in April, 1862, on the Algerian Railway, near Blidah, well \mid varnish must be kept six months, after being made, in order illustrate the benefits to be derived. They are in use on the Northern Railway of France, at Charentes and at Mont Cenis. This principle might render important service in parts of our own country where ties of durable close-grained woods are difficult to procure.

THE MANUFACTURE OF SULPHURIC ACID

rom the report of J.

 Paris Expositionmethods and processes of manofacture. Burning the Sulphur-Sulphur Furnaces.-It is not necessary to dwell upon this part of the subject, from the fact that there are so many various ways, each said to be excellent, for securing the combustion of the sulphur used for the manufacture of acid. Reference will be made simply to the principles involved in the best form of turnace. It is better to have one large than many small furnaces (called the sulphur
furnace), and to have all the sulphur used for one day's comfurnace), and to have all the sulphur used for one day's combustion (say from one to four tuns) introduced at one charge, and to have just suficient air admitted to keep up the combustion without heating the mass too much, as thereby more sulphur is volatilized. The vapor from the sulphur furnace should pass. to the combustion furnace, in which sufficient air is admitted to complete the combustion, allowing an excess of about two to three per cent of oxygen. From the combustion furnace the sulphurous acid therein formed passes to the niter oven, and from thence the mixed vapors pass into the lead chambers.

Lead Chambers.-Too great care cannot be given to the construction and working of the sulphuric acid chambers. The plumbers should be required to distribute the straps uniformly, and not to have too great a strain on any one, as the lead of the chamber is often torn by the neglect of this; the chambers should be kept in perfect repair and free from holes,
or otherwise the sulphurous acid is lost in greater or less or otherwise the sulphurous acid is lost in greater or less
quantity. Where repairs are neglected, the practical yield with the same amount of material may range in three years from 82 to 68 per cent of product.
The sulphur is not often lost from an incomplete conversion of the sulphurous into sulphuric acid by too little steam, too much air, and an insufficient quantity of niter, but more fre quently from too little chamber space to the amount.of sulphur burnt.

In connection with lead chambers it is interesting to refer to the chambers of Kuhlmann, of Lille, that prince of ndustris chemists, the neatness and cleanliness of whose immense works are only cxcelled by the skill exercised and a capacity of about $\overline{J 3,000}$ cubic feet. There are six different a capacity of about 33,000 cubic feet. There are six different
compartments, the first a small one, which is a cooler and compartments, the first a small one, which is a cooler and
purifier; the second a small denitrifying chamber ; the third a small nitric cation chamber; the fourth a large chamber; and fifth and sixth small c ambers, called the tail chambers. Nitric acid is employed for oxidizing, which is introduced into the third chamber, in a small stream divided into a spray by convenient arrangements. The circulation of the liquid acid proceeds from chamber five, which opens into chamber six from this it flows into the large chamber, which receive also the acid from the nitrification chamber; the acid collected in the large chamber ultimately passes into the denitrification chamber before it reaches the evaporating pans; to secure a perfectly regular distribution of steam through the whole system, the lead pipes which deliver it into the chambers ar provided with platinum nozzles, which prevent the orifices of the tubes from gradually collapsing.
Some of the chambers in Lancashire have over 100,000 cubic feet capacity; and, as a general rule, the larger th chamber the better the proportioned yield. One of the most important problems in the improvement of sulphuric acid chambers is to produce chambers of small dimensions capable of producing the greatest amount of sulphuric acid free from arsenic. To diminish the amount of capital in establishing a lead chamber for this acid, multiplies their number, and brings an article requiring a certain amount of useless water and bulky receivers ncarer to the consumers, diminishing the cost of transportation.
At Bordeaux, Fournet has established the manufacture of sulphuric acid in a manner that deserves special attention, as it looks toward this economy just referred to. By means of apparatus skillfully arranged, in which the gas is made to circulate more than once in pipes filled with coke, so as to bring about an intimate mixture, and then passing it into a small lead chamber, Fournet has succeeded, with a chamber of only 12,000 cubic feet, in burning 1,000 pounds of sulphur a day, and obtaining a yield of three tuns of sulphuric acid, an amount nearly equal to the theoretical yield.

(T'o be continued.)

brying Dals for Varnish.

In a recent work on varnish, by Violette, he quotes as fol lows from a celebrated manufacturer: "The oil is allowed to stand in a reservoir of lead for one or two months, after which the upper three quarters of it are drawn off to make drying oils for varnish, while the one fourth remaining at the bottom of the tank can be sold to grind paints, it being utterly unfit for varnisl making. This settling of the oil is
indispensable, in order to separate the mucilaginous impuriindispensable, in order to separate the mucilaginous impurities which all oil contains, and it is a precaution that should always be faithfully observed." After converting this oil into drying oil, he adds: "We always take the precaution to have five or six months' stock of this prepared oil in advance; after which time it is better, and gives a varnish with more body and more solid drying."
When, in addition to the above, it is remembered tha ${ }^{+}$the to allow it to ripen, it may be seen that the capital required
by some firms must be very large. It is by careful attention by some firms must be very large. It is by careful attention
to the above points that the English manufacturers have at tained their high reputation.

IMPROVEMENT IN BITS FOR HORSES.

This bit, known as the " Baldwin Bit," was patented May 22,1868 . Its appearaace is shown in the accompanying engraving, and the principle of its working may be easily understood.
It consists of two parallel bars, one of which sets into rabbet in the other which answers to the ordinary bit. The rings into which the reins are buckled are formed with two parallel projections, which extend forward to the ends of the principal mouth-piece, and are pivoted to the same. They which par in the piece so that which plays in the rabbet in the principal mouth-plec, so that ny change in the position of the parts gives a sliding mo-

tion of one of the mouth-pieces upon the other. This pre vents t
teeth.
The proprietors of this bit have full confidence tha those who believe in treating the horse rationally and humanely will realize its merits. It is the habit of many to place a very severe and cruel bit in the mouths of horses inclined to be vicious and unreliable. It is claimed that this bit will secure full control of the horse without cruelty. As eal as horse attempts to catch the bit in his teeth, the eakest driver acquires great power over him by gently one mouth-piece is stationary the other is moved at the will of the driver, so long as the reins are pulled unequally.
It is well adapted for ladies' use, and is claimed to be equal ly adapted to driving all horses, as its governing powers are uch that a horse will obey it without fear, and it is easy fo both the horse and the driver.
For further information address Jos. Baldwin \& Co., 25 Market street, Newark, N. J.

heat from the moon.

[From The spectator.]

A long-vexed question-one which astronomers and physi ists have labored and puzzled and even quarreled over fo wo centuries at least-has at length been set at rest Whether the moon really sends us any appreciable amoun of warmth has long been a moot point. The most delicate
experiments had been made to determine the matter. De experiments had been made to determine the matter. De
Saussure thought he had succeeded in obtaining heat from Saussure thought he had succeeded in obtan gathering heat rom his own instruments. Melloni tried the experimen and fell into a similar error. Piazzi Smith, in his famous Teneriffe expedition, tried the effect of seeking for lunar heat above those lower and more moisture-laden atmospheric strata which are known to cut off the obscure heat rays so effectually. Yet he also failed. Professor Tyndall, in his now classical "Lectures on Heat," says that all such experi ments must inevitably fail, since the heat rays from the moon must be of such a character that the glass converginglens used by the experimenters would cut off the whole of the lunar heat. He himself tried the experiment with me tallic mirrors, but the thick London air prevented his succeeding.
The hint was not lost, however. It was decided that mirrors, and not lenses, were the proper weapons forcarrying on the attack. Now, there is one mifror in existence which excels all others in existence in light-gathering, and therefore necessarily in heat-gathering power. The gigantic mirror of the Rosse telescope has long been engaged in gathering the faint rays from those distant stellar cloudlets which are strewn over the celestial vault. The strange clusters with long out-reaching arms, the spiral nebulæ with mystic convolutions around the blazing nuclei, the wild and fantastic figures of the irregular nebulæ, all these forms of mat ter had been forced to reveal their secret under the scarching eye of the great Parsonstown reflector. But vast as are the pow it had already made, there was one defect which paralyzed half its powers. It was an inert mass well poised-indeed so that the merest infant could sway it, but possessing no power of self-motion. The telescopes in our great observatories follow persistently the motions of the stars upon the celestial vault, but their giant brother possessed no such power. And when we remember the enormous volume of the Rosse Telescope, its tube-fifty feet in length-down which a tall man can walk upright, and its vast metallic speculum weighing seyeral tuns, the task of applying clock-moṭion to o cumbrous and seemingly unwieldy a mass might well seem hopeless. Yet without this it was debarred from taking its part in a multitude of processes of research to which its powplied to the stars for plied to the sols form uniformity of clock-motion, so that the light from a star, once received on the jaws of the slit which forms the entrance into
the spectroscope, may not move off them even by a hair's breadth. And the determination of the moon's heat required an equally exact adaptation of the telescope's motion to the apparent movement of the celestial sphere. For so delicate is the inquiry, that the mere heat generated in turning the telescope upon the moon by the ordinary arrangement would have served to mask the result.
At enormous cost, and after many difficulties had been en countered, the Rosse reflector has at length had its powers of self-motion. And among the firstruits of the labor thus bestowed upon it, is the solution of the famous problem of determining the moon's heat.

The delicate heat-measurer, known as the ther mopile, was used in this work, as in Mr. Huggins' mopile, was used in this work, as in Mr. Huggins'
experiments for estimating the heat we receive from the stars. The moon's heat, concentrated by the great mirror, was suffered to fall upon the face of the thermopile, and the indications of the needle were carefully watched. A small but obvious deflection in the direction signifying heat was at once observed, and when the observation had been repeated several times with the same result, no doubt could remain. We actually receive an appreciable proportion of our warmth supply from "the chaste beams of the wat'ry moon." The view which Sir John Herschel had long since formed on the behavior of the fleecy clouds of a summer night under the moon's influence was shown to be as correct as almost all the guesses have been which
the two Herschels have ever made.
And one of the most interesting of these results which And one of the most interesting of these results which
have followed from the inquiry confirms in an equally strik have followed from the inquiry confirms in an equally strik
ing manner another guess which Sir John Herschel had ing manner another guess which Sir John Herschel had
made. By comparing the heat received from the moon made. By comparing the heat received from the moon Rosse has been led to the conclusion that at the time of full moon the surface of our satellite is raised to a tempera ture exceeding by more than 280° (Fahrenheit) that of boil ing water. Sir John Herschel long since asserted that this must be so. During the long lunar day, lasting some 300 of our hours, the sun's rays are poured without intermission upon the lunar surface. No clouds temper the heat, no atmosphere even serves to inter pose any resistance to the continual dowri-pour of the fierce solar rays. And for about the space of three of our days the sun hangs suspended close to the zenith of the lunar sky, so that if there were inhabitants on our unfortunate satellite, they would be scorched for more than seventy consecutive hours by an almost vertical sun.
There is only one pointin Lord Rosse'sinquiry which seems doubtful. That we receive heat from the moon he has shown conclusively, and there can be no doubt that a large portion of this heat is radiated from the moon. But there is anothe mode by which the heat may be sent to us from the moon, and it might be worth while to inquire a little more closely than has yet been done whether the larger share of the hea rendered sensible by the great mirror may not have come in this way. We refer to the moon's power of reflecting heat It need hardly be said that the reflection and the radiation of heat are very different matters. Let any one hold a burnished metal plate in such a way that the sun's light is reflected towards his face, and he will feel that with the light a considerable amount of heat is reflected. Let him leave the same metal in the sun until it is well warmed, and he will find that the metal is capable of imparting heat to him when it is removed from the sun's rays. This is radiation, and cannot happen unless the metal has been warmed, whereas heat can be reflected from an ice-cold plate. There has been nothing in the experiments conducted by Lord Rosse to show by which of these two processes the moon's heat is principally sent to us ; nor do we know enough of the constitution of the moon's surface to estimate for ourselves the relative proportions of the heat she reflects and radiates towards us
We do not mention this point from any desire to cavil at the results of one of the most interesting experiments which have recently been carried out. But the recent researches of Zöllner upon the light from the planets, have shown how large ly the surfaces of the celestial bodies differ as respects their capacity for reflecting and absorbing light, and there is every reason to infer that similar peculiarities characterize the planet's power of absorbing and reflecting heat. The whole question of the heat to which the moon's surface is actually raised by the sun's heat depends upon the nature of that surface, and the proportion between its power of absorbing heat or reflecting it away into space.

Steeple Jacks.

"Steeple Jack" is commonly but erroneously supposed to e an individual, whereas, as we have before pointed out, he is a genus, or a species, though, it may be, few in number As his way of working is not known to every one, the Lon don Builder describes it, in connection with one or two of his more recent exploits. Some of the factory chimneys at New Swindon having got out of repair, the company resolved to employ a "Steeple Jack," who accordingly made his appear at New Swindon and set to work. His plan of proceeding was to fly an Indian kite, with two strings attached The kite rises nearly perpendicularly, and when above the chim.
ney-top is guided over it. The second string is then pulled, and thus a complete communication is formed over the chim ney. By means of the string a double copper wire is drawn up, and by this wire some pulleys and tackling. "Steeple Jack" then as ends hand over hand, and places an ircn band around the chimney, which he secures tightly. Planks are then drawn up and laid upon irons projecting from the band and thus in a slort time a scaffolding sufficient for his purpose is erected, and at a cost very much less than that of a regular builder's. managed in chis aerial manner, to pull had become so badly out of repair as to require rebuilding. He is still engaged in repairing others His scaffolding looks at a distance like a huge india-rubbe band, around the chimney, with ropes depending from it.
An exciting occurrence, displaying great intrepidity, and involving the utmost peril to the person concerned, took place lately at Millbank Chemical Works. Garagad-road, Glasgow Messrs. Burns \& Son, of Ayr, who have been employed in simi larduty at Townhead and other establishments, had boen en gaged to point a stalk at the works mentioned, measuring 260 ft . in height. The preliminary proctess of flying the kite was gone through no fewer than fifteen times, but on each occasion it failed, in consequence of the string being burnt through by the gas and flames emitted from the stalk. Abou an hour and twenty minutes were spent in these fruitless endeavors, when Mr. Burns, resolving that whatever personal risk might be incurred, the object must be accomplished, de termined for this purposie to ascend the stalk himself. Ac cordingly, in spite of the remonstrances of his son, he pro ceeded to mount by the aid of the conducting-rod but no sonner had he got safely at the top than the rope was again burnt through, and he was lett hanging by the hands. a moment was to be lost. The son flew the kite in about fiv minutes afterwards, and having succeeded in once more fix ing the rope, the father was got down; he was, however, in an extremely exhausted condition, and notwithstanding the leathern gloves he wore, he was much burned about the hands, while hís left side was likewise considerably scorched

$\mathfrak{E e r r e s p o n t a n t}$.

The Editors ar
respondenti.

English Iron and Iron Screw Steamers.

Messrs. Editors:-The national-I may almost aide, the world's supply of iron, has hitherto been sbared by England Scotland, France, Germany, 'Belgium, etc.-Scotland doing the lion's share. Now, however, the laurels are fast bein wrested from Scotland, and England must inevitably defeat all rivals. Imagine! The main Cleveland seam, in York shire, has been estimated to contain 20,000 tans of ore per acre, and at this rate there must be within the limits of the area named close upon five thousand million tuns of ironstonz! It must be borne in mind that it is not poor ironstone, s it yields in many cases upward of 33 per cent of metallic iron, and in some instances 41 per cent. It is probable that something like $6,000,000$ tuns of Cleveland ore will be re quired next year to keep all the blast furnaces in the district
engageel! At present the annual make of Cleveland pig iron engaged! At present the annual make of Cleveland pig iron is estimated at $1,439,640$ tuns, and at this time next year it is assumed that the make will be increased to $1,739,640$ tuns of pig iron. At this moment Cleveland is making about one third of our production. The prime requisite in the shape of raw material is raised so cheaply that it can be laid down at the furnaces at a cost of 3 s . per tun, less, at the presen rate of exchange, than $\$ 1$ per tun of $2,240 \mathrm{lbs}$. Containing therefore, from 28 to 41 per cent of metallic iron, the ore for a tun of iron costs less than 10 s., or $\$ 3$!
Perhaps one of the applications of iron that interests Americans mostly is that for maritime purposes. Twenty years ago, and since, wooden ships as we all know, were dis carded for iron, and a wooden-ship builder of consequence now-a-days is a thing of the past. But now iron ships-yes iron shipbuilding is going to decay, so far as sailing vessel are concerned. Those that, at the time referred to, cost $£ 25$ say $\$ 150$ per tun, can now be had at one half, and no takers! What next? Why, iron steamers-long, 300 to 400 feet iron screw steamers-these are to supersede everything and do the traffic of the world. The ink is scarcely dry on the prospectus of one of our new local companies, who have con raoted to build twelve such iron screws. And they are right apart from the question of capacity; they sail so shallow that they will float "al ost wherever it is damp;" but, if not this, they will, at any rate, save the Cape of Good Hope by the Suez Canal, and, in due time, Cape Horn by the cana Panama.
Liverpool, England.

Value Received.

Messrs. Munn \& Co.:-Some four or five years ago I made a tool called "Substitute for the Slide Rest," which I
advertised and sold through your paper. After I had made a advertised and sold the party who manufactured absconded with the patterns, and brought me to grief. This is in the nature of things, and although I have held up my head since don't wish to complain. But I do complain that for about every week since parties write to me asking for price list and cuts, and I wish they would stop it. How long after a maa is dead and forgotten will people keep writing to him, if he has adve tised in your paper?
This is to give notice that I have haa the worth of my money in advertising and don't wish any more.

New York city.
Egbert P. Watson.

Testimony of a veteran Inventor.

Gentlemen :-I have this day sent you a box containing two models, and shall be with you on Friday, to explain the same and have the papers drawn. I have taken out upwards of thirty patents, and have had some difficult cases, and I must say that nowhere have my interests been more zeal ously guarded than by you, nor any specifications more clear ly and definitely drawn. I consider your efforts as second only in importance to the inventive genius of our country, in developing its resources at home, and honor abroad With high esteem, I am respectfully yours,

Joseph A. Miller, Mechanical Engineer.

Boston, Mass., Oct. 20.

Inventions at the South,

We are happy to recognize a gradual increase in the numDraugh inentions coming to us from the South. Dr. R. J Draughon, of Claiborne, Ala., under date of Oct. 11, 1869 Messrf. Munn \&
Messrs. Munn \& Co. :-It was with much gratification tha I received by to-day's mail your communication, conveying the informaiion that my patent was, on the 1st inst., allowed 1 now write to convey to you my sincere thanks and kind wishes for the kind and generous manner in which you have conducted my business.

The Fossil Man of Onondaga

Letter of John-F. Boynton, Geologist, to Prof. Henry Morton, of the Pennsylvania University :
Dear Sir:-On Saturday last, some laborers engaged in difging a well on the farm of W. C. Newell, near the village of Cardiff, about 13 miles south of this city, discovered, lying about three feet below the surface of the earth, what they supposed to be the "petrified body" of a human being of co lossal size. Its length isten feet and three inches, and the rest of the body is proportionately large. The excitement in this ocality over the discovery is immense and unprecedented. Thousands have visited the locality within the last three days, and the general opinion seemed to be that the discovery was the " petrified body" of a human being.
I spent most of y sterday and to-day, at the location of the o-called "fossil man," and made a survey of the surround ings of the place where this wonderful curiosity was found. On a careful examination, I am convinced that it is not a for sil, but was cut from a piece of stratified sulphate of lime, (known as the Onondaga Gypsum). If it were pulverized or ground, a farmer would call it plaster. It was quarried, probbly, some where in this county, from our Gypsum beds. The ayers are of different colors-dark and light. The statue was evidently designed to lie on its back, or partially so, and represents a dead person in a position he would naturally as sume when dying. The body lies nearly upon the back, the ight side a little lower ; the head leaning a little to the right The legs lie nearly one above the other; the feet partially ross one another. The toe of the right foot, a little lower showing plainly that the statue was never designed to stand rect upon its feet. The left arm lies down by the left side o the body, the fore arm and hand being partially covered by the body. The right hand rests a short distance below the umbilicus, the little finger spreading from the others, reaching nearly to the pubes. The whole statue evidently represents the position that a body would naturally take at the depart ure of life.
There is perfect harmony in the proportions of the different parts of the statue. The features are strictly Caucasian, having not the high cheek bones of the Indian type, neither the utlines of the Negro race, and being entircly unlike any tatuary yet discovered of Aztec or Indian origin. The chin is magnificent and generous; the eyebrow, or supcrciliary
ridge, is well arched ; the mouth is pleasant; the brow and ridge, is well arched; the mouth is pleasant; the brow and
forehead are noble, and the " Adam's apple" has a full development. The external genital organs are large ; but that which represents the integuments, would lead us to the conclusion that the artist did not wish to represent the erectal tisues injected.
The statue being colossal and massive, strikes the beholder with a feeling of awe. Some portions of the features would remind one of the bust of DeWitt Clinton, and others of the Napoleonic type. My opinion is that this picce of statuary was made to represent some person of Caucasian origin, and designed by the artist to perpetuate the memory of a great mind and noble deeds. It would serve to impress inferior minds r races with the great and noble, and for this purpose only, was sculpiured of colossal dimensions. The block of gypsum is
stratified, and a dark stratum passes just below the tratified, and a dark stratum passes just below the outer por tion o. the left eyebrow, appears again on the left breast, hav-
ing been chiseled out between the eycions and chest, and ing been chiseled out between the eycirow and chest, and
makes its appearancs again in a portion of the left hip. Some portions of the strata are dissolved more than others by the action of water, leaving a bolder outcropping along the descent of the breast toward the neck; the same may, less distinctly, be seen on the side of the face and head. I think that this piece of reclining statuary is not 300 years cld, but is the work of the early Jcsuit Fathers in this country, who號 250 years ago ; that it would probably bear a date in his ound corresponding with the monumental stone which wa he Academy H Hill, in this countr, and now deposited in the work; had it been an image or idol worshiped by the In dians, it could have been easily destroyed or mutilated with a slight blow by a small stone, and the toes and fingers could turn been easily broken off. It lay in quicksand, which, in My rested upon compact clay.
My conclusion regarding the object of the deposit of the
tatue in thisplace, is as follows: It was for the purpose of
hiding and protecting it from an enemy who would have destroyed it, had it been discovered. It must have been care fully laid down, and as carefully covered with boughs and twigs of trees which prevented it from being discovered.
Traces of this now decomposed vegetable covering, can be Traces of this now decomposed vegetable covering, can be
seen on every side of the trench, and it is quite evident, this seen on every side of the trench, and it is quite evident, this
vegetable matter originally extended across and above the statue.
Above this stratum of decayed matter, there is a deposit of very recent date, from eighteen inches to two feetin thickness which may have been washed in and likewise turned on by plowing. A farmer who had worked the land told me that he had "back furrowed" around it, for the purpose of filling up the slough where the statue now lies.
It is posiivively absurd to consider this a "fossil man." It has none of the indications that would designate it as such, when examined by a practical chemist, geologist or naturalist. The underside is somewhat dissolved, and presents a very rough surface, and it is probable that all the backor lower por-
tion was never chiseled into form; and may have been detion was never chiseled into fcrm; and may have been de-
sigued to rest as a tablet. However, as the statue has not been sigued to rest as a tallet. However, as the statue has not been
raised, the correct appearance of the under surface has not raised, the correct appearance of the under surface has not
been determined, save by feeling as I passed my hands as far as I could reach under different portions of the body, while its dower halt lay beneath the water.
Th is is one of the great st curiosities of the early history of Onondaga county, and nuy great desire is, that it should be preserved for the Onondaga Historical Society. Efforts are being made by some of our citiz n ns to secure ihis in the county where it belongs, and wot suffer it to bear the fate of other rcheological specimens found in this region.

Syracuse, October 18th, 1869

Peat vyanufacture in Ohio.

According to a writer in "Putnam's Monthly," for November, the following is the method employed in the manufacure of Peat near Ravenna, Ohio:

The peat is dug to a depth of from eight to fifteen feet with slu,vels and slanes, the latter being a kind of spade,with wing at the side bent at right angles with the blade, so as to form two sides of a square, and loaded into dump cars which are drawn up an inclined plane upen iron rails by friction gearing, and the contents rapilly enıptied into an immense hopper containing one hundred and fifty tuns of crude peat. At the bottom of the hopper is a large elevating belt, running overdrums upon which the peat is thrown and rapidy carried into the condensing and molding machine. Two men are all that are required to keep the machine full. The condensing and manipulating machine is run by st am-power. It receives the crude peat from the elevating belt in a wet or moist state, and delivers it in a smooth, homogeneous condition, through ten oval-shaped dies, each 3 inches by 4.4 inches in area, from which it is delivered on drying racks, passing horizontally under the machine. Each rack is 26×72 inches, constructed of light pine, holding five bars or cancs of pent, w ich, when dry, will yield, to each rack, fiom thirty to sixty pounds of fuel, according to the density of the peat. The racks are carried from the machine on an inclined tramway made of light friction wheels, so that the racks will alway made of light friction wheels, so that the racks will al-
most glide from their own gravity. These racks are taken most glide from their own gravity. These racks are taken
from the tramway and set up like an inverted \mathbf{V}, on the dryfrom the tramway and set up like an inverted \mathbf{V}, on the dry-
ing ground, where, being exposed to the sun, and the air circulating freely around and between the lars,they dry in from ten to twelve days, and are ready to be loaded into cars tor shipment and use. The distance between the legs or base of the \mathbf{V} being the same as their length, the drying ground is greatly economized. An acre will hold about five thousand of these racks, from fifteen thousand to twenty thousand being a requisite complement for the nfachincry. Sixteen men and ten boys on the rackway will make eighty tuns of prepared fuel per diem-indeed, there is bardly a limit to the capacity of the machinery if labor enough is employed. With thirty-seven men digging and clearing off the racks from the tramway,one hundred and fifty tuas of dried fuel can be made per day. This fuel can be delivered at a less price than the per day. This fuel can be delivered at a less price than the
best coal, and the cost of preparing it for market is lighter best coal, and the cost of preparing it for market is lighter
than that required in coal mining. It can be afforded as low than that required in coal mining. It can be afforded as low
as $\$ 4 \cdot 50$ per tun, and even lower, within a rasonable disas $\$ 4.50$ per tun, and even lower, within a rasonable di
tance from the bogs, and it is more ccononical than coal.
"An analysis of the surface peat of this bog gives the folowing result: carbon, 63 per cent; oxygen, 18 ; water, 10 ; and ash 3.68 per cent. It also conta ins ammonia, acetaic of ime, fixed and volatile oils. The deeper the peat found, the richer is it in carbon, and there are portions of the hog which will yield 70 to 75 per cent of carbon. The average amount of carbon, thus far ascertained by analysis of the various peai bogs of the United States, equals 50 per ceat."
The use of ornamental pyrographic woodwork is being evived in England. In the ordinary samples, the designs are burnt into veneers of sycamore or maple, and are supplied holesale to builders, cabinet-makers and others, ready for laying in the ordinary manner ; but, if preferred, the designs can be applied io the solid work, to insure greater durability. By the use of wood so ornamented all necessity for painting is, of courso, avoided. It is inexpensive and worth looking to.

A vern of excellent coal has been discovered, extending ang the line of the Kansas Pacific Railroad east of Denver. This discovery shows that the workable coal-beds of the Rocky Mountains extend miles eastward into the great plains, and is of the greatest importance both to settlers and to the railway company.

The Union Pacific Railroad Company have commenced the erection of snow fences along the line of their road between Omaha and the Rocky Mountaine.

