottom of the float is greater by three pounds per square foot, than that upon the top, and this would be the true force with which the balloon would ascend were it not for the weight of the hydrogen gas, which, being three ounces per forty cubic feet, reduces the buoyant force to about two and three-fourths pounds per foot of the central portion of the float, and this is the greatest force or pressure that is to be sustained by the cloth. Yet it is readily shown by experiment that the ordinary linen, will sustain more than twelve times that amount of pressure, when supported by the longitudinal rods of the float. Moreover, the float may be kept so full of the gas, by adding a little additional weight to the bellows of the replenisher, as to counteract, in measure, the atmospheric pressure upon the lower part.
It has been supposed by some, that if a rent should occurin the float, the whole apparatus would rapidly descend. But the float having several compartments, if a rent should occur in either one, the descent of the aeroport would be so moder ate, that the pilot would have ample time to select his ground to land upon. And should such descent occur over water the saloon is to be provided with an ample supply of inflated sacks attached to the floor under the seats, which constitutes it an excellent life-boat. A rent is readily and easily repaired, and a small balloon will be kept in readiness, and mey readily be inflated, whereby a man or boy may ascend and repair the rent. But as only the bottom of the float is liable to get dam-
aged, the gas would not readily escape. All parts of the aged, the gas would not readily escape. All parts of the
sa ${ }^{\top}$ oon will be rendered incombustible by saturation with borate of soda, applien to che materials prior to its construc borat
tion.
Mr.

Mr. Porter thinks there would be no difficulty in constructing an aeroport or flying ship, capable of carrying 500 pas sengers safely to any part of Europe, in three days or less. Even if strong and heavy canvas should be employed in the construction of the float, there would be ample buoyant power to support it with an engine of 100 -horse power, and fuel and provisions for ten days. That disasters may occur, he be incomparably more sate than by either marine vessels or be incomp.

Orange Marmalade.- Cut the oranges in half, then take out the pulp and juice, separating all the skins and pips. Put the rinds into salt and water for a night ; the next morn. ing put them into a stewpan with fresh water. Let them stew until soft, so that a straw can be run through them easily; cut the peels into thin strips. To every pound of ruit add one pound and a half of coarse white sugar. Put he juice, pulp, and peel, with the sugar, into the stewpan and let it boil twenty minutes. Seville orartes must be used and the marmalade is better if kept six months. The juice and grated rind of two lemons to every dozen oranges is great improvement.--Jessie Piesse.

NEW PUBLICATIONS.

Struggles and Triumphs ; or, Forty Years' Recollections of P. T. Barnum. Written by Himself. 8ro., pp. 780. J.E.
Burr \& Co., Hartford, Conn.

Many years ago, Barnum, then in the heyday of his glory as a showman and manager of the American Museum, wrote and printed a book of life
sketches, which had a large, sale. Nevertheless its publication brought pon him much undeserved criticism and abuse. The people knew that he styled himself the "Prince of Humbugs," and, moreover, they enjoyed the
funof his book, wherein he told them exactiy how, and in what way he had prepared his curiousfeast of funny things to gratify their appetites but somehow the newspaper critics made some people believe that it was a naughty thing in any man to humbug and then tellallabout how it was done. Well! times have since changed. Barnum has passed through :an
eventful career, of much tribulation, and more success, and now at the eventful career, of much tribulation, and more success, and now at the
age of sixty years he comes out on the successful side with a new book, age of sixty years he comes out on the successful side with a new book,
very unlike the old one, wherein he tells the story of his career from boyhood, introducing for that purpose many spirited illustrations, unique and
laughable anecdotes,and a great variety of personalexperiences as a youth laughable anecdotes, and a great variety of personal experiences as a youth-tinancier- - indead it wouldtbe difficult to say what Barnum had not b b en
 is one of the rarest specimen of human nature to be met with. ${ }^{-}$His
will afford instruction and an 'sement to the thou sands who reaci in

How to Obtain Letterrs Pateit

NEW INVENTIONS.
Information about Cayeats, Extensions, Interfercuces Designs, Trade Marks; also, Foreign Patents.

For a period of nearly t wenty-five years, MCNN \& CO. have occupien the postion of leading solicitors of Amcrican anter of a conturs,they have examined not less than fifty thousand alleged new inventions, and hav prosecuted upward of thirty thousend applications for patents, and, in addition to this, they lave made, at the Patent Oftice.over twenty thousan preliminary exan
The important advantages of MUNN \& CO.'s Agency are,tlat their prac tice has been ten-fold grcater than that of any other Asency in existcnce with the additional advantage of laving the assistance of the best professnal skill in every department, and a branch Offee at Washington, which

CONSULTATYONG AND OPINDONG FREE.

Those who naise with MUNN \& CO. Whowill be happy to bee the:n in prrsor

TO APPLY FOR A PATENT

to MUNN \& CO.,.in Park Row, New Yoris, by express, charycs paid, also, a description co., the fee, and revenue and postage stan.ins.
The model should be neatlymade, of any suitable materials, st rongly fastened, without glue, and neany painted. The name of the inveritor should
be cngraved or painted upon it. When the inveritioncousiste or an inprec. ment upon some otaer maccinine, a full working modcl of the whole mactine Fill not be uccessary. Bat the model must be sufficiently perfect to shov

PRELININARY EXAMINATIOM

Is made in to the novelty of an invention by personal search at the Fatent

 report in writing, a fee of $\$ 5$ is charged. This search is made by a corps of MUNDMUNN \& CO. wish it distinctly understood, that inventors who employ
them are not required to incur the cost of a preliminary examination. This samination is only advised in more doubtul

COST OR APPLICATIONS

 and specification are carefuily prepared and forwarded to the afplicant fo his signature and oati, at which time the agency fec is called for. This feeis gencrally noto ver g.is. The cases are exceptionally complex if a hisher fee than $\$ 251$ called for and, upon the return of the papers, they are filed at the Patcnt office to a wait Ollicial examination. If the case should be reject ed for any causi, or obsjoctions made to a claim, the reasons arc in quired into and commundeatcil to the applicant, with slectcles and explanations of the ricecncca; ant showid it appear that the reasons given arc insufficient,th Withont Extre Charge to the Applicant.
MUNA \& C 0 , are determine to place within the reach of those who con fide to them their business, the best facilities and the highest professional skill and experience.
The only can
 fee. an" whercin appeals are taken from the decision or the Examiner
afur a second rejection; and MUNN \& Co. wish to state very istinctly, that afur a second rejection; and Mond co.wish to state very the necessity of
they have but few cases which can not be settled without the ne an appeal; and beforc an appeai is taken, in any case, the applicant is fully adviscd of all facts and charges, and no proceedings are had without his sanction ; so that all inventors who employ MUNN \& CO. know in advance
Wbat their applications and patents arc to cost.
MUNN \& CO. makz no charge for prosecuting the refected claims of their
own clients bcfore the Ex mers and when invention is noticed editorially in the Scientifio andicican.

REDECTED CASES.

MUNN \& CO. give very special attention to the examination ana prose cution of rejected cases filed by inventors and other attorncys. In such cases af ee of 85 is requircd for spccial cxamination and report, and in cas
ofprobable success by further prosecution, and the papers are found tolcrfprobable success by further prosecution, and he casers are couro to get it through for a reasonable fee, to be agreed upon in advance of prosecution CAVEATS
Are desirable if an inventor is not fully prepared to apply for a Patent. A Caveat affords protection, for one year, against the is sue of patcxt to an
other for the same invention. Caveat papers should be carcfully prepared. ther for the same invention. Caveat papers should be carcfuly prepared
The Governmentfee on filing a Caveat is $\$ 10$, and MUNN \& Co.'s charge for preparing the necessary papers are usually from $\$ 10$ to $\$ 12$.

REIESURS.

A patent when discovered to be defictive, may be reissued by the surren-
der of the original patent, and the filing of amendec papcrs. This proceed-

De sho lia be taken with great car

DESIGNS, TRADE MARIKS, AND COMPOSITIONS Can be patented for a term of years, also, new medicines or medical oom-
pounds, and useful mixturce of all kinds. When the invention consists of a medicine or compound, or a new article of manufacture, or a new compo sition, samples of the article must be furnished, neatly put up. Also, sen
full statement of the ingredients, proportions, mode of preparation ases, and merits.

PATENTH CAN RE EXTENDED.

All patents issued prior to 1801, and now in force, may be extended for feriod of seven yea upon the presentation of proper testimony. The exterm; but an ap .cation for an extension, to be successful, must be care fully prepare MUNN \& Co. have had a large experience in obtaining ex

INTER FERENCES

Between snding applications bcfore the Commissioners are managed an
 fally prepared to undertake and manage w th fidelity and dispatch. FOREIGN PATENTS.
American inventors should bas in mind that fl ve Patents-Amerian, English, French, Belzian, and Prussian-will secure an Inventor excluof the most intelligent people in the world. The facilities of hucijocs and steam communicationare such, that patents can be obtialisel abrowd by our citizens almost as easily as at home. MonN \& Co. have prepared and take a larger number of Europaan Patents than any other American Agceacy.
They have Agentsof great experience in London, Paris, Berlin, atd other They have
Capitals.
Apitals.
Adamphle
Address
MIUNX \& Co., 3 P Park Row, New Yout

