nitrate of mercury test as affording sufficiently clear re-
actions to enable him to fiod this oil when mixed with actions
olive oil

He used Pontet's test as follows: 6 parts of mercury are dissolved in $7 \frac{1}{2}$ parts, by weight, of nitric acid, $1 \cdot 36$ without the application of heat, and form the test solution. The tubes for making these experiments are merely strong test tubes of '7 inches in length, and holding about a fluidounce. They are roughly graduated by pouring in 30 minims of water and scratching a line upon the glass; another line is made at the point reached when a total of 6 drachms of water have been poured in. The lower line is marked " test," the upper one suspected oil to the other line; shake well and set aside, shaking again about an hour afterwards. In from three to shaking ars, according to the temperature etc, a genuin wive oil will have solidified entirely, the product after the olive oil win have solidica end whe product after the laiter interval being quite hard when touched by a glass rod. Cotton-seed oil, when similarly treated, will not solidify, but remains fluid. A mixture of 25 parts of cotton-seed oil with
75 parts of olive oil gives an intermediate condition. The contents of the tube become solid, but if a little be taken ou with a glass rod, it is found to be soft, pasty, and without any friable character. On the other hand, when pure oliv oil is so treated, the product is hard, friable, and not pasty. Comparative trials should always be made, and caution exer cised in accepting the apparent conclusions. Where only $12 \frac{1}{2}$ per cent of cotton-sied oil is present, the reactions are not so distinct as with 25 per cent., but Mr. Reynolds consider them usually sufient to decide the case.-Druggists' Cir cular.

THE MANUFACTURE OF SULPHURIC ACID.

rom the Raport of J. La wrence smith,

Black $A_{s} h$-Mond's Process for Otaining Sulphur.-I pro pose giving a tolerably full account of Mond's process, as described by himself, in using the waste from the black-ash generally employed in England, and which allows of mor rapid operation than the more compact waste of most con tinental works.
In place of the set of four vats generally in use for lixiviating black-ash, he employs a set of ten or twelve. All of these are connected by pipes in the usual vat to the top of the next one, and by special pipes and taps which allow the sulphur liquor to run out of the bottom of each vat to the sulphur of the set. Besides this, they are proided with extra tas and shoots to convey the sulphur liquor to wells or settlers. The lower parts of all the vats are connected with a fan (capable of producing a pressure of about seven inches of water), by pipes furnished with which regulate the quantity of air passing through.
A noiseless fan of Schiele's construction twenty inches in diameter, price $\$ 50$, propels a sufficient quantity of air for the treatment of the waste resulting from 100 tunsof salt cak per week. Four of the vats are always filled with black-as in the course of lixiviation ; the other six or eight with waste to be treated according to the invention. As soon as the black-ash is completely spent, and the weak iq. The waste soon begins to heat, the tomperature gradually rising above 200° Fah., and gives off quantities of steam, becoming greenish, and afterward yellow on top, gets more and more dry, and would take fire if the air was passed through long enough. The time for discontinuing the passing of air, so as to have the best results, must be ascertained in each es tablishment by experiments, and varies according as much or little hyposulphite in the hydrosulphide and bisulphide of calcium are formed, which are afterward oxidized into hyposulphite. A part of the hyposulphite is again decomposed into sulphur and sulphite, which is very insoluble, and cannot be extracted by lixiviation. Carrying the oxidation too fine would therefore entail a serious loss. On an average the dime of exposure will be limited to between twelve and twenty four hours. The waste is now lixiviated systematically with cold water, the weaker liquors passing from one at to the next one in course of lixiviation, so as to obtain only strong hiquors, which operation can be casily performed in six to eight hours. When this lixiviation is finished, ai is through the waste in cxactly the same way a lofore, the waste is and lixiviated, and the same treat ment is repeated a third time. The vat is then ready to be ast, and is again filled with black-ash. When the opera tions have bean well conducted, salphur equal to about 12 per cent of the weigit of the salt cakes used in making black-ask is obtained in solution from the waste. The waste contains only traces of sulphide of calcium, and is principally composed of carbonate of lime, salphiti, and sulphate of lime, which, far from being noxious, make the waste, on the from the liatic acid, met with much more difficulty than I had anticipated from such a reaction.
The oxidation of the waste is regulated so as to obtain a liquor, which contains as nearly as possible to every equivaent of hyposulphite two equivalents of sulphide. This liquor is decomposed by firstadding to a certain small quantity acid an excess of liquor, until there is a trace of sulphide in the mixture ; then a quantity of acid sufficient to neutralize the whole of the calcium is poured in; a new quantity of liquor equivalent to this last quantity of acid is added, and then acid again and liquor again, and so on until the vessel is nearly filled. To the last liquor only one half of the re-
quired acid is added, and steam introduced until the liquid
shows a temperature of about $140^{\circ} \mathrm{Fah}$. Practically speak ing, the liquor and acid are poured at the same time into the decomposing vessel in nearly equivalent proportions, the workmen taking care to keep a small excess of liquor up to the end of the operation. This part of the process is carried n in covered wooden tanks connected with a chimney in order to carry off any sulphureted hydrogen which may be evolved by mistake of the workmen. If properly carried out
there should be, however, no appreciable quantity of that there should
The practical result of this mode of working is simply precipitation of nearly the whole of the sulphur in a pure
$\mathrm{Ca} 0, \mathrm{~S}_{2} \mathrm{O}_{2}+\mathrm{CaS}+3 \mathrm{HCl}=3 \mathrm{CaCl}+3 \mathrm{HIO}+(2+\mathrm{x}) \mathrm{S}$.
The details of the reaction are, however, very complicated, almost all the different acids of sulphur being probably formed during the process.
In practice, about 90 per cent of the muriatic acid, calcu lated according to the above-described method, is required to thus effect the complete decomposition of a well-proportioned liquor. If it contains more hyposulphite than above indicated less acid is, of course, to le used. About 90 per cent of the sulphur contained in the liquor is precipitated in an almost pure state, and settles exceedingly well within two hours The supernatant clear solution of chloride of calcium is the drawn off, and another operation directly commenced in the ame vessel as soon as a sufficient quantity of sulphur is col ected in it, which will depend on the size of the vessel and on the strength of the liquor, ranging from 4 per cent to 7 per cent of sulphur; it is drawn out by means of a door a the lower part of the vessel into a wooden tank with a double floor, whe the chorde of alchon is washed out by water, and the sulphur is then simply melted down in an iron pot. The product thus obtained contains only fromone tent of one per cent to one per cent of impurities, and is thus by far superior to any sort of brimstone in the market, though has sometimes a rather darker color, caused by traces of sulphide of iron, or a little coal dust, which latter may hav been suspended in the muriatic acid.
'The total yield of sulpher obtained by the processamounts thus to 10 or 11 per cent of the weight of the salt cake used in making black-ash, or to about one half of the sulphur therein contained, and to about 60 per cent of the sulphur contained in the waste. It is still hoped, however, to con iderably increase this quantity after some more years of xperience
The cost of production is inconsiderable. In the different continental and E:glish works, where the process has now been working for years, the expense for wages, fuel, and maintenance amounts only to $\boldsymbol{6}_{5}$ per tun of sulphur, and the outlay for the apparatus will be more than covered by the net profits of the first year. An establishment making three tuns can save at least 1,000 .
(To be continued.)

THE RELATION OE MECHANISM TO ART.

[BY w. L. ormsiby, JR.]

The facility for duplication produced by mechanicai pro cesses has aided signally in the perpetuation of artistic productions. In the single department of casting, the varietie of artistic forms that are multiplied become illimitable. The ommonest articles of domestic use, with the aid of mechan sm are embellished by the perpetuation of the work of artists Even so ordinary an object as a parlor stove is now decorated with scrolls and flowers and other devices not unworthy the chisel of a sculptor. The application of the same principle of casting gives us beautiful ornaments in gas fixtures, chandeliers, picture frames, cornices, type, and a million ther devices of the plastic art
Likewise the wondertul improvements in printing have perpetuated the achievements of the draftsman and en graver, until the cheapest book is incomplete without its complement of artistic illustrations
In articles of dress, too, the combination of mechanism and art is peculiarly striking ; see the exquisite texture and pat erns of brocades, of cmbroideries, of laces, and cven of the choaper goods. How beautifully is the universal taste for regular forms ministered to, while in even the cheapest cali coes are seen some productions of great artistic skill.
Take the single article of carpets, of all the varied products of the loom, and we find that in the combination of colors, the delineation of objects, the art of the painter is often fair y rivaled. The cheapness of duplication by mechanical means is also an essential requisite for its success in multi plying artistic forms. Take for instance paper hangingsthe finest of which are almost undistinguishable from fresco painting-a day-laborer can paper the walls of his dwelling painting-a day-laborer can paper the walls of
The difficult and expensive art of engraving affords one of the most striking illustrations of thr point in question. Few persons are aware of the ixumense expenditure of time and
money and artistic ability that are necessary to produse an money and artistic ability that are necessary to produce an ordinary bank note or a common stamp. The elegrance that marks them would be absolutely unattainable without the wonderful mechanism through which an expense of a hundred housand dollars is made available on each two cent letter tamp.
Nor should we overlook in this connection the beautiful shapes that are furnished by such absolute mechanism as the backs of watches, of furniturentation of bank notes, of the simple operations of the lathe are familiar examples.
train of mechanical triumphs comes chromo lithography, per the skill of the engraver
The whole subject is suggestive of the correlation of the rts. Just as individuals cannot improve without improving he nation, so one art or science cannot advance without carrying the sister arts and sciences in its train. The triumph of mechanism has been the perpetuation of art.

Cortesymurar.

re Eaitors are

The Califormia Fairs

Messrs. Editors:-While waiting to keep an engagemen in this Fair building of the Mechanics' Institute of San Fran cisco, I am reminded that your readers might be pleased to ee cven a hasty sketch of the two California Fairs--the Stat air at Sacramento recently closed, and this one at San Fran isco, recently opened.
Of the State Fair at Sacramento I cannot say too little hile of this one I can scarce say enough, in the little space t your disposal for such a purpose. To say that the State Fair, so much and so loudly heralded, was a disgrace to Cali ornia, and would have been unworthy as an exhibition of he industry and productions of any fourth-rate county with in her borders, is to speak a simple truth.
The one thing which seems to have engrossed the facultics of the managers, was the half-mile race course. Dic ontir machinery department consisted of a boiler, engine, and shaft ng-all the requisitesfor machinesin motion, without a single machine of any kind to be thus exhibited ; a part of the space set apart for this purpose was used for the display of a slim collection of agricultural implements.
Pleasanter far is the duty of calling attention to this Fai the Mechanics' Institute, held in a building some 250 by 50 feet, provided with double galleries on each side of the nave (which is not far from 75 feet wide and 50 feet high) onstructed for the purpose, and well filled in every part with rticles of use and novelty.
The central feature of the main exhibition room is an oval haped fountain, around which, and freshened by the ceas less play of the waters, the most tempting fruits are displaycd -fruits of all seasons and of almost every clime. Beans and lackberries, apples and apricots, grapes and lemous, melons and oranges, pears and pomegranates, peaches and pumpkins, plums and potatoes, peppers and quincos, strawberries and squashes. Turnips and vegetables, of every kind, are exhibited in great profusion, while pilfering fingers are restrained by the intervention of coarse wire nettings. Flowers and plants, too, of number and variety uncounted, are assal places in the immediate vicinity ; and behind them again ar stands, where new cider is made, which, with California Vichy water, slakes thirst for the thirsty.
The general effect of the decorations of the room is excel ent. Indeed the exhibition of taste in the arrangement of draperies and in the classification of articles is well worthy the attention of our American Institute managers. Withou attempting to particularize, I will content myself with a pear tial enumeration of articles which attract my attention as $\epsilon \mathrm{S}$ pecially novel or useful. Not the least of these is the Paten agency-where a variety of quaint models appear, and behind them two specimens of printing presses, one a power and the other a hand press. On the latter is being printed a fac simile of Ben Franklin's first newspaper, copies of which are in very good demand at a dime each.
A suspension bridge connects the galleries near the foun tain, and enlightens the otherwise ignorant as to the modes f making and using wire cables for such purposes. The ridge is the joy of all juvenile and many senile visitors.
Did you never think of the adyantages of windows without weights? Here is Sullelt's ball window catch which holds either upper or lower sash at the precise point desired---a more simple and effective appliance for the purpose than have heretofore seen.
Dreamed you never of an endless band saw for scroll as well as heavy work? Many a time have I, and my dream here has substantial shape in the contrivance of Otis Jackson. The wheels upon which the saw moves are about five feet dimeter, made of iron, tired with leather ; and the ends of the saw are skillf ully brazed together, forming, substantially, an endless belt. Have you broken your beck at your father wood pile? Then you quould look with pleasure on Noel's application of crank power to a common buck-saw, worked in connection with a common buck for the wood.
And if the punp were as absolute a necessity in New Yort sit is in California, your eyes would sparkle at sight of At wood \& Bodwell's self-regulating wind-mill tor operating it, and also at that of the Gerrish submerged force pump as substitute for the usual stylc of the article
IIad you plowing to do, and California soils in place of the tony hardnesses of New England, you would debate less apon the instrument itsclf than upon the ease of the scat. The several gang plows in use here do their work well, and all of them provide a comfortable seat for the driver, while the work goes on. Nearly a dozen different specimens of gang plows, the work of as many different makers, are here on ex hibition. They consist of two plows managed in conncction ith a two-wheeled vehicle on which the driver rides.
If the construction of water and sewer pipes required your consideration, you would doubtless respert the asphaltolin pipes, and wonder why the same material might not be applied to tunnels of large caliber
A blower on Root's plan, built at the Globe Works, Stock

ton, would not seem wonderiul, because you will find a larger instrument in your city. instrument in your city.

Enough, however, of machinery, and almost enough of the Fair. Let us enter only, before we leave, this large rqom built and lined with the different kinds of wood which grow in California. The wood riches of all the earth are seemingly gathered here, so many are the kinds and so well polished the specimens. Strahle \& Hughes, who exhibit, call it the "Laurel Palace," and a palace it certainly is-worthy the Fair and worthy the State.
San Francisco, Sept. 27, 1869

On the Assimilation of Inorganic

Animal Economy
Messrs. Editers:-The idea that inorganic substances are not assimilated in the animal organism, advanced by a corres pondent, pages 166 and 280 , current volume, is a favorite the
ry of the so-called vegetable or Indian doctors, te which class ry of the so-called vegetable or Indian doctors, te which class
his authority, Dr. Bellows, appears to belon 9 . The theory in his authority, Dr. Bellows, appears to belong. The theory in
question is founded on the obscure notion that seme myste question is founded on the ebscure notion that some myste
rious change takes place when an inorganic compound is ab. sorbed in a vegetable, that it is vitalized, and that only vital. ized compounds can be appropriated by living animals. Un fortunately this theory is not borne out by the facts; the very contrary is true. It might, with some slight chance of suc cess have been defended many years ag॰, when the sciences of synthetic organic chemistry and biology were yet unborn but since we have learned to compose many se-called organic compounds, for instance, alcohol, guen, sugar, etc., and even
urea and several other animal substances, out of their conurea and several other animal substances, out of their con-
stituent elements-without the aid of living organisms-and that these thus artificially manufactured substances are perfectly identical, to all intents and purposes, to those derived from the usual organic channels, and act on the animal system in the same m
ism" is exploded.
We know now, alse, that there is no difference whateve between phesphates, sulphates chlorides, etc., if made by art or deriv d from vegetable sources, se that, for instance, the phosphate of lime or soda, naturally found in the bran of flour is not in the least different from eny other compound of that name, from whatever source it be derived, provided it be pure tion of inorganic matter, in the animal body ; this is a so well established fact as to make the contrary assertion almost unworestablishe fact as to make the contrary assertion almost unwor-
thy of contradiction. Water is certainly an inorganic compound, and this is so largely assimilated that the great porcontained in the divers mineral waters, are so thoroughly as similated as to cause changes in the constitution of the indi viduals using them, even the external applications in the shape of sulphur and other baths, have similar effects; and lead, mercury, arsenic, etr., either externally or internaliy, are so thoroughly assimilated as to cause painters' colic, the mirror-makers' paralysis, and the finding of arsenic in the very bones of the sulyect. In such cases the antidotes must also be assimilated in order to find the poisons and perfect a cure.

It may be asserted that these cases must not be called as similation, and are only an absorption, because such substances do not belong in the living organism; by the following facts, however, I will prove that if substances belonging to the organism are absorbed in the same manner, they finally perform all the functions of assimilated ingredients.
The cause of chlorosis is that the digestive apparatus is
unable to absorb the small amount of iron present in many unable to absorb the small amount of iron present in many
kinds of fend. Now experionce has taught, in general, that if certain necessary substances are not absorbed, all that wo have te do is to present these very substances in large absorb them. So in chloresis, iron is administered with the food, either as a metallic powder, an oxide, or as a chalybeate mineral water; if inactive, the dose is simply increased, and finally in so cases the discase is only overcome, by giving extraurdinary large doses, which compel the system more for cibly to absorption. If once absorbed tue difficulty is over
come, assimilation follows at once. Recent investigations have come, assimilation follows at once. Recent investigations have
shown that a small quantity of manganese is always present in the blood with the iron, and as the iron administered is in the blood with the iron, and as the iron administered is
always chemically pure, it was suggested that some cases of failure in the iron tratment might be due to the absence o the necessary manganesc. The idea was at once acted upon,
and now, in case of non-success of the iron treatiment, all physicians whe are posted up in regard te the progress of their art, add a small quantity of manganese or a suitable manganese compound to the iron, and always with perfect success. The iron and manganese pills, or quinine and man If any one have, in fact, become a standard prescrill by the blood, let him try to take phosphate of iron daily. Many individuals will seon find that their blood becomes se rich under this treatment that it shows itself in pimples over the face and dewhere. Many potash compounds have the same effect.
The above will suffice, I believe, to settle the point in ques tion, and I will only add that the arsimilation of inorganic conpounds seems highly probable, if not proved, by the following facts: The rapid cure of sore gums by internal use of chlorate of potash; the prevention of morbid profuse perspiration by the internal use of mineral acids; the cure of epilepsy by sulphate of zinc; the bluc coloring of the skin by internal use of nitrate of silver; the sedative effect of bromide of potassium ; the resultant brittleness of the bones by the prolonged use of iedides; the nourishing effect of lime water, if added to milk or certain other kinds of food
P. I. Vander Wexde, M. D.

Messrs. Edrtors :-In your notice of the ingenious theory of Dr. Tyndall (p. 219), in relation to comets, I find a corrobo ration of a belief of my own that " all space is filled with imponderable matter except the small part occupied by the planets-which are themselves pervaded by the same-and that this ungravitating matter is the medium for the action of the imponderable agents, electricity, magnetism, etc. which agents are the manifestation of different elements of that matter.'

The nucleus of a comet is no doubt ponderable, as it observes the laws of gravitation, but is so rare and transparent that it obstructs only the calorific rays, while the actinic, pass ing through, precipitate the imponderable matter of space, rendering it visible, the same as they precipitate invisible vap of water or other matter, this being again dissipated as as the shadow is removed.
If the nucleus were an opaque body the shadow would be cone, unlike a comet's tail, but being transparent the rays passing through are more or less refracted and reflected;
causing this pscudo-penumbra to assume various shapes, according to the nature of the interruption or the varying direction of the deflection.
May not the "luminous envelopes" which surround the nucleus, and which you say are not accounted for by his theory, be, on the other hand, a corroboration of it; if it is a mitted that the sun's actinic rays may be reflected from the surface of the nucleus, or from surfaces within it, into the spaces immediately around it, with even greater power than have those which pass through with but little refraction? This theory, if correct, makes of the sun almost a creator rea lizing the dreams of the magi.
As the "vortical" theory of Laplace and Herschel, if true demonstrates that there was a time when creation commenced and therefore a power which instituted at that time a new sun, so I do not despair of our yet finding out the way in
which it was done. Because we know that gravitation was which it was done. Because we know that gravitation wa
infused into some matter, it does not follow that all matter i subject to it.

Charles Boynton.

How to $\overline{\text { Kinl }}$ the fleas and the 耳og.

Messrs. Editors :-Your correspondent, G. W. B., on page 230 of the present volume, says that "a mixture of carbolic acid with water-one fourth acid, three fourths water-put on a dog will kill fleas at once." There is a somewhat im portant omission here-it will kill the $\mathrm{d} \bullet \mathrm{g}$ alse.
Your correspondent undoubtedly means one f
Your correspondent undoubtedly means one fourth of the saturatcd aqueus solution of carbolic acid, threc fourths water. Carbolic acid is a crystalline substance(chemically an alcohol rather than an acid), which is soluble only to the extent of 5 prr cent in water. A solution for the purpose of killing para sites on animals should contain little more than 1 per cent oif carbolic acid to 99 per cent of water.
There is a very dangerous conentrated fluid carbolic acid in the market, consisting often of 90 per cent of the pure acid, dissolved in some of the hydrocarbons asseciated with it in the process of manufacture. I have purchased this of a druggist of the highest reputation in the city of New York under the name of "solution of carbolic acid," and have suf-: I have been cognizant also of several serious accidents from confounding this concentrated fluid with the saturated aqueous solution of carbolic acid, which is perfectly safe and strong
enough for all applications, except surgical, to the living enough
subject.

It is important that some nomenclature should be agree upon, and rigidly adihered to, to distinguish these prepara tions. Otherwise, in the extended use of carbolic acid, fatal accidenis will be liable to occur.

Providence, R. I.
Wm. F. Ciannine, M. D.
memath's Improvement in Glass Window lights.
Messrs. Editors :-I call your attention te an error in your notice of Demuth's Glass Window-lights, published in your edition of October 16. You state that the illuminating
power of the light transmitted through the reds is not mapower of the light transmitted through the reds is not ma-
terially impaired, whereas it is not only not impaired but on terially impaired, whereas it is not only not impaired but on
the contrary materially increased, or at least concentrated te such a degree that the back part of an apartment will become nearly as light as the front containing the lights.
The refracting power of the reds, which like so many The refracting power of the rods, which like so many duces this and which, with rods of different tints, is exceedingly beautiful.

By publishing the above correction you will oblige
New York city. Victer E. Mauger.

Fresh Water at the seaside.

Mmssrs. Editors:-Througlı the constantly shifting sand of Cape Cod, sixteen to twenty feet from high water and not more than three feet above it, is sunk an iron tube to a depth of fifteen feet, at which point is found fresh water of the sweetest quality and in inexhaustible quantity, which rises and falls in the tube regularly with the tide of its near neigh Yor the Atlantic ocean.
Yet though more than one hundred barrels have been pumped from it at one time, not the slightest trace of saline matter has been found to mar the freshness of its taste. Of such fine quality is it that vessels supply themselves for a sea voyage from this well.
I think the above factsmay prove themselves a curiosity to others as well as myself, and that you will be able to give North Brookfield, Mass.

John Q. Adams

Glass Manufacture in the United States. MESSRS. EdITORS:- Some singular statements get into
newspapers semetimes. Here is one copied from the Boston newsnapers sometimes. Here is one copied from the Boston Commercial Bulletin of Sept. 11, that for accuracy is not much to be depended upon. Under "Pittsburgh Items" it says, "In Junc last, Redick \& Co. began the manufacture of extra annealed flint glass lamp chimneys-they are the only manufactuxers who anneal their chimneys-which process renders them strong and clear."

It is most assuredly the first time that the wonderful revelation has been made that glass is rendered clear by annealing, and the savans who have made researches upon this subject have been sadly in the dark if we are to believe Messrs. Redick \& Co. Yet Réaumur, Dartigues, Dumas, Bon temps, and others, all agree that glass slowly cooled (an nealed) may be devitrified, that is to say, that in cooling glass slowly, the elements arrange themselves in such a manner as t- form a certain refined crystalline silicate, which separate from the remaining mass and produces thereby a milky and If the object of grained
If the object of publishing such a statement is to sell the wares, it is a poor kind of a puff ; and instead of recommend ing the goods it advertises the ignorance of the manufac-

While on this subject of glass, let me say a word in regard the comparative degree of efficiency between European and the American manufactories. It is universally conceded, that although we have vastly progressed in this country, es pecially in pressed glass ware, we are still cadly bchind hand in many branches. It is true we are making a very fair article of plain window glass, but have we yet made any colored window olass? Can we compete with the French, the English, for fine cut glass? Can we imitate or excel the Bohemian in fancy colored glass? Can we rival with the French, English and Belgian manufacturers in making plate glass? D• w generally preduce as fine an article of glass as the French and Bohemians do? Have we ever applied etching to glass as it is now so extensively done in France, or have we yet made any trials in applying photography to ornamenting glass? With the exception of one or two cases, have we used the Siemens furnaces with as much success as they have in Europe? Can we imitate the artistic chefs d'euer? or production that are to be seen in Europe in the chandelier and fountain line? Do we gild and paint glass like the French and Bohemians? Can we gencrally produce those marvelous articles blown by the Prench, so thin, so brilliant and $\varepsilon \bullet$ regular in workmanship ?

To the above and to many other questions I fear we must give a negative answer. The aim of most of our glsss manufarturers has been to improve simply in pressed wares ; a very worthy object it is true, yet it is well known that pressed glass can never attain the perfection of blown and cut wares. An inexperienced person will soon be able to distinguish one from the other, and there is a limit beyond which improvements in pressed wares can not go. Improvements in presses have been made to render them easy to work and to adapt them to different sizes of molds. Molds have been made with combinations to mold all sorts of shapes. Some have been quite successful, but for all that, all pressed glass bears its stamp and can not be compared te blown and cut glass. Is is not time then for some of our glass manufacturers to devote their time and intelligence to other purposes? With the exception of one or two Eastern manufacturers, we have but little or no colored glass made in this country. Where is the fault? It cannot be the cost for we have plenty of materials and at reasonable prices. I fear it is not this but the want of the skillful labor they have in Europe. It is a crying shame that we should send to Furope for all the plate glass we use, and we use a large quantity of it, while we have everything in profusion in this conntry to make glass. Attempts have been made in this country to make plate glass but se far have been unsuccessful. Another attempt is now being made at New Alban y, Indiana, according to a communication printed lately in the Scientific American. Let us hope that this, like the others, will not be a failure, but I think I can say, almost positively, that the non-success of these enterprises is not due to disadvantages in materials, but is attributable to an over-conidence and selferiability in the knowledge of these whe undertook it without having skilled and experienced hands to helpthem. Mr. Lockwoode, in the communication above referred to, says, that " there is no such word as fail in the dictionary" of the gentleman at New Alba. ny. Let us hope that he may not be called to print it. Washington, D. C.

- Emiters.

Messrs. Editors:-Sometime since a correspondent sug gested a boiler test, to be tried at the present Fair of the American Institiate. It consisted in connecting the boilers to be tested to a 0 -horse power engine, arranged to drive an immersed screw propeller; the boiler which would proace the greatest number of revolutions of the propeller with a given amount of coal, to be adjudged the "champion biler."

There would, doubtless, be some fallacies involved in a test of thiskind. Whe power required to put a propeller in motion is dependent, to a great extent, upon the velocity with which it revolves, varying newrly as the square of the velocity. For example, it would re uire one hundred times the power, per revolution, to communicate one hundred revo Iutions per minute to the propeller, that it would take to communicate ten. Consequently, if the proposed test were put in practice, the "champion boiler" would be the one which fired slowest and ran the propeller at the lowest velowhich
city.
Brid
Bridgeport, Conn,

Improvemant in Farm Gates

Nothing is more unsightly around a farmer's house than a dilapidated farm gate. Many improvements have been patented, but the one illustrated herewith is among the latest. As these modern gates have been adopted by farmers a vast improvement in the appearance of country homes is apparent. The gate shown in the annexed engraving is claimed to possess advantages not to be found in any other in use.
Fig. 1 shows this gate partially opened; and Fig. 2 shows it entirely opened, and held from closing by a latch. In Fig. it entirely opened, and held frome if the gate should be slid to the left it would meet the 1 , if the gate should be slid to the left it would meet the
post, A, and the latch, B, engaging with the post would post, A, and the latch, B, engaging with
fasten it shut. When partially opened, the gate rests on a block, C , at the middle of the bottom, with a notch at the top to admit the bottom rail of the gate, the first motion in opsing being a sliding to the right. It has a wooden hinge bar, D, composed of two pieces of timber playing on each side of the gate, with a gudgeon or hinge pin,
E , at the top and a similar one at the bottom. This hinge bar stands at the angle shown in Fig. 1, when the gate is closed, and remains in that position until the middle remains in the gate meets it as the gate vertical bar
is slid open.
A roller, F , between the two parts of the A roller, F, between the two parts of the hinge post, D, allows the gate to be slid back
to the position show in Fig. 1 without disturbing the position of D. A cord running from the post, G, to the top of D, limits the inclination of the latter.
In opening the gate after it has reached the position shown in Fig. 1, it engages with the hinge post, D, the bottom of which is held by, and plays in a step H. The hinge post is then thrown back to a vertical position, lifting and carrying the gate with it until the gudgeon, E, enters a slotted bearing, I, nailed on to the tops of the posts G and I. These posts are not set one directly in front of the other, but one a little to one side of the other to allow the gate to swing between them.
As soon as the hinge post, D, reaches the vertical position As soon the gate is balancel it reaches the position ted upon D until it reaches the position
shown in Fig. 2, in which it is held by the shown in
latch L . .
Fig. 2 shows by the dotted lines the first position of the gate and also exhibits the positions of the different parts when the gate is fully opened.
The hinge post, D, may be made of a proper length to elevate the gate above snow in winter, and the gate may be unhung as readily as gates with the common hinges. Nothing but wood and common nails are employed in its construction.
Patented April 27,1869 , through the office of the Scientific American,by J.T.Moxley, whom address for further information at whom address for further information at
Owasso, Mich. See advertisement on an Owasso, Mic
other page.
suspension Pridges.
In the construction of suspension bridges, the tics, or ropesfrom the main cable, sustaining the roadway, are of twisted wire as well as the main cable. With the alleged advantages of twisted wire ropes, for this purpose, over straight iron rods, I am not a ware that the less expansion and contraction of the wire ropes, by changes of temperature, have been recognized.
A hempen rope will contract in length when wetted, owing to the minute particles of water acting as wedges, increasing the width and the convexity of its spiral curves. The fibres of the same hemp laid straight, will not be shortened by wetting, but when in small fragments, as when made into paper, will be expanded in a similar manner by wetting.
paper, will be expanded in a similar manner and wire rope of equal lengths would expand equally by heat, waiving the above referred-to property, but equally by heat, waiving the above referred-to property, but ally, would, by an equivalent wedgc-like action, increase the convexity of the curves and tend to shorten the rope. By a reverse operation cold contracts and flattens the spiral curves, and tends to lengthen the wire rope,as with the hempen rope, when dried and stretched.-T. W. Bakewoll.

Steans Roiler Incrustations.

According to the Chemical News, M. E. Wiederhold states that the hardest incrustetions of this kind are formed when the quantity of carbonate of lime amounts to from 20 to 25 per cent of the entire mass. He has found, by an experience extending over several years, that some kinds of clay, among these the substance known as kieselschiefer (a peculiarly fatty clay), when suspended in the water, contained in steam boilers, prevent the particles of carbonate and sulphate of lime dissolved in the water, even if the latter is very hard, to cling together, and become fixed to the sides of the boilers, forming there a hard incrustation. A series of experiments, made on purpose, and continued for a sufficient length of time to yield a reliable result, has fully proved that the addition to the feed-water of the stcam boilers of fatty clays, especially crustations, even where, of nccessity, very hard water has to crustations, even where, of necessity, very hard water has to
be used as feed water. A loose, soft mud is deposited as soon be used as feed water. A loose, soft mud is deposited as soon
as the motion of the water, due to the boiling, ceascs on cool-

MOXLEY'S FARM GATE.

been done, the finely-divided iron is kindled, by approaching

 to it the flame of a Bunsen gas burner, and continues to burn. While burning, it will be seen that the arm of the balance on which the magnet is suspencied considerably deviates from the horizontal position, thus indicating an increase of experiment succeeds best with a magnet of moderate dimen
ing. This mud readily runs off on opening the sludge valve of the boiler.

Increase of Weight During Combustion.

The Chemical Newos gives a description of an interesting

 experiment. A small horseshoe magnet is hung up at the beam of a balance sufficiently sensitive to turn with centigrammes; the poles of the magnet are immersed for a moment in the limatur ferri of the chemists' shops, and a beard small particles of iron is caused to adhere to the poles, by end of the beam the equilibrium is restored. This havingcessed to allow the air to flow freely up around and to enter the interstices of the grate as well at the back as the front. By similar means the air a'so enters the ends of the grate to sualy all parts of the incandescent coal equally with the oxygen necessary to combustion. The air also becomes heated in this chamber previous to entering the fuel, and is thus in the best condition to favor combustion.

The ashes, when the grate is stirred, fall back into the recess instead of pouring forth into the apartment, and thus one of the objections to the use of grates, which has greatly retarded the employment of this most wholesome and pleasof all the means employed for burning coal in dwellings is removed. The inventor caims that the use of this grate will cure smoky chimneys on account of the more perfect draft secured.
The back is made separate, and can be used
Thecunt of the more per with ordinary baskets, in grate fronts of any pattern and with all grates by re-setting. It is simple in construction, and not liable to get out of \bullet rder. The inventor also states that air-heating compartments are successfully used in connection with it.
State and county rights may be obtained on application to the inventor, who will also furnish full-sized patterns gratis to purchasers. Patented through the Scientific American Patent Agency, August 25, 1868, by G. H. Mc Elevy, Newcastle, Pa., who may be addressed for further information.

Lurmann's Bblast Furnace

Engineering states that a considerable num ber of German ironmasters have, during the last two years, applied to their furnaces the system of Mr. Lürmann, the manager of the Georg-Marien Mining and Iron Company, of Osnabrïck, Prussia, the improvemient consisting in closing the front of the hearth, thereby dispensing with the dam stone, tymp, etc. A scoria outlet is set in the closed breast at a distance of about 6 in . below the tweers, and through this outlet the slag runs off regularly and constantly. The tapping hole is placed where the heat is greatest.

This arrangement has been successfully worked for six months or more at the Old Park Iron Works, Shropshire, and more than one of our leading ironmasters have expressed their intention of adopting it. lts advantages are thus enumerated

1. The slag discharges itsclf through the scoria outlet at about the same level, there fore there are no vacillations of the slag in the hearth, and the corroding of the wall is diminished.
2. As there is no fore-hearth, there are of course no repairs, and no breaking up of the scoria crust in the same. This is equal, as shown above, to a saving of at least twenty days per year. Suppose a large furnace produces forty tuns per day, the same will yield at least eight handred tuns per year more, if built on Mr. Liirmann's principle than if it were of the ordinary construction.
3. As there are no interruptions, the furnace does not cool. It works more regular, as the heat in the furnace is al ways the same.
4. The doing away with the dam and the fore-hearthallows the removal of the tapping sions; the horseshoe magnet applied inthis instance weighed, hole from the former into the wall of the hearth. The without its armature, 210 grammes, and can bear a load of opening of the tapping-hole is then easy, as it is close to the 12.5 grammes of iron; when this is altogether converted in magnetic oxide, by combustion, the increase in weight will
be about 4.7 grammes. be about 4.7 grammes.

IMPROVEMENT IN OPEN FIRE GRATES.

Great as have been the improvements in all kinds of do mestic heating apparatus, we all know that a very large prof,ortion of the available heat still eludes us and passes through chimneys to the open air. And there is no doubt

also that much of the combustibie matter is distilled rather than burned, and passes off as gas, not only failing to give its share of heat but taking with it a portion of the heat furnished by that which is consumed.
Our engravings exhibit a form of grate called by the in ventor a Perfect Combustion Grate, calculated to obviate these losses, by securing more perfect combustion, and using to greater advantage the heat produced
To sccure these ends the grate is constructed as shown in front elevation, Fig. 1, and in section, Fig. 2. It will be observed that the masen work at the back of the grate is re-
greatest heat.
5. The completely-closed hearth allows a considerable in crease of the pressure of the blast, because a throwing out of materials has become impossible.
6. The increase of the pressure is always of great importance, but espécially where pit coal, anthracite, etc., are used ; and where the layers are compact. The number of charges can be greater, effecting a corresponding increase of produce.
7. The augmentation in the number of tweers, and the equal distribution of them, made feasible by the doing away with the forepart of the hearth, allow a better and equal dis tribution of the blast in the hearth; the furnace therefore works better, and a greater quantity of ore is smelted, proworks better, and a greater q
vide there is sufficient blast.
8. The rumber of hands may be lessened, as the operations are few and easy ; the same need not be of great skill and are few and easy ; the same need not be of great skill and
experience. No fire clay and other refractory materials for experience. No fire clay and other refractory materials for
the repairs, and less tools_are wanted. It may be mentionced the repairs, and less tools,are wanted. It may be mentionce
that formerly the sinelters of Georg-Marien-Huitte, when working, were almost stripped ; now they are always in full working dress.

To Clean Oilcloth.-An oilcloth should never be scrubbed with a brush, but, after being first swept, should be cleaned by washing with a soft flannel and lukewarm or cold water. On no account use soap or water that is hot, as either would have a bad effect on the paint. When the oilcloth is dry, rub it well with a small portion of a mixture of bees' wax, softened with a minute quantity of turpentine, using for this purpose a soft furniture polishing brush. Oilcloth cared for in this way will last twice the time than with or dinary treatment.-Septimus Piesse.

We have received a number of communications on the subject of strcet crossings, none of which seem to us to contain any practicable suggestions, they are therefore declined with thanks.

