ability of the weaker ones is increased by the employment of the stronger, and disuse of the watar ones. In the playing of musical instruments, it is necessary to eliminate inequal tics of power, and rander the fingers, as nearly as may be, of equal power, without wakening the naturally stronger ones In othir words, the weak fingers should at least be as relatively strong as is natural, while all ought to be much stronger than any would be without a thorough course of education.
It is a fact known to all good teachers that excellence in penmanship-ease and rapidity being assumed as indispensablo elements of excellence-is only obtained by first securing poper pesition for the hand and arm while holang the tainment a proper position is with the majority of pupils. One pupil finds it impossible to flex the thumb properly without aiding the feeble muscles, thus called almost for the firs time into play, by gripping the pen as though it were to be pinclurd in two. Another braces the hand by sticking out the third and fourth fing rs upon the praper, and almost drops the pen when he attempts to wit?draw them; his muscle will not act independently. Oihers seem to have only the power to open and close the fingers all together, and clutch the pen as though it were a miniature club, with w'ich the air sheet before them is to be thrashed. Their efforts are absolutely painful to them, and are apt to be uncharitably looked upen by teachers. As well might they be expected to stand upon one foot with ease and comfort as to control the feeble, undiscipline d, aching, and trembling muscles, upon which these new and extraordinary demands are made.
A common sense view of this subject suggests that long fore the hand grasps a pen, or the fingers touch the key of a 1 , the wear muscles should be gradually strength ned ly proper exprese; and while it is not our purpose to ngaged in promo: ing physical education in our schools, that they ought to prepare proper exercises designed to meet the equirements of the case. Thry might easily be adapted to music, and introduced into the schools, and coul . be practice. by even the youngest, while singing, or with the accompaniment of an instrument
If proof were wanted of the generally deficient education of the land, nothing better could be adduced than the fact that, noivithstanding writing is one of the most important and universal of manual operations, it is on the average perhaps the most imperfectly executed. There are many men who can peg shoes, or do fine sewing, or play a violin for many hours together; but there are comparatively few who an write mony conserative letters without great fatigua i: the contrar.s, the extent to which its powers can be devel ped is shown in the manipulations of jugglers, and in very many important mechanical operations.
The sulject of physical cducation is now attracting unian atterom, riuits inportance is generally admitted. It has, howevir, leen too excusively consiaered in its relatio to health, and instruction has bren corfined principally to the evelop ment or the larger muscles of the body and increas of general strength. This is all right sofar as it gots, but it ought not to be forgottin that in the omergencies of life the hand plays by far the most important part of all the mem bers, and that to enlarge its powcre, is to add directly to the esourees of its possessor. If legs are lost, slillful hands can supply partial sulstitut s. If fyes are extinguished, the band iî educated can still supply the physical necessities of the blind. If hearing fails, the hands replace spoken lan guage by an inferior but intelligible language of signs, but f the hands are lost what can in any measure compensate for this everwheming cala nity? The feet can only in a measure take the place of hands after many years of practice, and immunity from the severe labor of walling ; and it is very doubt ful whether any atuit could ever succeed in making toes cio the work of fiagers, although children born without arms have been known to do so.
What excase can there he then, for neglecting the early and careful instruction of loth hands. We are not speaking of an impracticable thing when we say it is possible to rear equa!ly woll. We know this has b on accomplished in many notable inctanccs, whers the disurbity of the left hand has been rectifad, in spite of all onstavies turising from bad habits acquirud in childbcod. We have sien surgeons transfer an instrument from exe fand to the other during an operation whenever convenionce required it, without the least awk wardness. We have seon draftsmen using both hands in coloring drawings, an immense advantage both to rapidity of wor's and eveness of sihading. We have seen woodmen chop timber "rioht or left handed," and one carpenter who usoi a In all these cases, the use of the left hand in common with the right gave very much greater efficiency.
We have scen many instances of children whose parents wreformacrs, growing mamong children of American
 playmabes with of inal fachiy, and wo are confident that tho
two languages are accuircl in such cases as easiny as one would be. The same ease would undoubtedly attend one would be. The same ease would undoubtedy attend the
learning to use either hand for anl necessary monipulations, learning to use either hand inf an nect ssary . monipuations,
so that no fear that botll would become a whard need be apso that no
prehended.
Thas the resoures of those dependent upon manual labor for sabsistence would bo nearly doubled, much time and expense would be saved in the acquirement of arts specially requiring the employment of the left band, and the soperior grace and dignity attending complete and symmetrical develpment would be in a much larger measure attained.
Much more might be said in regard to the education of the
hand, but as this article is only intended to arouse the attenion of thinking people to a radical defect in physical educaon, we may appropriately close our remarks with the follow ing quotation from that admirable poem " The Hand and its
Work," by Mrs. Hale. Work," by Mrs. Hale.

Life's common cares, the hand supplie
 It tends and clothes our myriad race,
 And ceaseless ministrydoth keep
 From cradie dream to coftin sleep.'

DEPRESSION IN AMERICAN COMMERCE

The present depression and decline in American commerce has had few parallels. So marked has this depression become, hat scarcely any investment can be made with a leane romise of profit than a purchase of shipping. Under this tate of affairs a special Congress committee are engaged in ying to discover apply a remedy
To this end a session was held by the committee in New York, ending Saturday the 16th October, in which a numbe f gentlemen, prominent in commercial circles, were ex mined.
The general causes of the existing depression as elicited rom these gentlemen, may be enumerated as follows
First, lfigh prices of labor and materials.
Second, depreciation in our currency.
Third, increased cost of sailing our vessels after they are bilt, consequent upon injudicious taxation, as well as high

Fourth, the subsidizing policy of England which give

wners.

ifth, the substitution of iron and steel vesels, in the uilding of which we canuot, under existing circumstance ompete with England.
Sirth, the high duties on shipbuilding material In relation to the first four causes enumerated we canno
' Most of our la rious industries, but the laws which generally protect ou interests bear pretty heavy upon this special interest. They re really a burden upon our shipping interest.'
"By the Chairman. - We would like to have you give your views on the causes that have operated to produce this effect upon our commerce." "We have high-priced labor and mater al which enter into the construction of a ship, and we have depreciated currency. We have the increased cost of the hip in the first instance and also the increased cost of salling the ship after she is built. I think the American shipping interest had suffered before the war. The California trad had caused the building of high-priced ships, and in large numbers, and the traffic in that direction soon proved unre munerative. The war came on, and the privateers burned our vessols. Insurance could not be obtained, and these com bined drove our commerce from the ocean. My own belief is that the policy of England in subsidizing lines of steamers o various ports of the world, has given her a prestige almost insuperable.
"We have just now one important steam line, and its property has been greatly injured since the completion of the Pacific Railroad. We have given $\$ 00,000,000$ to a railroad, together with lands, and, out of all support from the Pacific Mail lines, suppose we have suff red an injury of six or eight millions of dollars

The capital of the line two years ago was $\$ 20,000,000$; now it is $\$ 0,000,000$. It would have been just as good now if it There been that Congress had given money to the railroad. There does not seem to be a law on the statute book that does
not seem to inflict an injury. Then the policy of England is prrfect. They are a nation of large supplies. they manufactories in abundaace to supply the distant markets heir colonial policy is excellent, and all their laws are in the nterests of commerce. Our opportunities here for the employment of commerce are so great that our Legislature has ot given them that advantage. I think they have acted wisely in subsidizing their lines. It is easier to tell the causes of the depression than to find the remedy. If subsi dies could be given to ocean iron steamers. it would be an off set to the extra cost of building them. My own impressio has been that large subsidies should be given. These subsi dies, while they cost the Government largely in the begining, cost nothing in the end.
Mr. Low also explained that the English Government allow all their steamers to receive their supplies from bonded warehouses, while American shipowners are obliged to pay duties on their supplies.
Mr. George Opdyke, ex-Mayor of New York city, a gentleman of acknowledged ability on all subjects connected with folitical economy, gave more prominence to the fifth and sixth causes ahove specified, but dwelt mainly upon the deprecintion of our currency. He maintained that everything is about 75 per cent higher than under the old currency. f 75 1.erican suipurence would be very many years before we can build thought it as cheaply as they can be built in Europe. As long as protection is the policy in this country we cannot expect them to wake an exception in this regard. If we should adopt the policy of free trade, shipbuilding would increase. Subsidiz ing is another remedy. While he was opposed to all govern ment subsidies, it would seem essential that we should try to control commerce, and that, to some extent, our Governthat policy should go, be was not prepared to say. He was
opposed to it aitogether, but from the present crippled con dition of our commerce we desire to regain the position that we once held, and he believed that it would be judicious tor the Government in proper cases where lines are established between this and other important countries, to meet Gr:at Britain with her own weapons
The question arises, Can these causes be removed without great and permanent injury to other industries? We believe they can. A sound protective policy does not merely imply indiscriminate imposition of duties; and if the burdens of shipowners are too great they should be lessened. Subsidies and drawbacks are protection in the most ultra meaning of the term. Permission to take supplies from bonded warehouses is only another form of protection. . England protects her commerce; always has protected it. Let us now protect ours by the same means she employs, and, as Mr. Opdyke commends, turn her own weapons against her

CLOSE OF THE FAIR OF THE AMERICAN INSTITUTE.

It is officially announced that the Fair of the American In stituta will positively close on the 30 th of October.
The managers may congratulate themselves upon the suc cess of the exhibition. It has been well attended, and has enerally, we believe, satisfied both exhibitors and visitors. A common remark of narrow-minded people is, that such exhibitions are mere advertising dodges, got up for the specia benefit of the exhibitors, that there is really very little that is new exhibited, and that it does not pay to visit them. Yet these same narrow-minded people are to be found annually in attendance at such displays, finding, it is to be supposed, suffcient pleasure in grumbling to compensate for a trifling expenditure of money and time.
There is very little novelty to be expected in any such dis lay in proportion to the large number of things exhibited. The world never gets on so fast as to satisfy those to whom t owes nothing. No class of men work harder to benefit their tellows than inventors, and yet those croakers who never rad an original idea in their brains, and never would have should they live to the world's end, find fault at the slowness of mechanical progress.
These people will spend an evening strolling up Broadway, azing in at the shop windows at the beautiful things displayed, and never think of finding fault that these things are placed in the windows to advertise them ; yet, at one of these fairs where a collection of curious, instructive, and beautiful articles and machines is brought together, such as they could not see in a week of strolling and gaping at windows, they make complaint because the exhibitors are likely to reap some pecuniary benefit. Of course they are ; and if you who grumble object to this sort of thing, you are welcome to stay aw. ay, a thing which you cannot do, for it is a characteristic of such people to be found in every place where their growling can mar the pleasure of others.
For ourselves, we are satisfied to see the gradual improvement made in old and standard manufactures, and do not complain that it is only now and then anything meets our eye that can be called a " novelty." It is this gradual improvement that makes up the bulk of hnman progress.
We have, in our notices of various departments, already alled attention to the most noteworthy improvements exhibted. We have, doubtless, overlooked some, although it was our intention to treat impartial y all exhibitors of important improvements. Some of the departments not calculated to greatly interest our readers, we have not specially mentioned at all. Those, however, who have followed us in our weekly nctices will own that we have dealt very liberally indeed with xhibitors, and we have received ample assurances that the exhibitors themselves so regard it.
We shall now discontinue these notices, with the hope that the future exhibitions of the American Institute may be as successful as this has been, and with the heartiest wishes for the success of such of the exhibitors as are endeavoring through the facilities thus afforded, to introduce new inventions. Many of these will date the commencement of suc cess from the Exhibition of the American Institute for 1869

A Perilous Balloon voyage

The Saginaw (Michigan), Enterprise, relates the story of ne of the most perilous balloon voyages on ricord. Professor La Mountain was the only occupant of the balloon, which ascended from Bay City on the afternoon of the 12th instant. The balloon had leaked badly and his companion was obliged to get out of the car, when those who held the balloon let go suddenly, and the air vessel passed upward with dreadful velocity, without either ballast, instruments, food, or companon. In a few minutes the balloon had altained an altitude of two miles, and was driven by a very strong gale directly towards the lake. It passed into a snow cloud, which speedily coated it and everything in and about it. The escape valve was frozen tight, and Protessor La Mountain, in pulling with all his might to open it, drew out the rope and thus cut off another means of escape. The balloon still passed upward, and emerged into the clear cold air above. The involuntary traveler felt that something must be done and quickly解 but he had left it below. Clinging with one hand to the, but ropes he side of the bal. Pasian the other side he repeated the process and then returned quickly to the car. His fingers had been frozen while thus exposed. He heard the cloth tear and saw the rent open from the bottom to the top. The balloon had gradually slackened its upward progress, rested a moment in equilibrium, und then began to descend, slowly at first and then with a velocity more frightful than that of the ascent. At the hight of two miles from the ground the gas had completely left the balloon, but the air
had rushed in and made it a sort of parachute. Professor L Mountain was in a half unconscirus state during the descent, although he remembers passing through the cloud, less distinctly the sensation on seeing and nearing the earth, and then he became wholly unconscious. When his senses returned he was lying in a wood, and several persons had come to his assistance, having seen him fall. He had been stunned and sceverely bruised, but had broken no bones, and suffered no internal injury. The spot where he landed was seven miles from Bay City ; the time he had been in the air is no stated.

Bells and Carillons, or Continental Chimes.
Mr. Thomas Walesby communicates to the Builder an in teresting article on bells. He says

Our great musical historian, Dr. Charles Burney, in his interesting work, 'The present State of Music in Germany the Netherlands,' etc. Londen, 17'73, speaking of his visit to Courtray, says
" 'It was in this town that I first perceived the passion for carillons, or chimes, which is so prevalent throughout the Netherlands. I happened to arrive at eleven o'clock, and half an hour after the shimes played a great number of cheerful tunes, in different keys, which awakened my curiosity for this species of music so much, that, when I came to Ghent, I de termined to inform myself, in a particular manner, concern ing the carillon science. For this purpose I mounted the town belfry, from whence I had a full view, not only of the city of Ghent, but could examine the mechanism of the chimes, as far as they are played by clock work, and lkewise see the carillonncur perform with a kind of keys. communica ting with the bells, as those of the harpsichord and organ d with strings and pipes.
The great convenience of this kind of music is, that it enter tains the inhabitants of a whole town without giving them the trouble of going to any particular spot to hear it.

So far so good. The respected author then goes on say-
"'But the want of something to stop the vibration of each bell, at the pleasure of the player, like the valves of an organ is an intolerable defect to a cultivated ear; for by the notes of one passag ${ }_{3}$ perpstually running into another, everything is rendered so inarticulate and contased, as to occasion a very disagresule jargon.'
"Now, having myself examined the bells and mechanism -cylindre et clavier-of the most celebrated carillons in Eu rope, and repeaterlly listened to their music at various distances, I beg to assert most distinctly that the statemen made by the learned doctor in the last paragraph is false. or disagreeable. On this point I speak the more plainly, because almnst every Englisliman who has written a line about cause almost every Englishman who has written a line about
carilons since 1773, has followed Burney's dictum, and told carilons since 1773 , has followed Burney's dictum, and told
us that the great defect is the want of a damper to cach bell. us that the great defect is the want of a damper to cach bell S veral cxamples relating to Boston and other chimes
been contributed to public journals since Christmas last.
" Perhaps the following observations may suggest what led the Doctor to entertain and publish the notion just entioned
"Every musician worthy of the name knows that instruments strung with wire 'which have nothing to stop the sounding-strings, make an intolerable jangle to one that stands near,' as, I may add, bells do to one that is in the bell Such an instrument of the wire-string kind is the dulcimer. But the piano-forte has a simple contrivance-a damper-for stopping the vilurations of the strings when the fingers are lifted from the keys.
"If", then, instead of going to a spot at some convenient distance from the tower, as he ought to have done, with a view to 'inform himself in a particular manner' concerning carillsin music, Dr. Burney stood in the bell chamber during a
periormance, the effect must indeed have been intolerable to periormance, the
cultivated ear.
"I maintain, however, that musical bells suspended in a tower, r quire no damper whatever; for, when their sounds have issued from the openings in the sides of the building, they spreal themselves in the air, and ultimately reach the auditor with precision in subdued and pleasing toncs. Even not to weaken or confuse the melody, and extecuted by, of upon, a good instrument, produce an admirable effect.
" lt would be well if the vibrations of many noisy and dis cordant things called bells were completely stopped. But to say that musical tower bells require dampers in order to pro
duce the desired effuct is cruly absurd. It is equal to any if duce the desired effect is cruly absurd. It is equal to any if
the 'monshiue' on bells in general with which we have been the 'moonshiue' on bells in general witt
favered during the last fourteen years.'

Convenient ilethod of Ascertaining the Constitution of Flames.
M. Dufour recommends the following process for demonstrating, for insiance, that the flame of a candle is formed of interior. For this purpose it is vecessary to cut the flame; the most preferable method of doing this is by means of a shect of water or air. The arrangement is as follows: A shect of water or air. The arrangement is as follows: A
caoutchouc tube has, at one of its extremities, a gas jet, such caoutchouc tube has, at one of its extremities, a gas jet, such
as is used fer common gas flames; this jet has an almost semias is used ter common gas flames; this jet has an almost semi
circular slit of $0.4 \mathrm{~nm} . \mathrm{m}$. in depth. The other end of the tube circular slit of $0.4 \mathrm{~m} . \mathrm{m}$. in depth. The other end of the tube
communicates with a reservoir of water placed at a convecommunicates wion a reservoir of water placed at a conve-
nient light. Upon a suitable pressure, the water flows cut by the slit in the jet, producing a clear sheet, capable of pre-
serving for a sufficient length of time, an invariable form and serving for a sufficient length of time, an invariable form and
size. The slit is placed in such a manner that the sheet presuts a horizontal surface; and this will easily cut the flame
of a candle, showing a perfect section. The hot gases and
carbonaceous particles are carried off by the water. On placcarbonaceous particles are carried off by the water. On plac-
ing the eye above the hollow cone, the luminous wall, etc., can be distinctly seen. Sections may easily be made near the wick or near the point; nothing hinders observation, which may be prolonged at pleasure, and a lens may be used it desired. A flame of gas may be cut and examined in the same manner, but the current of gas must not be strong enough to traverse the sheet of water. If a current of air be caused to come out of the slit by lellows, an invisible sheet section is formed which is, also, very convenient for mating a aërial current prevents the heated gases from reaching the eyes, and a lens may be used, as in the former case. The flame forms a cone, whose luminous walls are extremely thin, and their interior cav be plainly seen. A platinum wire may and their interior cav be plainly seen. A platinum wire may
be introduced across the section; and on being plunged as far as the wick, it will remain unreddened in the dark in erior of the cone
A jet of gas issuing from a circular opening. of from 1 to $2 \mathrm{~m} . \mathrm{m}$. in diameter, may also be cut very conveniently by the are brilliant and extremely thin. Upon bringing the sheet of air close to the aperture whence the gas escapes, the flame will be divided at its base and will reappear a little higher By this means, the entire length of the luminous cone, its thit walls, and their interior may be examined.
If a jet of gas produced by a fan-tail burner be cut, the luminous fan will be found to consist of two brilliant blades between which there is a narrow obscure space. The blades re at a greater distance apart, and the dark space is wide towards the end of the fan-tails; and, by assuming a suitable
position, it is easy to see through the section of flame into position, it is easy to see through the section of flame into
the dark space which separates the brilliant walls, and at the end of this will be seen the slit by which the gas escapes.
Instead of throwing the sheet of air perpendicularly to the
fame, M. Dufour thinks it better to throw it partly flame, M. Dufour thinks it better to throw it partly on one side, on such a plane as to make a slight angle with the axi A lateral suction is then produced by the influence of the cur rent, which draws the flame, and inclines it against the sheet of air, by which it is cut. By placing the sheet of air on a more or less inclined plane, and approaching or removing it from the base of the flame, the section is easily made at point more or less distant from that base.
The method described above may, of course, be applied to any kind of flame. M. Dufour suggests that it might be of ervice in the chemical analysis of flames. When a flame is ut by a sheet of water, the water draws off the gases of whici t is composed. If the section be made with a sheet of air, it will be easy, by placing suction pipes through the length and ending at fixed points in the interior of the cone, to col ect the gases
-Les Mondes.

The Mound Builders in the Rocky Mountains.

An account was recently given of the opening of an ancien mound in Southern Utah, similar to those of the Mississippi Valley, in which were found relics of the unknown builders ndicating much artistic skill. It was stated that this was the first evidence found of the existence of the Mound Build rs west of the Rocky Mountains. We are now able to an ilar mounds, evidently built by the same race, high up on the Rocky Mountains. The discovery was made by Mr. C. A Deane, of Denver, while at work on a Government survey, in he mountains, a few weeks since. He found upon the ex reme summit of the snowy range,structures of stone evident ly of ancient origin, and hitherto unknow or unnoticed. Opand on the summit of the range, Mr. Deanc and his party ob served large numbers of the granite rocks, many of them a large as two men could lift, in a position that could not have been the result of chance. They had evidently been, placed dividing ridge, and frecuently extending in an unbroken line or one or two hundred yards. Many of the stones have fallen over or are leaning, while others retain their upright position In two places, connected with this line, are mounds of stone cosely laid up, about two feet in hight, and embracing a cirular area of about ten feet in diameter. The stones wer evidently collectel on the spot, as the surface is cleared for a
space of several yards around the structures. These lines and mounds of stone bear every mark of extrerie antiquity, as the disintegrated granite has accumulated to a considerable depth at their base, and the rocks in the mounds are moss-grown The feature, more particularly identifying these structures with those of the Mound Builders elsewhere, is that thoy pre sent, at intervals, projections pointing to the westward. We are thus particular in the description of these Rocky Moun tain mounds which are extraordinary in position if net in r., may be induced to examine them. It would not involve much labor to open them and possibly they cover relics t'cat may add something to our small stock of knowledge of the ancient race who constructed these and similar works 11 ove the continent. The walls and mounds are situated 3,000 feet bove the timber linc. It is. therefore, hardly supposable that they were built for altars of sacrifice. They were not
large enough for shelter or defense. The more probable sup position is, that like the larger mounds elsewhere, they were places of sepulture, and perhaps, also, at the same time, his torical memorials, pointing, with their stone fingers, in the direction of the country from which the builders, or their an-
cestors, migrated. The three monds may mark the resting
places of those who, for some distinction, were buried as near to heaven as possible.-Rocky Mountain Neras.

Steam Plowing.

We learn from the Engineer that a highly interesting test of steam apparatus for cultivating and plowing the soil was carried out recently at Eye, near Peterborough, England The object on this occasion was two-fold, viz., to introduce an mproved self-acting anchor for using with the round-about ystem, and to show what could be done with more powerful machinery and direct action by the use of two engines. The latter system was exhibited by Messrs. Fowler and Co., of Leeds.
The new application referred to was invented by Mr. Champion, a practical farmer near Shalding. It consists in what we may term a self-acting anchor. The form of the invention is simply a cross-bar in which are fixed spikes or claws for entering the ground. There are two or three spikes fastened by clasps on each side of the square iron bar, according as the soil may be, hard or soft, and more or less resistance is required. The iron bar which carries these spikes is placed across the back fart of Messrs. Fowler and Co.'s disk placed across the back fart of Messrs. Fowler and Co.'s disk
anchor and outside the frame, attached to the revolving bar, is a ratchet with four catches, into which falls the stop notch is a ratchet with four catches, into which falls the stop notch
of a lever. The distance, therefore, which the anchor adof a lever. The distance, therefore, which the anchor ad-
vances depends on the square and the length of the spikes and the size of the ratchet. The one shown at work on this occasion was so constructed that the anchor advanced three feet each time the lever was raised, and the ratchet turned round one fourth of its circle or side. When a plow or digger, however, has four breasts or "diggers" on it, and more than three feet of work is done at a drag, the anchor does not advance sufficiently far if the ratchet is allowed to turn only one fourth round. Every three or four drags, therefore, which the plow takes, it is allowed to turn half round, which keeps it in the right position for a direct action of the rope. But this is a matter of minor detail.
The result of this application is, the claw anchors, which required a man at each end to shift and keep in their place, are entirely dispensed with, and three men and two boys, viz., one man at the engine, one at the windlass, and one on the plow, with the two beys at the rope-porters, can now do the work more easily than the five men and two boys Ireviously required, could do. An important difference in the cost on first outlay is also the result of this system.
The anchor is undoubtedly the most simple and efficient that has yet been introduced. It will bear a strain of 20 -horse power, and it has never been turned over; while in hard ground the claw anchors are difficult to insert, and in soft ground it is next to impossible to keep them in a proper position.
In this method of plowing, clip-drum engines are placed at each end of the field, and the gang of plows is drawn backward and forward by a wire rope. Results, therefore, need only now be given. Here almost a revolution is just now occarring. The small 10 -horse (nnincs are being replaced by 30-horse engines, and for the superior work and greater cem omy of this increased power it has been satisfactorily calculated that 50 -horse engines will be even more efficient. By 30 -horse engines and thirteen-tined cultivators an average of thirty-six acres per day has been accomplished, the cost of which is actually 2 s .6 d . per acre. The calculation mentioned with regard to the 50 -horse engines is that the cost can thereby be reduced to 1 s . 6 d . or 1 s . per acre at a depth of 10 incles. The practical experience which has led to these conclusions has occurred at Buscote Park, Berks. Mr. Campbell las there worked since harvest the 30 -horse engines, weighing twentyeight tuns each, which we saw at the royal meeting at Manchester. He has done between two thousand and three thouchester. He has done between two thousand and three thouland being of the strongest and heaviest kind. The rate at which he works is from three and a half to four miles per hour, at which pace from three to four ceres are broken up in the same time. The increased efficiency, too, of the w.rk done by this greater power is gr-atly due to the increased pace which it permits, for not oilly is the soil smashed up, but it is shattered at the same time.
The work done with the 10 -horse engine and cultivator was perfection itself. Nothing could be better at the depth of 10 inches. Between $7 \mathrm{~A} . \mathrm{m}$. and $2 \cdot 30 \mathrm{P}$. m. eighteen acres were done in the way described.

Facts for the Ladies.

My Wheeler \& Wilson Sewing Machine, No. sair, his done the sewing of months, without any repairs. One needle served to do all the sewing for more than four years.
syracuse, N. Y.
w. A. Hawley.

APPLICATIONS FOR EXTENSION OF PATENTS

Machine for Heading bolts.- Wiliam S. Booth, of New Britain, Conn. dministrator of the estate of H. M. Clark, deceased, has petitioned for a meang for Regulating and working steay valyeg as Ceta Chartes H. Brown and Charles Burleigh, of Fitchlurg, Mass., have applied making Clothes Pins.-Ephraim Parker of Marlow, Ni, has petitiong Making Clothes Pins.-Ephrain Parker, of Marlow, N.H., has petitioned
or the extension of tice above patent. Day of hearinc. Lubricator.-William Gee, of New York citr, has applied for an extenon of the above patent. Day of hearing, January $2\lfloor, 18$,).
Spreading Rollers for Stretching Cloth.-Jonathan I. Hillard, of hearing Marc̣ 28, , 18 .
Shingle Mathine.-Edward Hedley, of Philadelphia, Pa., has apphed for

