Grmitir Smurim,

MUNN \& COMPANY, Editors and Proprietors.

publishen weekiy at

No. 37 PARK ROW (PARK BUILDING), NEW YORK

facts about the croton water supply.
One of our cotemporaries says, very irreverently, of the Croton, that it is "played out," and recommends resort to Artesian wells.
The aqueduct which conveys the Croton to the city is con structed to bring down $60,000,000$ gallons per diem, but when the pressure is ample at the dam, which it is for ten months in the year, it delivers as much as nine or ten millions of gallons in excess of that quantity, and at the same time a vast amount of water runs over the lip of the dam.

Mr. Jarvis, some years ago, gaged the river at its supposed lowest point, arad estimated the minimum supply at about $32,000,000$ gallons, or about one halfof the quantity required,
and he recommended storage reservoirs to satisfy the wants and he recommended storage
a future large population.
It will be recollected that in providing for its transmission over the High Bridge, the Commissioners then in charge laid but two iron pipes capable of carrying only a part of what the aqueduct brought, it being then supposed that the city would not require a larger quantity ; but during Mr. Craven's ad ministration of the Department additional pipes were laid equal to the whole power of the aqueduct. The growth of population and the use of the water for manufacturing purposes made this additional provision necessary.
Under the auspices of Mr. Craven, the Croton valley, which consists of 328.82 square miles, was carefully examined to ascertain its capacity to accommodate a still larger population, with its additional manufacturing wants, and it was fifteen places at which storage reservoirs might be convefifteen places at whit
niently constructed.

aiently constracted.

On the Muscoot, which receives the outlet from Lake Mo hopac and falls into the Croton near Katonah; there were fout oi such sites. A, containing 485 acres, capable of storing $5,211,015,625$ gallons. B, of 192 acres, capasle of storing $1,701,835,207$ gallons. C, 730 acres, capable of storing 6,589 , 101,562 gallons ; and F, 600.75 acres, capable of storing 6,120 , 335,937 gallors. On the west branch of the Croton, which after receiving the middle branch, unites with the east below Croton Falls village, there are three: \mathbf{D}, covering 1,008 acres, and capable of storing $9,033,632,812$ gallons; E, of 303 acres, to hold $3,369,206,857$; and K, immediate gallons. On the middle branch, two : L, 202.75 acres, to hold 2,328,218,733 gallons, and G, $452 \cdot 19$ acres, to contain $4,861,035$, 156 gallons. On the east branch thire: H, containing $384 \cdot 67$ acres, to contain $2,490,062,500$ gallons ; I, 449 acres, to contain 4,205,820,654 gallons; and J, $191 \cdot 38$ acres, to contain $2,31 \approx, 074,703$ gallons. On the Titicua, which unites with the Croton at Trinsy's Station on the Harlem Railroad, one, M, which floods 49275 acres, to store $4,392,131,445$ gallons. On Cross river, an afluent of the Croton, at Katonah, N, covering 197 acres, for storing $1,676,049,171$ gallons; and O , on Beaver's Dam Brook, which crosses the Harlem below Mount Kisco, consisting of $239 \cdot 47$ acres, and to store 2,182,337,109 gallons. Their joint capacity exceeds sixty-one billions of gallons, and they cover over six thousand five hundred acres of land.
In 1867, Mr. Craven, finding that it had become necessary to guard against the want of water in a season of drought, procured authority to construct one of the fifteen reservoirs, which he had located; and after commencing the one marked G, and abandoning it, because of the danger of flooding the celebrated Tilley Foster iron mine, finally decided on building the one at Boyd's corners designated as E .
By reason of the failure of the original contractors, the dam at $E_{\text {on }}$, now nimili. 5 tem at the north end) over 40 fect of
thee 64 which is veruiverd, is being worked by their securities under such disadvantages that it will not be finished muchbefore 1871, but it is possible to use it in the summer of 1870 for storage up to the hight which may then be reached. It will
be seen, however, as this reservoir is capable of holding $3,369,-$ be seen, however, as this reservoir is capable of holding 3,369,
206,857 gallons, it will, when finished, supply $60,000,000$ gallons per day for about fifty-five days, supposing that the evaporation and loss on its way to the main dam shall be equaled by the ordinary flow of the stream.
Inasmuch, however, as the Croton is supposed to furnish more than half that quantity in the season of the greatest drought, it is clear that the city will, even during dry seasons, be supplied with as much water as the aqueduct is competent to deliver.
The great drought which has prevailed for most of the summer, along nearly the whole Atlantic coast, was broken so far as this region is concerned, by the rain which fell on the last Saturday and Sunday of September; but as the ground was dry beyond any recent experience, the dam at Croton was raised only a few feet. The rain of Saturday evening and Sunday and Monday, the 2d, 3d, and 4.th of October, had, how
ever, a visible effect in swelling the Croton to the proportions ever, a visible effect in swelling the Croton to the proportions
of a freshet, yet althourh more rain is wanted, all fears of a of a freshet, yet althourh more rain is wanted, all fears of a
scarcity of water may now be dismissed. Under any circumstances the minimum flow will furnish thirty gallons per day to each inhabitant, which is more than will be required for household purposes.
On Monday, the 4 th inst., the water m the main dam had risen by 10 o'clock, A. M., so that it commenced to run over, and at 2 P. m. the volume pouring over was a foot in depth supply, the reservoir in the city will scarcely be filled before supply, the reservoirin
some time in November.

Nothing has contributed more to the convenience of thecity than its supply of water at an elevation which, among other benefits, makes it the power or carrier for removing the refuse from houses. The growth of New York in manufacturing industry, has been so much promoted by using the surplus, that the time is not distant when other storage reservoirs and a
larger or additional aqueduct will be required. From the particulars we have given, it will be seen that whenever the city chooses to avail itself of this bounteous provision, not only our increased domestic wants, whatever their extent, will be easily satisfied, but there will be a surplus to be devoted to manufacturing purposes.

The lowestelevation of any of these reservoirs is the one laid out on the Beaver Dam brook, which is 250 feet above tide water. The others vary between this and 600 feet. The formation of the valleys of Putnam and Westchester is highly fayorable to these structures, and it is probable that no city of great extent is more liberally provided. Each location is inclosed with high hills, which, after allowing a sufficiently wide expanse, suddenly contract so that a short dam will complete the reservoir. The Croton was wisely chosen
for this purpose, and so far from being "played out," it will eventually supply the largest population known to modern tines.
The Commissioners who manage the Croton are not armed with any other authority overthe contract now being executed except to declare it void, and then to relet the work. If proper vigor were used by those who act for the contractors,
the work could be finished by next summer, but it would be a losing job. The contract called for its completion before this, and it is probable that sympathy for the securities, and the want of agreement which is shown between the city government and Board-which latter has the confidence of the community-prevent effective steps to secure the prompt completion of the work. The expenditure originally authorized is limited to a sum which does not permit the additional expense which haste would require. It is scarcely probable that
a drought next summer will follow the one of this year, but f it occur the loss to the city will be visited upon those who are responsible for the delay.

CIRCULAR MOTION AND RECTILINEAR MOTION.

We innd in an exchange an article endeavoring to draw musement from the writings of Vitruvius, upon the principles of mechanics. One of the extracts made from this an ent author, who lived a short time previous to the birth of Christ, is the following : "I have briefly explained," he says, powers and nature of the motion are different, so they generate two effects, one direct, the other circular, but it must be confessed that neither rectilinear nor circular motion can with out the other be of much assistance in raising weights.'
Now, so far from seeing anything very amusing in this tatement, the more we consider it the more we feel surprise at the comprebensiveness of the proposition. We see in it a generalization, the truth of which is exemplified in every
machine. So large a proportion of the motions of the parts of machinery may be included in the classes rectilinear and cir cular, that the very few exceptions wherein the curvilinear and wherever they are employed it is always at a sacrifice of economy in power, the former motions being the least expensive of movements. Where, as in the case of the crank and pitman, a rectilinear motion and circular motion are coupled, there may be a loss in the application of the power number work, always consequent upon the increase of the drives a pitman, or winds up a machine; but when a crank suffered in these arrangements of working parts, are consequent upon practical difficulties. In theory there should be no loss. We know that these losses are referable to friction,
mula for computing the powers of such arrangements, we do not take into account these losses. In the practical application of theory, allowances are made for such losses, but fewer such allowances are requisite when circular motion is employed than when any other is used to perform work. Motions in right lines, in circles, or arcs of circles, have proved in an experience of twenty centuries, to bc, as Vitruvius said they were, the motions to be principally relied upon in mechanics.
Of these, circular motion is by far the rost extensive in its application, and it is oiften an element where it is scarcely suspected.
The power of the inclined plane is generally referred to the plane itself, and mathematical demonstrations are based upon its proportions and inclination, but in the case of a round body rolied up the surface of an incline, the power may be calcula ted directly from the dimensions of the circle and the angle of ascent. In this case the element of rotary motion is generally overlooked, although it most certainly is an important element in lessening friction, which, when bodies are simply slid up an incline is an enormous source of waste; and, as we have said, it may be made the basis of computation for mehanical power.
It also is an element in the use of all hand percussive tools, as the hammer, ax, etc. The lever, too, also involves circular motion. It is evident that Vitruvius saw the full importance of these motions when he penned the paragraph alluded to ; and as to confining the proposition to the rasing of weights, it is not improbable that he comprehended the fact that a constant force is required to raise a given weight to a given hight in a given time, and appreciated the utility of making the force required to thus raise a given weight the standard for the measurement of power applied to any kind of work.
In modern times we use the foot-pound as a unit of work and thus have applied a hint which might easily have been drawn by a reflective mind from the passage quoted.
We may justly pride ourselves on modern progress in cience ; but the old philosophers undoubtedly saw and comprehended more than is sometimes credited to them.

THE EXHIBITION JF THE AMERICAN INSTITUTE

An interesting branch of American manufacture, is that of spool Cotton Thread. This is exhibited in all the procese of the manufacture from the raw cotton to the finished thread by Greene \& Daniels, of Providence, R. I. The first process is the carding, which is done in the ordinary way of carding cotton. It is then drawn in the usual manner,and then taken to a lap machine,consisting,essentially, of the old-time railway head, with drawing rolls attached. This machine is very compact, and, we are told, is the best machine for the purpose now in use. It is strictly an American machine. The cotton next goes through a process called combing, on a machine called a combing machine, the only machine of foreign construction employed in the work. This contains eight thousand needles, the action of which upon the cotton gives it a peculiar silky, light, and gauzy appearance, and the operation of combing may be considered as the finishing operation in preparing the cotton for thread; all the subsequent operations tending directly to the formation of the thread itself The cotton, after combing, is drawn three times, and then spun into roving not larger than wrapping twine. It is now spun into yarn of wonderful fineness and uniform thickness, on a ring spinning frame. It next passes to a doubler, and is laid up in two or three-ply, as desired. From this machine it passes to a twister, which speedily reduces it to a fine and beautiful cord. These cords are then twisted on another frame to make a three or six-cord thread, as required. It is ext reeled into skeins, then bleached, when it is ready for pooling. The spooling machine is a small but pretty ma hine, on which the winding is done with great celerity. The thread is now ready for market, except packing, etc. Tho finisied thread shown is of excellent quality, and its applica bility to sewing-machine work is demonstrated by its use on a sewing machine in the same inclosure with the machinery for manufacturing the thread. This display excites much interest in the visitors to the fair, and is a fine feature of the exhibition.
Adjacent to this inclosure stands a

circolar loom

for weaving twilled shade line, used for hanging pictures, window shades, etc. This loom weaves a texture which covers a strong central linen cord. The outer texture is of wool, silk, or cotton, or mistures of these materials. The peculiariy of this loom is, that the shuttle stands still and the warp travels. It cannot be well described without diagrams, but it is a very ingenious, compact, and beautiful machine. It is exhibited by Palmer \& Kendall, of New York.
S. R. Parkhurst, of Newark, N. J., exhibits a
surring machine,
with patent steel ring feed rollers adapted to clear all grades and qualities of wool, even the most difficult Mestizo. He also exhibits a newly constructed double-cylinder
wool and cormon picker,
which, it is claimed, will pick, dust, bur, oil, and mix the wool ready for the cards at a single operation. He also exfits a Double-cylinder Cotton Gin, improved by the addition double cylinders and connected with a steel brush, and an andless slotted apron to convey the cotton in the seed to the rinning cylinders, thereupon securing the seeds and conveying hem away from the ginning parts of the machine. It is laimed that this gin will separate the seed from 700 lbs . of cotton per hour, without injury to the staple. A metallic waste card,
for working or reducing yarn, thread waste, and soft flannels to wool is shown by Chas. G. Sargent, of Graniteville, Mass. These machines \%r, in princin!e, carding machines, clothe
wi:h s:rorm, sharp-pointed steel teeth, so adjusted as to work body of the bolt,and all the bolts made by the same dies will on the twist of yarn or thread waste-combing or teazeling out gradually, the twist holding the fiber of wool together, and forming it inte a thread. This gradual removing of the twist by the combing or carding process, leaves the fibers of wood composing the thread waste long and strong, with nearly the original length of staple. This gentleman also ex libits an inproved machine for cleaning fibrous materials, essentially the same patented by him in 1861.
Chapin \& Dewnes, of Providence, R. I., exhibit a

deuble-Cylinder Longitudinal gig,

which, among other advantages that have caused its extensive adoption, is arranged to work on bread or narrow goods, gig. ging two narrow pieces in the same time, and with as much facility as one broad piece.
C. L. Goddard, of New York, exhibits a patent Steel Ring Burring Macbine, attached to a wool-carding machine. peculiar feature of this machine is the solid packing rings, which are whole, like the steel rings, and make the cylinder
permanent and solid until worn out. The same gentleman permanent
exhibits a
mestizo wool-burring machine,
which combs open the wool by a comparatively slow and burs, or other extraneous matters, at the same time, oiling the wool.
H. W. Butterworth, of Philadelphia, Pa., exhibits a warp dryer,which, however, has not operated at any time we have been at the Fair as yet. It looks, however, like a good machine.

The Empire Heddle Works, of Steckport, N. Y., exhibit one of their patent heddle frames, which might, from the adroitness of its movements, be almost ancied to be alive. It forms the eye in a new manner, making the twist next the eye so tight that the finest warp of woolen, cotton, or silk can not enter. It gives any requisite shape or size to the eye, and
sharp angles, at the ends, are avoided. Both the machine sharp angles, at the ends, are avoided. Both the machin
and the heddles it makes, elicit much favorable comment.
These are, we believe, all the machines on exhibition con nected with textile manufacture, and our readers will doubtless agree with us, that the display is very meager. It certainly does not properly exhibit the progress made in the manufacture of such machinery in the United States. There is a fine display of

hachinists' tools

in the machinery department, though it cannot be called a very extensive one. It, however, pretty fairly represents the resent status of the manufacture in the country
The machinery of this kind is placed in inclosures allotte to the various manafactures. Three prominent manufactu-
rers are represented, and we will notico the displays of each rers are rep
separately.
separately.
Hewes \& Phillips, of Newark, N. J., exhibit a Planer which will do work $2 \frac{1}{2}$ feet in width or hight, having nothing novel except the belt-shipping lever, by which lead is given te either one or the other of the belts at will. A saving in wear of belts is claimed for this arrangoment, and ease in taking apart and puitting together. The belt shippers are supplied with it a 12 -inch uprioht bring press, evidently a good tool. The pattern is new. The head can be raised and lowered independpattern is new. The head can we raised and lowered independment of back gear, the heal is balanced, and there are other ment of back gear, the heal is on anced, and there are otner
good features. They have, a]so, on exhibition, a 6 -inch slotter, good features. They have, as so, on exhibition, a 6 -inch slotter, a very compact and powerful machine, and a 20 -inch lathe, 12
feet long. All these machines are handsomely finished and feet long. All these machines are handsomely finished and
their designs are good. A peculiarity of the machines made by this firm, is eccentric gearing on all the tools where a quick return is desired, by which they secure a quicker return than any other similar machines exhibited. They have, also, in
their inclosure, an 84 -inch gear cutter, which, though presenttheir inclosure, an 84 -incla gear cutter, which, though presenting, perhaps, no novel features, is worthy of remark for its general excellence.
Wm. Sellers \& Co., of Philadelphia, Pa., cxhibit a 10 -inch lathe, 13 fect in length, with a very novel and interesting feature. The feed gear for ordinary turning is composed of friction wheels, so arranged that, by a lever, which the workman operates with the left hand (the right hand remaining slackened or accelerated at will, without any alteration in slackened or accelerated at will, without any alteration in
the speed of the lathe. This feature will give increased fathe speed of the lathe. This feature win give increased in-
cilities in certain kinds of work, and the device is generally admired by the many experienced mechanics who witness its operation. This lathe has also a system of back gear by which a perfectly positive motion is attainable when desired.
Sellers \& Co., also show a powerful 48 -inch slotter, with comSellers \& Co., also show a powerful 48 -inch slotter, with com-
pound table, a shaping machine, for small work, and a bolt pound table, a shaping macline, for small work, and a bolt
cutter, all of which are well known to the mechanical world, and need no special comment from us, except that they fully sustain the enviable reputation of this firm. They also exhibit several sizes of the celebrated Giffard injector, with a model showing the internal construction of this para oxical instrument. Also, a 25 -inch planer, of a very simple construction, and, in every respect, praiseworthy.
The shafting which drives these machines is supplied with oil from Wickersham's American Oil Feeders, manufactured and cxhibited by J. B. Wickersham, 143 Front st., Philadel phia, Pa., which have not only rereived the indorsement of
Sellers \& Ce., but many other prominent nechanical engineers throughout the country.
Wood, Light \& Co., of New York, exhibit a bolt cutter which has some novel and valuable features. This machine is so constructed that the dies close accurately to a certain point, so as to form, in effect, a single solid die. When the cutting is done, these dies open automatically, and the bolt is shot out. It cuts threads of any length, always true to the be exactly alike. All the movements of the machine are au
tomatic, the attendant's duty being merely to keep the ma tomatic, the attendant's duty being merely to keep the ma chine in order and supply the blanks as wanted. The same firm exhibit a slafting la he which attracts much attention and elicits much íavorable comment. This lathe employs A lone cutting tools, and finishes a shaft at a single operation. A longitudinal trough is made in the bed of the lathe, and in which a solution of soda is placed, this fluid being pumpe
up and poured constantly upon the shaft at the point of cut ting. This lathe, and the bolt cutting machine exhibited by this firm and the lathe exhibited by Wm. Sellibited by combine more novel features than anything else among the combine more novel features than anything else among the
machinists' tools displayed. Outside of these inclosures are scattered about a variety of
achines and implements, some of which we shall notice in machines and implements, some of which we shall notice in
the present article. There are on exhibition a considerable the presen
variety of

drop presses, blanking presses, punches, drop ham

 mers, ETC.Charles Merrill \& Sons, of New York, exhibit an Air-spring Forge Hammer, and a Drop Hammer. The air-spring ham mer runs with little noise, and, by a peculiar arrangement of the cylinder and piston, the hammer is driven by air springs, which saves the machine from jar,other than the blow on the anvil or work.
The cylinder and hammer moving in vertical slides, each diew is square, exactly in the same place, and some kinds of die work can be forged as exact as under a drop, with greater
rapidity. It is under the perfect control of the operator, and rapidity. It is under the perfect control of the
can strike light or heavy, slow or fast, as desired.

The drop hammer is so constructed that the operator can raise and drop the weight from any hight in the slides, can stop the weight after it begins to fall,or can let it settle down slowly.
Parker Brothers, of West Meriden, Conn., exhibit one of their highly finished and excellent pewer presses, which are faverably known to the manufacturing public as Fowle Presses-an excellent tool, as we know from experience.
Mays \& Bliss, of Brooklyn, N.Y.,exhibit a beautiful Doubleaction Power Press, very strong and compact, easy adjust scrap metal. It is claimed that this machine will cut and bur 60,000 blanks in ten hours.

The Farrell Foundery and Machine Co., of Waterbury and Ansonia, Conn., also exhibit a Double-acting Press, of very compact form, which cuts and draws shcet metals into cupshape at one operation. This is an excellent machine and

eserves special notice.

Post and Goddard, of New York, exhibit an improved Eme-
ery Grinder. This machine was described and illustrater page 32d, last volume of the Scientiric and illustrated on the reader is referred. It may be bolted to a bench, the frame stand consisting of a single casting, containing bronze boxes for the spindle. It has rests, which can be readily set on the side or face of the wheels, and removed when not wanted, the whole forming a neat and convenient arrangement. This firm also exhibit various sizes of their Tanite Emery Wheels in connection with the above machine.
The New York Tap and Die Co. exhibit a fine collection of aps and dies,and the American Standard Toel Co.show a case These drills Twist Drills, arranged on a revolving platform. These drills are so well and favorably known that they need no
praise from us. Any mechanic, who examines them, will pronounce them excellent.

Nathan \& Dreyfus, of New York, exhibit their patent Self. Oilers and Engine Cups, composed of a transparent glass cup, mounted in Britannia and brass, previded with a hollow tube, inside of which is placed a loose-acting solid wire, which acts
as a feeder and regulator. The wire rests constantly upon the journal, thereby acting with the bearing in its motion. The wire is se regulated inside the tube as to feed according to the demand only. There is no flow of oil whatever while the machinery is not in motion.
Charles Parker, of New York, exhibits an extensive line of his patent Pazallel Vises with recent improvements, am. ng which we notice an adjustable collar,' which causes the jaws to open or shut, upon the slightest movement of the handle There is thus no lost motion; and again, if the saoulder on moments that it will operate as readily as when new. Anmoments that it win operate as readiyy as when new. An-
other improvement, is an adjustable spring so arranged as to hold the handle of the vise in any position or angle at which the hand leaves it,thus avoiding the pinching of fingers, which is of frequent occurrence, when the ordinary handle is in use;
and, again, if the workman wishes to hold any article, how. ever slightly, he can do se, when, with the ordinary vise, the weight of the handle would either grasp the article too hard or release it entirely.
There is, perhaps, no finer display in this department than the exhibition of
by R. Hoe \& Co., of New Tork, and the American Saw Co., also of New York. It would be impossible for us to enumerate hére all the varieties of saws displayed. They are of all sizes, and of all sh apes known to the saw trade, finished and mounted in superb style. Our readers are already aware of the dis.
tinguishing features of the saws made in each of these estinguishing features of the saws made in each of these establishments as they have long been extensive advertisers in
these columns. Their wares have earned a very high reputation. These firms, undoubtedly, lead the saw trade in this country. Fine taste has been shown in the arrangement of their collections at the Exhibition, and they are greatly admired by all visiters to the department. The punching of we are told, by Iyens \& Brooks' combined punch and shears,
a model of which was shown us. It is to be regretter, that this fine tool was not shown in operation at the Fair, as it is certain that it would have made a most favorable impression. We take this occasion to say a word upon the
electric organ
exhibited by Hall, Labagh \& Co., of New York. The strains of this instrument attracted our attention as we were aboat to leave the building after taking the notes we have condensed into the present article. This organ was described on page 347, last volume of the Scientific American. It is page 34, last volume of the SCIENTIFIC AMERICAN. It is has furnished us with the following particulars in regard to it: "The keyboard is detached from the organ at a distance of about twenty-five feet, though it might as well be removed to the distance of twenty-five miles, excepting for the necesto the distance of twenty five miles, excepting for the neces-
sity of the organist hearing his own performance, since we know from from recent scientific investigations that the electric current will travel a mile almost instantaneously. The only connection between the key-board and the body of the organ is a bundle or rope of flexible, insulated copper wires, which may be carried in any direction without injury, and there is no pull or strain on these wires, as they are merely the passive means of conducting the electric current.
The source of the electric current is an ordinary 'single fluid' battery, placed in any convenient position, composed of a series of jars containing a mixture of sulphuric acid and water, and in each jar is suspended a plate of carbon, in com any with two plates of zinc, connected in the usual way by wire proceeds to the keyboard; and, if we take the case of a wire proceeds to the keyboard ; and, if we take the case of a
single key, for example, when it is pressed down by the finger single key, for example, when it is pressed down by the finger
of the player, we shall find this wire so connected that it forms an unbroken circuit and proceeds from the keyboard onward an unbroken circuit and proceeds from the keyboard onward
to the body of the organ, where it is coiled around a soft piece of iron shaped like a horseshoe, and thence returns from the organ to the other end of the battery. When a wire is connected with both poles or ends of a battery the current passes and the piece of soft iron becomes a powerful magnet; but the moment the current is broken, by disconnecting the copper wire, there is an instant loss of power. When the key of the organ is not touched the wire is not connected and the current passes ; but on pressing down the key a metallic contact is formed, the electricity darts along the circuit and the electro-magnet, becoming at once excited, pulls down the pallet or opens the valve in the wind chest, admitting air te he organ y,ipes, and, with lightning speed causes them to the same principle", are applied and the stops drawn upon wame principle.
We also noticed, in passing, some specimens of artificial stone, manutactured and exhibited by the New York Stone Works, Bandman \& Hollman, 75 William st., New York. This stone is a conglomerate sandstone, artificially produced, and is molded into large blocks for hydraulic structures, and also into floor tiles and ornamental architectural work of all kinds. The exhibitors claim, that this stone is superior in strength to any natural sandstone found in the United States, and that it will not scale like the brown sandstone now largely in use for ornamental building. It can be given any color or shape desired, and is twenty five to seventy-five per cent cheaper than natural stone, cut into the requisite form. It can also be molded into statuesque forms.
amrrican Manufacture of Maciine Twist.-An error crept into our report on the Silk Department in our issue of October 9. It was there stated that the machine twist made mnually in the United States amounted to a quarter of a , the value of which would be fully three millions of

dollars.

INTERESTING PAXENT DECXSION-.-WHEN DOES AN ENGLISH PATENT TAKE DATR?

The Commisstoner of Patents has just given a decision in a case involving the question as to the date to be borne by patents which have been patented in foreign countries. The case on which the decision is given is the application of James Cochrane for the correction of the date of letters patent granted to him March 31, 1857, for an improved fluid meter. Cochrane obtained letters patent in England and also in the United States. The English letters patent were dated November 19, 1855, when the provisional specification was filed. They were sealed May 19, 1856. A caveat was filed in the U. S. Patent Office November 7, 1855, but application for the letters patent was not made until Nov. 5,1856. The for the letters patent was not made until Nov. 5,1856 . "fhe
patent was granted March 31, 1857, but was limited to "fourpatent was granted March 31, 1857, but was limited to "fourplicant now claims that the American patent should bear plicant now claims that the American patent should bear
date from the day it was issued, and asks the correction of an date from the day it was issued, and asks the corre
assumed clerical error. The Commissioner says:
The motion presents several interesting questions.
1st. Can the mistake if it exists be corrected as a clerical error?
$2 d$.

Was there an error in limiting the American pateit to irteen years from November 19, 1855 ?

rm of the letters patent?

After examining the first question and quoting quite number of authorities, he arrives at the conclusion that it could never have been the intention of the Legislature to restrict the correction of errors to those enumerated. Accord ingly it has been the practice of the office to correct all errors in parties' names titles, dates, and all omissions or insertions the words made by the fault of the office upon a surrender of the patent without fee, but to require the patentee when seeking the correction of his own mistakes to pay the fee and conform to the provisions made for cases of reissue.

