erly stand near the poor representation of the depot than in
way of the advancing train.
Commodore Vanderbilt is widely known as a "self-made man," and he has stuck to the one idea of self with wonderful pertinacity. On the whole, we conclude that this brassy compliment, in its gross unfitness in purpose and execution, can only be regarded as a huge joke in brass.

ELECTRO-PLATING WITH IRON

The Hon. Cassius M. Clay, late U. S. Minister to Russia, has recently returned from St. Petersburg, bringing with him some fine specimens of iron electrotypes, done after the pro cess of Prof. Jacobi and Klein. We have before alluded to this important discovery. By its use, nearly all forms of electro-plating, such as engravings, stereotypes, medallions and ornaments, may be done in iron, with a fineness of tex ture which is really surprising.
Its importance and value will be appreciated when we re flect that the iron electro-plates are about five times more durable than the ordinary copper electro-plates.
Mr. Clay has presented us with an iron electro-plate copy of a copperplate engraving of the Prince Imperial of Russia. This plate is six inches square, and beautifully done. It is one thirty-second of an inch in thickness, and has a colo closely resembling that of zinc. These iron electrotypes are now used by the Russian Government with complete succes for the printing of bank notes.
The process was patented in this country through the Scientific American Patent Agency, Sept. 29, 1868, and furthe information can be had by addressing C. M. Clay \& Co. 45 Liberty St., New York
The following description of the prosess we copy from the patent specification
Our invention consists in the application of a practical galvano-plastic process as to the deposits of iron on molds or any other form, for reproducing engravings, stereotypes and for other useful or ornamental purposes.
" The galvano-plastic bath we use is composed of sulphate of iron, combined with the sulphates of either ammonia potash, or soda, which form, with sulphate of iron, analagou double salts.

The sulphate of iron may also be used, in combination with the chlorides of the said alkalies, but we still prefer the use of sulphates.
" The bath should be kept as neutral as possible, though small quantity of a weak organic acid may be added, in orde to prevent the precipitation of salts of peroxide of iron
"A small quantity of gelatin will improve the texture of the iron deposit.

As in all galvano-plastic processes, the elevation of the temperature of the bath contributes to the uniformity of the deposit of iron, and accelerates its formation.
"For keeping up the concentration of the bath, we use, as anodes. large iron plates, or bundles of wire of the same metal.

Having observed that the spontaneous dissolution of the iron anode is, in some cases, insufficient to restore to the bath all the iron deposited on the cathode, we found it useful to combine the iron anode with a plate of gas-coal, copper, platinum or any other metal being electro-negative toward iron, and which we place in the bath itself.
"As a matter of course, this negative plate may also be placed in a separate porous cell, filled with an exciting fluid, as diluted nitric or sulphuric acid, or the nitrates or sulphates of potash and soda.
For producing the current, we usually take no more than one or two cells of Daniels' or Smee's battery, the size of which is proportioned to the surface of the cathode.
"It is indispensable that the current should be regulated, and kept always uniform, with the assistance of a galvanome ter, having but few coils, and therefore offering only a small resistance.
"The intensity of the current ought to be such as to admit only of a feeble evolution of gas-bubbles at the cathode, but it would become prejudicial to the beauty of the
gas-bubbles were allowed to adhere to its surface.
"The same molds, as employed for deèpositing copper, may also be used for depositing iron, only it is advisable, in employing molds made of lead or gutta-percha, to cover them previously with quite a thin film of galvanic copper, formed in a few minutes, in the usual way, and then oring them, after having washed the molds with water, immediately in the iron-bath.
"The film of copper may be removed from the deposit either by mechanical means, or by immersion into strong nitric acid.
"The deposited iron is very hard, and rather brittle, so that some precaution must be taken in separating it from the mold. By annealing, it acquires the malleability and soft ness of tempered steel.

Condensed Food.

Experimentshave recently been made with satisfactory results to test the practicability of supplying the North German army and navy with compressed or condensed food. The rincipal object was to ascertain the best means of furnishing the soldier in the field with a three days stock of provisions
reduced to a minimum of weight and bulk. It has been reduced to a minimum of weight and bulk. It has been
found that a sort of meat-bread is admirably adapted for ound that a sort of meat-bread is admirably adapted for cakes or can be converted with very little trouble into soup. Similar attempts have been made to compress hay and othe provender for horses.
[We find the above item in a recent number of the Evening Post. The idea of using condensed food in the manner de-
scribed was first patented in 1850 , by Gail Borden, Jr, then a
resident of Galveston, Texas, since better known in connex on with Borden's Condensed Milk, an article of large con sumption in this and other cities. Mr. Borden has devoted a great deal of attention to the preparation of condensed food and may be regarded as the pioneer in that branch. His patent of 1850 consisted in the concentrated extract. of ali mentary animal substances, combined with the vegetable flour and meal, made into cakes and baked into bread, and was readily converted into a wholesome food.-EDs.

AERIAL NAVIGATION
 number three.

Mr. Porter considers the proper form of an aerial float to be he " revoloidal spindle," round in its transverse section, it sides curving uniformly from end to end, and having its length ten times its diameter. But this may be varied ac cording to the business for which it is intended, and made longer for great speed, or larger in diameter for carrying freight. It should be made of the strongest linen cloth, varnished on both sides with a varnish that will not injure the stiength of the fiber; and the strips of cloth should be sewed together with double seams, the seams being covered with thick elastic varnish. The cloth is supported inside by twenty rods of white spruce, extending the entire length, the joints being secured by tin tubes, and the cloth being attached to the rods by tack nails, driven through strips of white oak or elm, half an inch wide and one-eighth thick; the tacks being two inches apart.
A medium-sized float should have a capacity of 266,796 cubic feet. The longitudinal rods for a float 400 feet long should be one and one half inches in diameter, but tapering to three fourths'at the ends. The buoyant power of 266,796 cubic feet of hydrogen gas, is 19,051 lbs. The weight of the cloth, including two transverse partitions, is $2,000 \mathrm{lbs}$., and that of the rods $2,000 \mathrm{lbs} .$, leaving a net buoyancy of 15,05 lbs. The proper proportional length of the saloon is 133 feet and its diameter 10 feet; being square in its transverse sec-
tion, and having its four sides covered with painted duck, and curving to a point at each end. The engine room should be in the center, 10 feet long by 6 feet wide, leaving a passage way of two feet on each side. There would then be space for
two cabins 20 feet long, and a ladies' room, and kitchen, each two cabins 20 feet long, and a ladies' room, and kitchen, each
8 feet long. The spaces left forward and aft, would be used for baggage and stores. The saloon would have ten windows on each side, the central two being each seven feet long, and sufficiently prominent at the center to enable the pilot to look forward or downward. The engine room should have in their position by very light frame work, and 100 steel or copper wires, whereby it should be connected to various parts of the float. The floor should be made of spruce boards 3 inches wide and one eighth thick, supported by sleepers 40 inches long, 2 wide, and three eighths thick, and 6 inches
apart ; and these should be supported by four longitudinal apart; and these should be supported by four longitudinal
sills, 28 feet long, 4 inches wide, and seven eighths thick. These sills should be supported at every ten feet by wire from the float above. The floor or platform which surports the boiler should also be connected to the float by wires, independent of the saloon, and so arranged as to be readily de frward cabin there shouid be an elevating car, 10 feet long and 39 inches wide, surrounded with a balustrade and fur nished with seats; the floor of this car constituting a part of the floor of the cabin, but not connected thereto. This ca should be supported by four ropes attached to its four corners,
passing up over four pulleys to a revolving windlass connect passing up over four pulleys to a revolving windlass connect-
ed to the engine, which may be disconnected at pleasure. ed to the engine, which may be disconnected at pleasure.
Upon this windlass shaft, should be placed a grooved wheel, round which is a coiled cord, one end of which should be at tached to the grooved periphery, and the other end to a small
crank windlass, in the center of the said car, so that parties crank windlass, in the center of the said car, so that parties
may thereby, either lower or elevate themselves, as occasion may thereby, either lower or elevate themselves, as occasion The form of rudder preferred, is a hollow square, ten feet long and five"feet in diameter, made of painted cloth stretched over a light frame, open at both ends, with a rod of wood in to the floudinal center, the forward end of which is connected ners of this rudder, four cords, steering lines, extend forward, pass over four pulleys, and thence down to the pilot's window in the saloon below.
Every alternate longitudinal rod of the float is connected the alternate nine at each end; but the other ten have slight longitudinal liberty, so that they may occasionally be
drawn toward the longitudinal center for the purpose of re drawn toward the longitudinal center for the purpose of re-
ducing the size and capacity thereof; and for this purpose a ducing the size and capacity thereof; and for this purpose a
series of cords are attached to the free rods, and passing to series of cords are attached to the free rods, and passing
the center, and over a corresponding number of central pul leys, unite in one cord, which, passing centerward and over another pulley, extends down toward the bottom of the float and connects to a vertical wire, which, passing through an sets of cords and pulleys are arranged at different points, and all uniting at the main center as described, the engineor can any time, co

may so require.

In addition to this arrangement, two flexible pipes or hose, ascend from the engine room to the float, and passing to the interior, and longitudinal center, turn right and left, and ex tend to both ends of the float and up through the upper
side; so that the exhaust steam from the engine may be oc casionally turned-into those pipes, for the purpose of warm ing and thus expanding the gas within the float; the compressing cords being slackened for that purpose. By these means the float may be made more or less buoyant, withou
increasing the quantity of gas, or discharging ballast. But in general the float may be readily made to ascend by mans of the helm only.

The engine room should be furnished with a self-regulating gas replenisher, which may be described as follows: A square box, four feet long, two feet wide, and twenty inches deep, is made of pine boards fastened with copper nails, coated out side with shellac varnish and inside with beeswax. Within this box is another, in length and breadth two inches less than the first, and six inches deep, covered without and within with beeswax, and open at the top. This box should contain twenty plates of zinc, each plate being five inches wide, one fourth of an inch thick, and long enough to extend across, enter, and be secured to vertical grooves in the sides of the box. Both ends of this box should be half an inch higher than the sides, so that being inverted within the larger box, the ends only rest on the bottom. In the center of the top of the smaller box should be a hole one inch in diameter, to admit the end of a lead pipe, which, passing up through the top or lid of the large box, is to be cemented airtight thereto, and the said lid is to be screwed down air-tight and covered with beesiwax cement. This lid should have another hole near one end, through which a fluid may be poured in. A waxed cork or lead stopple may be used to stop this hole. This vertical lead pipe, ascending one inch above the lid, should have a lever valde at its top, mounted on a fulcrum pivot at or near the side of the pipe, and having an arm or beam of the lever extending horizontally eight inches. The valve end should be a flat plate, having attached to its under side a disk of leather, fitting and pressing upon the top of the pipe. Around this valve, and attached to the box lid, should be a circular ledge eighteen inches in diameter, two inches high, and one inch thick; and having attached to the top one edge of a flexible leather circular belt nine inches high; the upper edge being attached to the periphery of a disk of pine board of the same diameter, thus constituting a circular bellows that will collapse by the weight of its top To this bellows' top the end of the valve lever should be connected by a cord or chain; so that by the inflation of the bellows and elevation of the disk, the valve would be closed. Through one side of the circular ledge, is to be pierced a horizontal hole, having one end of a small flexible pipe fitted to it, which extends up to the float. The box below is to be furnished with a misture of one part sulphuric acid to five parts water, to the depth of from five to six inches; thisimmediately acts upon the zinc plates, and hydrogen gas is produced, and ascends through the bellows and flexible pipe to the float; but when the float is sufficiently full, so as to produce a reaction down through the pipe to the bellows, the top will be lifted and the valve thereby closed. The accumu lation of gas within the box of plates will then expel the fluid from the box, and relieve the plates from the action of the acid, until the top of the bellowsdescends, and thus opens the valve, liberating the gas and allowing the acid to renew its action upon the plates. The effect of this arrangement is to hold the valve so nearly closed, that no more gas can be produced than sufficient to keep the float uniformly inflated. The zinc plates will require to be renewed aboutonce a month
The two propelling wheels would be each twelve feet in iameter, having each eight radial fans; each being four feet wide at the outward end, and set at an angle of 45 de grees with the shaft. Each fan would be also curved forward so as to counteract, in a measure, the tendency of the air en countered, to escape radially by its centrifugal force. The fans are best made of light-painted cloth, each stretched be tween two arms radiating from a shaft five feet long and six inches in diameter at the part where the arms are set, and tapering thence to the ends. Their pivots should be.two inches long and half an inch in diameter, running in composition boxes, each of which has four short radial arms. Each arm should have a small hole through the end to receive a wire whereby it is supported; two of the wires ascending to the float, and two descending to the saloon. The pivots should have heads or nuts to prevent drawing out of the boxes ; and upon each shaft should be a wheel 16 inches in diameter with chain cogs six inches apart, to receive the links of a chain belt, whereby the fan wheels are made to revolve in contrary directions, the upper fans moving outward from the main center. Upon the top of the engine room, two other chain wheelsshould be placed to receive the lower bout of the chains, having cranks, which are operated by two pitmans connected to two engines below. The pitman cranks are to be placed at the rear ends of the wheel shafts, and at the for wards ends are two other six-inch cranks set in opposite directions and connected to each other by a rod of wood, the two ends of which are mounted upon the two crank pivots. To the center of this rod is connected by a pivot a vertical rod, suspended from a pivot six feet above. The horizontal rod is three inches wide and half an inch thick, sharpened at its edges to obviate resistance, and supported by wire braces f this below to give it the requisite stiffness. The effect orrangement is to cause the two-wheel shafts to revolve contrary directions; and the two pitman cranks being ad power of the angles with each other, the application of the quently more uniform.
It has been remarked that one main obstacle to aerial navgation by steam power has been the excessive weight of team boilers; but the boilers invented especially for this se have been repeatedly proved to produce five times as much power in proportion to their weight as any otherboiler in use. A twelve-horse power boiler is described as follows by Mr. Porter: Two iron pipes, five feet long by an intch and ne half in diameter, are placed pardllel, three and a halffee apart, and each end of each pipe is screwed into one side of a three-inch cube of cast iron. Three other parallel pipes are

