being excited concerning it, he learned from Dr. Brewer all facts of interest connected with its production, namely, that it flowed from natural springs on the Watson flats; had been known to the Seneca Indians hefore the settlement of this region, and had been introduced by them as liniment or medicine to white persons, and sold to the druggists, and latter ly had been gathered by Brewer \& Watson, and used for lighting the sawmills of the firm and for lubricating purposes.

Drake visited the flats to examine the oil springs, and while there conceived the idea of boring to the sources o the oil. Returning to the East, he presented his view to a number of friends, and the result was that in the following year he came back to the oil region as the agent of an existing oil company at New Haven, who had purchased an oil tract, and Drake had full means for the undertaking.
Drake may have got his idea from having heard that par ties, sinking artesian wells for salt down on the Allegheny were sometimes annoyed by meeting with a flow of oil. At all events, his first step was to visit the salt works near Pitts burgh, and engage experienced hands to go up and sink a well for him. A bargain was made ; but it was not kept, the honest drillers for salt concluding, after Drake's departure, that the man must be a fool who thought of drilling for oil. A second trip to Pittsburgh, in a buggy (there was no railroad from Oil Creek then), resulted in another contract, which was broken for similar reasons. Drake then made a third trip and finding it idle to talk of oil to men who were accustomed to regard it only as a nuisance troubling their salt water veins, he proposed to one of them to go with him and bore for salt. Salt seemed reasonable, and the man accepted his offer; and finally, in June, 1859, ground was broken for the first artesian oil well.
Thedrillers wished to make a large cribbed opening to the rock, which seems to have been their usual method of starting a well. But Drake said he would drive down an iron tube instead. This plan, which his friends claim was original with him (if so, it is a pity he didn't secure a patent for it, which would havẹ been worth a fortune to him) was adopted, and it has been in use ever since, not only in sinking oil wells but in artesian boring for other purposes. The pipe was driven thirty-two feet, to the first stratum of rock. The workmen then drilled thirty-seven feet and six inches farther, entering what is known as the first sand rock, and making a total depth of sixty-nine and a half feet. They were at this point, when, one day-August 28, 1859-as the tools were lifted out of the bore, a foaming, dingy fluid, resembling somewhat, in appearance, boiling maple sugar, rushed up,
and stood within a few inches of the top of the pipe. It and stood within a few inches of the top of the pipe. It
was oil. In the meanwhile Drake had great difficulties to was oil. In the meanwhile Drake had great difficulties to
overcome, and greater were before him. There was still no overcome, and greater were before him. There was still no
railroad in that part of the country, and all his machinery and apparatus had to come in wagons from Erie, a distance of forty miles. He had to send to Erie for everything-once for a pair of common shovels, the store at Titusville being unable to furnish them. He had soon spent the money advanced to him by the company, and it refused to advance him more. He had exhausted his credit, too, and could not get trusted for the value of an oak plank or a center bit. He was thought insane, and people called him "Crazy Drake." His workmen were unpaid and discontented, and his enterprise
must have failed when on the very verge of success, had must have failed when on the very verge of success, had not two gentlemen of Titusville, worthy of mention here-
Messrs. R. D. Fletcher and Peter Wilson-having faith in Messrs. R. D. Fletcher and Peter Winson-having faith in his paper and loaned him money-and with this timely aid he struck oil.
Yet even now, with his well in operation, pumping twentyfive barrels a day, he seemed to be getting deeper and deeper into difficulty. He found, as he afterward said, that he had an elephant on his hands. There had been a demand for oil, at a good price, in small quantities, but there was no demand for it in large quantities. Imitators followed him, other wells were sunk, and the market was flooded. Teamsters charged $\$ 10$ for hauling a barrel to Erie, where it could not fetch $\$ 10$. The oil could not be generally used as an illuminating agent without being refined, and the coal oill refiners refused to touch a rival produotion, whose success in the market would be likely to injure their interests. Drake's health, if not his spirits, gave way under these complications, and he returned to the East about the time when petroleum -first refined by James McKeowa and Samuel Kier, of Pitts burgh-was coming into general use. The great oil excitement came too late for poor Drake to profit ky it. He died recently in a Connecricut poor house.

MaLLEABILITY aND DUCTILITY OF METALS

lecture by joyn anderson, c.e., at the society of arts, london.
In order readily to understand the two remarkable proper ties of malleability and ductility, which are now turned to such good account in almost every branch of the mechanical arts, it will be convenient to think of the malleable or ductile metals, such as lead, tin, copper, wrought iron, and steel, as substances that can be moved about like dough, that can be spread out as with a roller, that can be elongated by drawing out with the hands, that can be squirted through a hole by presssure like macaroni, or even that the dough can be pushed or gathered back again into its original mass of dough-that is, if proper means are employed to perform the operation gently, and this may be done without breaking the continuity of the particles of which the mass is composed. Such a statement may well seem fabulous, but it will be my province now to enumerate many things in connection with metal much mose wonderful than what I have said regarding the
dough, and even more strange than the change in dough when overtaken by the biscuit state from the baking process. It is difficult to understand the possibility of the malleable and ductile properties without fully realizing that their particles are fluid, in a certain sense, and that this is due to the molecular arrangement, not so fluid, as water, tar, or bitumen, but still a fluid which will flow in obedience to sufficient pressure, and just as those fluids require time when acted upon by gravity, so the metals require greater time and more force than gravity, the rate of flow being determined by the nature of the metal, the softer metals requiring less pressure and flowing faster than the harder; and in the case of steel the flow is extremely slow, but with pressure, time, and patience, it also may be overcome and made to flow gently into any shape or form while in the solid condition.
For a number of years the flowing property of the softer solid metals, such as lead and tin, has been taken advantage of very extensively, in the squirting of pipes and otherwise; and for thousands of years the malleable and ductile metals have been under treatment by man, and a vast number of factshavethus been accumulated; but it is due to M. Tresca of Paris, to say, that he has done more, - perthaps, than any ther man in regatd to the investigation of the natural law by which the flow of solids is governed under varying circumstances, and the most interesting point of all is the great similarity that exists between the flow of solid metal and that of the flow of water-that in the flow of solids from an orifice there are the same converging currents, eddies, and that the quantity of metal issuing is dependent on the same conditions as water when issuing from orifices of different arrangement, and only differs in degree.
From time immemorial man has been familiar with gold as a flowing metal, both as malieable and ductile. It is in consequence of these properties that gold may be beaten into leaves so thin that it takes two hundred and ninety thousand to make one inch in thickness, or it can be drawn into a wire so fine that an ounce weight would extend a distance of fifty miles. The flowing action which takes place in coining a sovereign or other coin is very apparent. This process is not the mere stamping which it is generally considered to be, but the particles of the gold have really to flow in the same manner as a liquid, from one part of the die to another, in order to fill up the deeper recesses of the die from from the shallow part of the space, and so form the perfect coin from the rush of gold penetrating everywhere. As, however, gold is not one of the most common metals of ap. plied mechanics, its presence in the workshop is less seldom met with than some of the others which have been already enumerated.
The metals lead and tin are both malleable and ductile, but theif malleability, or spreading-out property, is much greater than their ductility, or drawing property; and both being eoft, and having the flowing property in a pre-eminent de gree, they can thus be squirted or rolled to any extent, or into any form of pipe or sheet, so that the want of ductility is scarcely felt.
The diagram (Fig. 1) will explain the nature of apparatus which is employed to squirt these metals when in the solid filled with solid metal, with pressure on the piston varying according to the dimensions; in some the force required is two thousand tuns. In the earlier machines the arrange. ment was exactly the same as
in an ordinary syringe, as in an ordinary syringe, as
shown in Fig. 1, but it was shown in Fig. 1, but it was
found that the fluid pressure of the metal within the syringe created. such an inordinate amount of friction upon the inner surface as to rapidly wea: out the several parts; but by a slight modification, more in accordance with sound principles, the defect has been obviated.
In the arrangement shown in Fig 2, the piston contain the orifice, and in pressing against the upper surface of the metal, causes it to remain in a tate of rest within the containing vessel ; but as fluid pressure is equal in every direction, the solid finds the orifice as a point of less resistance, hence it flows outward in a continuous stream, thereby avoiding the friction of the solid lead within the cylinder. It will thus be observed that a od of lead or tin can be aquirtd of any form or dimensions, lepending on the die or orifice In the Royal Arsenal may be een lead thus squirted into continuous. rod, and then wound upon reels like yarn. to be again unwound and made into bullets by self-acting compressing machinery; but the whole of the several processes are entirely due to the flowing property. Man's mechanism is very subordinate, and may be varied to any extent as cir cumstances may require.

Pipes are made with the same facility as rods, by the mere insertion of a steel pin, the size of the required bore, placed in the bottom of the cylinder, and exactly in the center of the orifice, thus forming an annular space through which the metal flows outward as a continuous pipe ; or, by making this pipe of sufficiently large diameter, and then cutting it open by a stationary knife as it leaves the machine the pipe becomes a sheet of lead, which, by means of suitable rollers, may be wound on a reel as a long web of sheet lead, or the sheet lead may be rolled out by rollers. In both ways the samemechanical work has to be done ; the reapective friction is a disputed point.
A very singular result was obtained by an attempt to squirt brass pipes, which are.extensively used as steam boiler tubes and for gastitting purposes. This brass consisted of 60 parts of copper and 40 parts of zinc, and of various other proportions, but, singular to relate, the pipes so squirted were zinc rather than brass; the most of the copper remained in the vessel and refused to flow. We are not to infer from this that the copper wourd not flow, but rather that the union between the zinc and the copper was less than the pressure necessary to make the copper flow ; the mixture may have been more mechanical than chemical, or the temperature may have been such as to have had the zinc too nearits melting point. Whatever is the explanation, the subject is well worth further experiment. In any such operation, the nearer the lead or other metal is to the liquid state, the easier it is accomplished ; but it must be solid.
Lead or tin may be rolled out to any extent, either singly or both combined, or with a thin coating of tin or other metal upon one or both sides of the lead, so as to have a :eaden substance, but yet covered with a tin surface, perhaps not thicker, if so thick, as the leaf called tinfoil, thus combining economy, with scarcely any disadvantage, for many purposes.
A beautiful illustration of the flowing property of tin is shown in the manufacture of the German capsule, in which the paint for artists is made up for sale and use. A button of tin, as in Fig. 3, is laid in the recess of a die in a fly press; a corresponding punch or die, a little smaller, is then brought down upon it with a smart blow, thus leaving, from the difference of dimensions, an annular space between them, when the metal at once squirts upward like water, but at a velocity much faster than the eye can follow, thus converting it into a perfect capsule. The form of the
 punch and die depends
upon the article to be upon the article to be made, but in all provision has to be made for the admission of the atmosphere on the removal from the dies.
From these remarks it will be seen that, by understanding a few of the natural properties of these metals, how completely they are under man's control, and, by knowing the simple laws, he can modify the apparatus in thousands of different ways, in order to produce whatever may be required.

Cuxrespuadence.

The Eaitors are not rosponate for the Opmions axpressed by their Con

ors ar

Speculative Moohology.

Messrs. Editors:-The idea that the full moon is hot seems to me so unscientific, that, though advanced or advo cated by all the Herschels and backed by the Rosse reflector to boot, I take the liberty of offering a reason or two which may go to prove it untenable.
The convexity of the moon's surface is so much greater than that of the earth, that the moon must be effected by the sun's heat less than the earth is by a proportion considerably less than the ratio of size or diameter between the earth and moon would seem to indicate-nearly all the heat being deflected or reflectedinto space and dissipated. (And this con vexity is possibly the cause of so little heat being reflected directly earthward.) The sun's rays can have but a smal spot-small, as compared with the earth in this respect-on which they can at any time be said to fall vertically ; a much less distance being required there than on the earth to reduce them to rays falling through all degrees of obliquity down to horizontal. So the vertical and nearly vertical rays may move around the moon quite slowly, and yet heat but at most a tropical belt, while there would be temperate and frigid zones as on the earth. But it would be doubtful whether that belt could by any possibility reach a temperature of 492° as claimed by modern astronomers.
All this, supposing the moon has all the conditions and requirements which the earth possesses for rendering sensible the solar heat; but the first and principal one of these is an atmosphere and astronomers tell us the mnon has none at all and without the atmospheric lens to contract the sun's ray together and squeeze out the heat; how, and from whence is free caloric to be obtained? On the earth it is known that at a certain hight, where (and because) the air has but little density, snow never melts, even under the tropics; whence we may infer that at greater elevations and with air still more rareficd, ice and snow would remain unmelted even if exposed to the rays of an equatorial sun for a century-and with no at mosphere at all it would be still colder than with a little.
It if stated that the addition of a small per centum of
density due to a few niles more in hight or depth of the air- compressible, while air is very elantic; water always absorbs at some former periot. On its removal there was no trace of
the earth to grow hotter ted byincreased evaporation-ciause the possibility of human existence; or it would enable the earth to y_{g}, ain its heat indefinitely long, though the kun should go into the comet business, speed away, and leave us out ξ_{1} ere in the cold of the planetary spaces.
All depending on atmosphere: now if the moon has in atmosphere, I don't quite see how it can form an exception t what we are bound to consider universal lewis, operating al ways in the same manner-eanditions being the sameWhether on the earth, meen, sun, or stars. So, unless the moon is formed of paterials new to science, or unless it has an equivalent to our atmosphere in some form (a fact which we may not be able either to prove or disprove on wecount of there n0t being moisture enough to form clouds, fogs or mists), I muse continue to think the moin does not reach a temperature of 492°-or any other number of positive degrees, "during its long lunar day of 300 hours."
Another thing: give the moon an atmophere like ours, and as deep, (a larger portion then he is entitled to) yet, at traction is so much weaker there than on the earth that the air would expand into pace, and I opine the density of that atmosphere would be less at the moon's surface than ours is at the tops of our highest mountains. Consequently, clouds could not float in it, nor birds fly in it, nor ordinary vegetable or animal life have any existence there. All water, if the
moon had ony, would be congealed, and there would be but moon had any, would be congealed, and there would be but Bittle mintion or chemical action. Intense cold would always preva:l, and snow or ice would never melt under a perpetual ly veltace? sun-if such a thing could be had for the occasion
Winnitgton, Del.
W. L. Davis.

To Plow Manufacturers.

Mossrs. Editors :-By inserting this article in your valuable paper, it may subserve the interest of the Northern mechasic and Southera farmers.
What the South mostly needs is manufacturers, and at presont the greatest needed, is a plow and agricultural implement factory. The necessity for improved plows, harrows, ete., are being felt, and the use of such would greatly increase were they manufactured among us, but so long as imported from the North, the cost of transportation and commissions put them out of our reach. As one instance, I will mention a case in point. I saw on a gentleman's farm two turning plows (iron beams) made at Hudson, N. Y., which cost at the shop $\$ 8$ a piece. He told me that the freight on those plows from that shop to Rome, a., was $\$ 28$, making each plow cost $\$ 22$, and such is a fair representation of the cost of all the plows received, and seven tenths of them are worthless articles imposed upon us. Here is another instance. I showed a farmer from New Jersey a plow manufactured at Louisvi?le, Ky., a one-horse turning plow \rightarrow cost, delivered at at Rome, $\$ 10$. He said such a plow would not bring ten cents in their State to use on their farms. The cases recited above show how we are imposed on, and our only romedy is in hoving factories at the South.

We kave iron, coal, wood, and water power in abundance near Rome, Ga., and a more eligible point cannot be found anywhere South to put up such an establishment, the climate water, society, etc., all that could be desired. If there are any plow manufacturers North desirous of establishing a factory South, they would do well to come and see for them selves, and if they would call on me at my farm, two miles of Cave Spring and fourteen west of Rome, it would afford me great pleasure to give them all the information they may need as to the advantages of setting up such a factory in this part of the country.
Cottage Home, Ga.

Aero-Steam Generators.

Messrs. Editors :-In No. 13, current volume, of the Scientific American, you published a description of Mr. Warsop's aero-steam generator, and an account of his experiments. Mr. Warsop is in error in his way of accounting for his gain of power. He attributes it to the expansion of the air which he forces into his boiler. This is not the case, as air becomes heated by compression, to a higher degree than the steam itself, whenever it is forced into a boiler, carrying a pressure of sixty pounds or more to the inch. This heating is done by mechanical force taken directly from the engine.
So there will be but little heat taken from the fuel by the air ; So there will be but little heat taken from the fuel by the air; and, consequently, very little expansion results from this source. The specific heat of steam is greater than that of air, and gases expand equally under the same degree of heat ; so in forming an equilibrium of heat between the air and steam, the air being heated to the greatest degree, there will be more contraction of the air than expansion of the steam, volume for volume. That he gains all he claims, I have no doubt at all, but he is not aware of the true source of gain. Were it not for this heating of air by compression, air-engines would be a success; as it is, they can never be of any great value for converting heat into motion; neither can air ever be employed as a medium for transmitting power to long dis-
tances, as all this heat resulting from compression will be tances, as all this heat resulting from compression will be
lost by radiation. The true source of gain in Mr. Warsop's lost by radiation. The true source of gain in Mr. Warsop's
apparatus is this: All water contains a large quantity of air apparatus is this: All water contains a large quantity of air
in a state of solution; this air occupies the inter-molecular spaces of the water, and forms an elastic cushion, which forces the molecules of water apart, thus decreasing their cohesion. Air will prevent water from absorbing any other gas. which it will do when it contains no air. Air also has the power to expel other gases in a remarkable degree; consequently, it will prevent water from absorbing its own vapor, and will expel it as fast as formed. Water contained
the same volume of air without regard to pressure, but when anything whatever to indicate its origin.
to the inch, the a steam boiler under a pressure of 100 pounds about one fifth its original volume, thus leaving a vacuum of four fifths, besides air is explled hy heat. When water does not contàin its complement of air, its cohesion is fastly increased by the absorption of its own vapor, which fills its inter-molecular spaces to such a degree that it restores the attraction of cohesion between the molecules of steam and the molecules of water to a great extent; cohesion not being annihilated by heat but only overcome. When air is absorbed by water there is no attraction of cohesion between the mole. cules of water and the atoms of air, but a positive repulsion, thus decreasing their attraction, thereby facilitating the molecular motion of heat. Also in Mr. Warsop's apparatus we have Hedrly a perfect circulation of the water; which is attained in no other boiler. After a study of the subject for a number of years, I am satisfied that the above are facts. In 1866, I obtained a patent, through the Scientific American Patent Agency, for a steam generator similar in principle in Bellefontaine, Ohio

The Fossil Min of Onondaga.

Messers. Editors :-As an old subscriber (I have the Scientific American from its first No. to the last one), and as an admifer of the great truthfulness, candor, and intelligence which have always characterized your opinions and express ions, I beg leave to call your attention to an article on page 310, current volume, upon "The Fossil Man of Onondaga." The writer, "G. B.," who dates his communication " Syracuse, N Y.," not only makes a general attack upon all connected with the Onondaga Stone Giant, but seeks to palm off both upon you and upon your readers, the infamous and ridiculous Geraud hoax-which was concocted by a physician, in this city, purely "as a hoax and as a test of the credulity of New York editors," and, as the author now says, without
the least faith that any one would believe it - as an the least faith that any one would believe it - as an
explanation of this most marvelous wonder of the age. explanation of this most marvelous wonder of the age.
The only theory which gained the least credence in this vicinity, is embodied in what is known as "the Tully story." This story relates, that about one year ago, a "fourhorse team" passed through Tully, which is some six or seven miles south of Cardiff, drawing a large box, which was evidently heavy, and that the team was in some way connected with one Geo. Hull, of Binghamton, whose conduct was observed to be mysterious, and who was a cousin of the man Newell, on whose farm the Giant was found. I cannot undertake, in detail, to refute this,at first, apparently possible theory to account for the discovery of this Giant Statue, or "Stone Giant." In addition to the affidavits I herewith send you, Giant." In addition to the affidavits I herewith send you,
and which cover this entire ground, I will simply say, that any theory involving the idea that a stone statue, weighing 2990 pounds, was brought in an ordinary wagon, from no body knows where, and deposited some three or four feet be low the surface, and partially under a large limb of a tree, by two men, is so entirely ridiculous, that no sensible man, who is in the least acquainted with the surroundings, can possibly give it a second thought, and any belief, either in this, or the crazy Canadian or Geraud story,requires a stretch of credulity far greater than that necessary to regard it a very ancient statue, or even a petrified Giant. Its removal required about and appliances, and the whole wagon, box and sand int which it was embedded for safety of transportation, weighwhich it was embedded for safety
ed 7965 pounds, or almost four tuns.

It would, after stating the above facts, be not only a waste of words, but an insult to your good sense, to spend more time in this communication, to disprove either of the silly I hardly need state, as it is already a matter of such public notoriety, that the State authorities have undertaken the investigation, sending here the Regents of the University, together with the State Geologist, Prof. James Hall. While to come to any definite conclusion as to its origin or exac antiquity, they have settled several questions which are of great importance, as connected with this subject. The composition of the Giant is declared to be sulphate of lime or gypsum. On the supposition that it is hewn from a rock where did it come from? Could it have been made here, or hereabouts? Prof. Hall, after a most careful examination of
all of the gypsum quarries or beds in this county (and there are none near elsewhere), has decided that no gypsum, either in kind or quality, exists in this region, from which this stone Giant could, by any possibility have been taken. If, then, his Giantship be a carving,or the production of the artist's chisel, he is a foreigner. This is further shown by the fact, that from first to last, there is not the least shadod of evidence tending to show that the work was done anywhere near where he was found. The figure is wholly unique in design, and in the surface left in every part of the body and limbs where they are not corroded by water. The figure is that of a male, entirely nude, with every part fully shown, but without any attempt at representing hair or whiskers. It is made, neither to stand up or lie down, having neither pedestal or tablet accompanying it. It is carved(?) as perfectly upon the back as upon the front side, and was found lying upon a clay bed, which underlies the surface of the whole valley, which is alluvial and. vegetable mold, to a depth varying from one to
five feet throughout the valley. It was found lying upon its back, almost exactly horizontal, and in the direction corre sponding to that of the stream, as it is suppesed to have run

The statue(?) is most imposing and impressive. It has now been seen by not less than twelve thousand persons, includ ing many of the most scientific men of the nation, and, so far as I am informed, or have had the means of knowing, not a single individual has ever examined it who was not impressed with the feeling and belief that it is the most extraordinary and gigantic wonder ever presented to the eye of man. Be it what it may, it presents a most perfect human form, of colossal size, defying the present state of science, whether geology or archæology. Its origin, we have to confess, is as deep a mystery as when first brought to liyght. Any theory,traced but a few steps, involves a belief in hitherto unproven facts or assumptions having, mainly imaginary foundations. Had it ever been well established that the human body was capable of becoming petrified so as to preserve the entirety of every part, it would be far easier to suppose this a veritable petrifaction of one of the Giants that lived " in those days," than to suppose it a statue. But the negative of this having been assumed, and all subsequent reason ing and facts, made to square to the assumption, that the petrification of the human body was impossible, the statue theory is, of course, the only thing left, and the conclusion is, that it is a statue, because it cannot be a petrifaction.
Whether this is, or is not, good logic, in the present state of knowledge upon this subject, I am not now disposed to offer an opinion, but will merely add, in this connection, that we have, really, no fewer obstacles to overcome, in concluding it a statue. There is not a chisel mark upon the entire image, nor of any other implement employed by human hand. The style of model, its perfection, its peculiarly smooth surface, all defy the artist. Be it statue or petrifac tion, it has every indication of having occupied its late bed for a great number of ages, and was not, as your correspondfor a great number of ages, and was not, as your correspondent asserts, gotten up to impose upon "a gullible public."
It is now " lying in state " in this city, where, for some time. all who are disposed to examine its form will have ample opportunity to do so ; and I would add, in all due deference to your all-wise correspondent, that men of sense and wealth have thought it a reality of sufficient magnitude to make it an object to pay a large sum of money to possess it.
A. Westcott, A.M., M.D.

Syracuse, N. Y.

The Stone Giant.

Messrs. Editors :-Upon reading the several communications in your paper, I judge there are two disputed questions in relation to the stone giant, recently exhumed at Cardiff.
1st. As to its being a fossil
2d. As to its antiquity.
On page 43, vol. I., of Clark's "History of Onondaga," published 1849, is recorded the fact that there existed among the Onondaga Indians a tradition that among the things that heretofore had been troublesome to their nation were the "Quis Quis, or big hog, the big bear, the horned water serpent, and the stone giant." The author seems to have thought the tradition not well founded, as can be seen by reading the work (which I have not at hand or I would quote further). They have found the stone giant, and no doubt the $h 0 g$, bear, and serpent are there.

Perhaps if the Onondagians could read their own history there would be less of a pow wow over their recent discov ery.
C. Alvord.

Washington, D. C.

Cultivation of the Poppy in Texas.

Messrs. Editors :-In a former number of your paper, I noticed an article on the culture of the poppy, written by my brother, James Byars.

He mentions seeing the white poppy growing wild and in great abundance about West Liberty. This is the Argemone Mexicana, or prickly poppy. The whole plant abounds in a milky, viscid juice, which becomes yellow on exposure to the air. This juice, which is acrid, has been used internally in obstinate cutaneous eruptions, and as a local application to warts, etc. The flowers are said by De Candolle to have been employed as a soporific. The seeds, which are small, round, black, and rough, in doses of two drachms to a pint of watery infusion, act as an emetic. In smaller doses they are purgative. An oil may be obtained from them by expression, which is equal, if not superior to castor oil in mildness and certainty of action.
The oil might be made here in any quantity from the abundant wild growth of the plant. There is no doubt, I think, of the adaptability of the soil and climate here for the culture of the white poppy (Papaver somniferum), and if you can send the seed or inform me where to procure it, will give it a trial.

Wm. M. Byars, M. D. Columbus, Texas.

supply of Water in Large cities.

Messrs. Editors:-I would like, through the medium of our very able and valuable jcurnal, to make some sugges tions relative to the supply of water in large cities in cases of fire, and others of importance to those using steam boilers, etc. It is well known that immense amounts of money are lost annually by fire which might be saved provided there was some means by which water could be obtained at a few minutes' notice instead of being compelled (as is the case in many instances) to await the arrival of fire apparatus. The latter alternative has to my certain knowledge resulted several times in severe losses, which, had the case been other wise, would have only been a trifling loss.
I would suggest placing at the supplying reservoir large pumping engines, supplied with safety-pressure valves, and
instead of allowing the water to flow by its own gravitation to force it through the pipes under pressure, of sufficien strength to throw water at any desired hight or distance and by placing hydrants at various points throughout the city (the more the better), with 4, 6, or 8 discharge openings and establishing hose houses near by, an immediate and abundant supply of water could be obtained at any time, thus making a saving of millions of dollars worth of property annually. It would furthermore he a means of feeding stean boilers without the necessity of using steam pumps.
I should think that a large portion of the water now wasted might be saved, as the above arrangement would upon an yone allowing the water to run when not in actual use nd would also compel the abandonment of lead pipes, which could not stand the pressure, and which are the sole cause of much sickness in large cities on account of their poisonous action on water. It would compel the use of pipes of different metal, and thus be the means of saving many valuable lives.
I should think that this arrangement could be carried out without much expense, compared with the expense of the present fire department, and in the end allay all fears of a scarcity of water, which is now caused by the immense waste through carelessness and otherwise.
Mobile, Ala. Charles S. Bailef.
[Some of our practical correspondents will be able to poin out grave impracticabilities in this scheme.-Eds.

For the Scientific American. THE OANAL OF SUEZ AND THE FUTURE OF EGYPT,

As we approach the 17 th of November, the day appointed for the final opening of the Canal of Suez, the interest felt in Europe and America in this vast enterprise, increases with very new report of its advance towards completion. A few days more, and the two seas-the Sea of Corals, or Mediter anean, and the Sea of Pearls, or Red Sea-will be joined by water route of 26 feet in depth and 328 feet in width, ex cept at El Guisr, Serapeum, and Chalouf, where the canal only measures 196 feet.
The greater part of the expense of the works, conducted with as much patience as courage, has been borne by Egypt while France will carry off the triumph, and England ma in time derive the greatest profit.
The infiuence which this enterprise will have upon Egyp itself, is at the present moment a great and general question among Egyptian agriculturists as well as European traders. It is certain that the commercial aspect of Egypt will undergo change within a short time, and the culture of the soil will be carried on in a different way from what it has been for enturies.
The large and powerful machines constructed, and many even invented for the works of the canal, will, after its com-
pletion, never return to Europe but remain in Egypt, to be pletion, never return to Europe but remain in Egypt, to be ased for the drainage of the Nile and the canals employed in irrigation. The "chadouf," the "sakie" or noria, and esenting Egyptian scenes, will soon give way to steam en gines, the price of coal having already fallen from $\$ 14$ to $\$ 1$ and even less according to the distance of transportation.
The great civil war of America when cotton rose to such high price, and the speculators were so blinded by their suc cess that they hoped it would rise still higher, caused many failures in Egypt. Even the late Pacha, Mohammed Ali himself was carried away by the excitement. He believed that the low rate of wages for manual labor and other nat ural advantages, destined his empire to the cotton and other industries; he did not calculate, however, at that period upon the great worker of modern times-coal. No manual labor, even at the lowest rate, can compete with coal at a low price, such as it bears in England. Many grain mills and factories were built during the year 1864, principally in the Delta of the Nile, which were however abandoned as soon a they were constructed, and are to-day in a state of ruin.
Ismail Pacha-the " Prince of the Fellahs," as he please to call himself- sees clearly the many deficiencies of Egypt He is aware that in the present state it cannot rival othe commercial nations. He knows that its agriculture must undergo a change. He is not ignorant of the fact that the
Egyptian wheat is much inferior to that of other countries, n account of a certain acrimony and musky flavor, and that t contains less ązotic substance than other cereals. With these defects it brings only two thirds of the usual market price, and even then it is not greatly in demand. The cause for this degeneration in the quality of the Egyptian cereals is but too plain: the fellahs force the same land to produce the identical crop a hundred tim $\geqslant s$ successively. They do not yet understand that it refreshes the soil to change its cu? ture, and as they have always been pressed for money, they lave sold the best of their harvest, and sowed the worst
Most of the Egyptians believe that their soil in its fertility is exempt from the law of restitution; they forget that the urse must be nourished, else she will become weak. Those who are aware of the fact that their soil requires manuring, have taken recourse to the columbine or pigeon dung. But the culture of pigeons has proved to be a greater loss to the country than actual profit. It is estimated that the food of ach of these birds amounts to about a quarter of a cent pe day, which multiplied by the estimated number of pigeons n Egypt, makes up a sum of $\$ 60,000$ value of wheat which they annually devour. The meat of these birds is of but lit tle value, and the revenue of columbine produced by 20,000
pigeons is insignificant. The attempt to restore the land by pigeons is insignificant. The attempt to restore
The Koran forbids the believers to spread the dejecture of men and beasts upon their fields, the former ass being im
pure, the latter as being necessary for kitchen-fuel, for which purpose they have been used since time immemorial, on ac count of the scarcity of wood in Egypt. For this purpose hey are formed into a sort of thin cakes and dried in the sun wich renders them hard and fit for burning.
A few cultivators who have studied deeper into the science of agriculture, have discovered that the phosphate of lime is wanting in the soil of Egypt. They need, however, not go far to find the remedy tor this defect. The deserts are strewn with the bones of animals. This is an open mine. The bones may be gathered and ground with little trouble, and the dust ained therefrom will restore the wanted phosphate of lime Experiments with these bones have already been tried with decided success.
Sugar-cane is extensively cultivated throughout Egypt, all the fellah's are allowed to raise, express, boil, and even efine their sugar if they choose ; but the high price of mahinery and implements has prevented the petty cultivators rom producing sugar for the market. Only the viceroy him elf is rich enough to set up sugar-works, and thus suga manufacturing has almost become a monopoly of the sover ign. The largest of his works is at Ermentin Upper Egypt but as the price of the tun of coal rises to $\$ 20$ before it reache hat place, the home-made sugar cannot compete with for eign productions.
Out of ten sugar-canes the Egyptians carry nine to the mill and keep the tenth for planting, which they lay into the ground in its full length and every joint produces a bunch of young sprouts. This method is faulty in a double way ; it is absurd to bnry every year one tenth of the harvest, when it might be used to so much better advantage; and it is use ess to press the upper or white end of the cane, which yields an insipid juice, containing but little sugar. Another grea mistake in their planting is that they do not leave a space large nough between each separate plant, the air cannot circulate he under leaves dry up, while the cane grows high but ha o body. Irrigation is often practiced at an improper time month before the crop is gathered in. This is done espe cially by those who sell their harvest for the works of the viceroy. They bring in their cane gorged with water; this ens of moisture, which has to be removed requires a greate Yet it gerating the weight of their crop to the detriment of its quality. They are like the farmers of Flanders, who sel heir tfeets by the pound, and therefore prefer to have them heavy, rather than rich and good.
The rate of wages paid to the fellahs for their labor is on n average about eight cents per day, and it is of ten paid to them in food, yet they appear satisfied with it. And yet working hands are wanting in Egypt. For centuries, master of the country have squandered human life. Those works of art which to-day are the admiration of travelers, the pyra-
mids, the hypogeums, the temples, and the monuments, have mids, the hypogeums, the temples, and the monuments, have ost the lives of thousands. The insecurity of property, and more than that, the severe laws of bondage have been the cause of many formidable emigrations. When the neighbor ing tribes will have the assurance of their liberty and that they will not be overtasked, immigration will not be slow and the working population will soon increase.
Ismail Pacha has tried to remedy all these defects eve ince his accession to the throne; but what are six years of n improved gove
es of despotism
Until of late, the Egyptian fellah has been tortured by a insecurity of person and property. The farmer never fel scure against an arbitrary order from Government, which would send him perhaps some hundred miles away from his home to do public work, just at the time when his own fields
needed attention; and no one could be sure that the tax levied upon him to-morrow would not take everything he possessed. As of old, the Egyptian of the present day, when e receives a piece of gold, makes it his first care to dig hole in the ground and bury it as if it was an ill-gotten gain Egypt may be paved with gold, for this custom dates back time immemorial. The cotton crisis during the civil wa of America had enriched Egypt, yet where are these riches The apparent prosperity of the fellah has not increased, and hardly any public buildings have been constructed. It is but oo probable that all the riches are holden in the ground and will be so, until Ismail Pacha has given full assurance to hi abjects, that a new era has begun for Egypt, and that per nal liberty will henceforth protect every commercial enter prise.
The
The Isthmus of Suez, once the curse of the fellahs, may ere long become a blessing to them; for assuredly there is a rich as bee arvin ded, will concentrate on this hitherto barren neck of land which in time will become cultivated. Lake Timsâh, which was formerly filled with fresh water and in which crocodiles lourished, has been filled with salt water, and sea-fish and oysters can in future be raised in its deep waters, as also in the Bitter Lakes. As to the extensive Lake Menzaleh, another great project has been laid before the members of the Com pany by a Mr. Ritt, a young Frenchmen, who proposed to ain off this vast lagoon and prepare it for the rice culture The idea is grand, though it can only be aceomplished a reat expense
With these
With these large sheets of inland water, rain will be a more frequent occurrence in the neighboring deserts, the lack of which has hitherto been the main obstacle to the cultur the surrounding country.
The route which the pilgrims and caravans from and hey traversed the desert to Keneh to gain the Nile, and thus
followed the water route to Cairo and Alexandria. The tediou journey will doubtless be abandoned after the opening of the canal; already thousands of pilgrims going and coming from Mecca have chosen this new road. Keneh and its environs may, nevertheless, become a place of importance through its rich sulphur mines and granite quarries. The borders of the Red \$ea abound with inestimable treasures; but they ar uarded against the desires of men by an evil genius-thirst How can a mine be explored, even if $\mathrm{i}^{\text {t }}$ contains gold and emeralds, in a country where it never rains, and wh
consequence, not a drop of fresh water is to be found ?
Should this Canal of Suez prove a decided success, then navigation will spread upon waters that have heretofore been undisturbed, and we fully agree with Edmund About, when he says that "though M. de Lesseps cannot claim the origi nal idea of this work, which is almost as old as the world itself, yet he has invented its success." The glory of the ex ecution will be so much greater as the obstacles appeared at first insuperable. To conquer the indifference, skepticism avarice, and ill-will which this work has met in its progress is a greater triumph than was ever won on a field of battle.

Faets about Varnishes.

From the Hub.
"Crawling" is caused by the gloss of the coat beneath it which does not form proper footing, as is shown by the fact, hat just so soon as this gloss is removed, there is no furthe rouble found. "Crawling" is therefore not a serious trouble, or it may be easily prevented by washing the under coa ith water and wiping with wash-leather, as this will destroy the brilliancy of the gloss, and, in many cases, the meredust ng with a stiff duster will be found sufficient. When a pre vious coat " crawls," I have found that the following coat is generally more apt to do so, and in cold weather there is more liability of this trouble than in summer, for then the gloss of the under coat seems to come up to a "harder sharp." But kill the gloss of the under coat, and you kill "crawling." Most liquids give more or less of a varnish effect-that is they give a shining appearance to the surface upon which hey are placed. Thus, when water is poured upon a dea bble, it brings out the grain of the wood, and brightens th place it occupies ; but water dries, and the brilliancy is onl momentary, consequently water is not a varnish, so-called. A olution of strong glue gives all the desired solidity, but hav ing no brilliancy, it cannot be called a varnish.
There are many points to which the varnish manufacturer must direct careful attention, and which the customer must understand in order to judge of the merits of an article. Var nish should be a clear limpid fluid before application, and after being applied should become solid and have a brilliancy which reflects and refracts tue rays of light like the fragmen of a crystal. It is as a fluid what glass is as a solid. It hightens the tone of colors and preserves them; it bring ut the delicacy of outlines and of shading and time should neither color nor dim it. It is necessary that it should ad here to glass, wood, or stone, that it may not be removed by anything short of an iron instrument or by the action of fire. It must also be strong drying, and when dry and har should become firm and unilterable in character so that it hall neither crack nor turn white, nor be affected by light o rdinary heat, nor removed by any ordinary solvent. In othe ords, the qualities to be considered, in testing a varnish, ar s follows
1st. Its Paleness-an important feature for some classes of work, and the one which is generally first looked to.
2d. Its Fluency.-Upon this depends the working quality. It so has much to do with determining the real value of the article, as it governs the amount of swrface which a gallon will cover.
3d. Time of Drying.-This is essential, because it affords a peedy protection from atmospheric changes, insects, etc., and dispenses with the inconveniences of housing newly-varnished ork for a long time
4th. Time of Hardening.-This feature is entirely indepen ent of the foregoing. A varnish is $d r y$ when its surface i sufficiently tough to resist dust, insects, and currents of air nd after hardening it is solid.
5th. Fullness.-l'his is often expressed by painters as stay ing where put." If a varnish continues to look bright and to stand out prominently after drying and hardening, we say has fullness. Otherwise it will look thin and "saddened." 6th. Brilliancy.-Next to durability, this is the most im ortant qualification of a varnish.
7th. Durability.-This is the principal consideration, and in examining the merits of a varnish, the consumer should direct careful attention to this point. It includes the quality f elasticity, which will prevent cracking and scaling, and he quality of resisting the corrosive action of the atmospher nd of moisture. It is the most difficult feature to decid pon, for it is simply a question of time, whereas the six con ditions which precede may be fully tested by a few trials. Having defined the seven qualifications which are requisit o the perfect coach varnish, we will add in the way of cau ion, that while testing a varnish, the purpose for which t i equired must be held constantly in mind, and especiall heed hould be given to those features which will best qualify it for the class of work in question.
M. Reanatle thinks it is impossible to lay down rules for he registration of mercurial thermometers; the only exac instrument suitgd for experiments requiring precision is the air thermometo. This is, however, an inconvenient instru ment, and therefore M. Regnault recommends that it be used only as a standard with which to compare the mercurial in, struments.

