nitrate of mercury test as afflording sufficiently clear reactions to
olive oil.

He used Pontet's test as follows: 6 parts of mercury are dissolved in $7 \frac{1}{3}$ parts, by weight, of nitric acid, $1 \cdot 36$ without the application of heat, and form the test solution. The tubes for making these experiments are merely strong test tubes of '7 inches in length, and holding about a fluidounce. They are roughly graduated by pouring in 30 minims of water and scratching a line upon the glăss; another line is made at the point reached when a total of 6 drachms of water have been poured in. The lower line is marked "test," the upper one suspected oil to the other line; shake well and set aside, shaking again about an hour afterwards. In from three to shaking agan abording to the temperature etc, a genuine wive il will have solidified entirely the product after the olive oil win laiter interval being quite hard when touched by a glass rod Cotton-seed oil, when similarly treated, will not solidify, but remains fluid. A misture of 25 parts of cotton-seed oil with
75 parts of olive oil gives an intermediate condition. The 75 parts of olive oil gives an intermediate condition. The
contents of the tube become solid, but if a little be taken out with a glass rod, it is found to be soft, pasty, and without any friable character. On the other hand, when pure oliv oil is so treated, the product is hard, friable, and not pasty. Comparative trials should always be made, and caution exer cised in ascepting the apparent conclusions. Where only $12 \frac{1}{2}$ per cent of cotton-sied oil is present, the reactions are not so distinct as with 25 per cent., but Mr. Reynolds considers them usually sufient to decide the case.-Druggists' Cir cular.

THE MANUFACTURE OF SULPHURIC ACID.
From the Report of J. La wrence Smith, Unit
Black Ash-Mond’s Process for Otaining Sulphur.-I pro pose giving a tolerably full account of Mond's process, as described by himself, in using the waste from the black-ash generally employed in England, and which allows of more rapid operation
In place of the set of four vats generally in use for lixiv iating black-ash, he employs a set of ten or twelve. All of these are connected by pipes in the usual way, so that the soda liquor runs from the bottom of one vat to the top of the next one, and by special pipes and taps which allow the sulphur liguor to run out of the bottom of each vat to the sulphur liguor ther vat in the set. Besides this, they are provided with extra ta and shoots to convey the sulphur liquor vided with extra tal and shoots to con of all the vats are conto wells or settle. About nected with a fan (capable of pion furnished with dampers seven inches of water), by pipes furnished with
which regulate the quantity of air passing through. which regulate the quantity of air passing through.
A noiseless fan of Schiele's construction twenty inches in diameter, price $\$ \tilde{5} 0$, propels a sufficient quantity of air for the treatment of the waste resulting from 100 tunsof salt cake per week. Four of the vats are always filled with black-ash in the course of lixiviation ; the other six or eight with waste to be treated according to the invention. As soon as the black-ash is completely spent, and the weak liquor is well drained off, the connection with the fan is opened. The waste soon begins to heat, the temperature gradually rising above 200° Fah., and gives off quantities of steam, becoming greenish, and afterward yellow on top, gets more and more dry, and would take fire if the air was passed through ong enough. The time for discontinuing the passing of air, so as to have the best results, must be ascertained in each es-
tablishment by experiments, and varies according as much or little hyposulphite in the hydrosulphide and bisulphide of calcium are formed, which are afterward oxidized into hyposulphite. A part of the hyposulphite is again decomposed into sulphur and sulphite, which is very insoluble, and cannot be extracted by lixiviation. Carrying the oxidation too fine would therefore entail a serious loss. On an average the dime of exposure will be limited to between twelve and twenty four hours. The waste is now lixiviated systematically with cold water, the weaker liquors passing from one vat the next one in course of lixiviation, so as to obtain ouly strong liquors, which operation can be casily performed in six to eight hours. When this lixiviation is finished, air asirto chrough the waste in cractly the same way as before ; the waste is again lixiviated, and the same treat sher the the is then ready to be ment is repeatod filled with black when the to be cast, and is again fil wion opera tions have bean well conducted, salphur equal to about 12 per cent of the weight of the salt cakes used in making black-ask is obtained in solution from the waste. The waste contains only traces of sulphide of calcium, and is principally composed of carbonate of lime, sulphitic, and sulphate of
lime, which, far from being noxious, make the waste, on the lime, which, far from being noxious, make the waste, on the
contrary, a valuable manure. In soparating the sulphur from the liquors thus obtained, by adding muriatic acid, met with much more difficulty than I had anticipated from such a reaction.
The oxidation of the waste is regulated so as to obtain a liquor, which contains as nearly as possible to every equivalent of hyposulphite two equivalents of sulphide. This liquor is decomposed by first adding to a certain small quantity acid an excess of liquor, until there is a trace of sulphide in the mixture ; then a quantity of acid sufficient to neutralize the whole of the calcium is poured in; a new quantity of iquor equivalent to this last quantity of acid is added, and then acid again and liquor again, and so on until the vessel is nearly filled. To the last liquor only one half of the re-
quired acid is added, and steam introduced until the liquid
shows a temperature of about 140° Fah. Practically speak ing, the liquor and acid are poured at the same time into
workmen taking care to keep a small excess of liquor up
worknen a care up to n in covered wooden tanks connected with a chimney in order to carry off any sulphureted hydrogen which mey in evolved by mistake of the workmen. If properly carried out there should be, however, no appreciable quantity of that gas evolved.
The practical result of this mode of working is simply precipitation of nearly the whole of the sulphur in a pure ate.
Ca $\mathrm{O}, \mathrm{S}_{2} \mathrm{O}_{2}+\mathrm{Ca} \mathrm{S}_{\mathrm{x}}+3 \mathrm{II} \mathrm{Cl}=3 \mathrm{CaCl}+3 \mathrm{II} \mathrm{O}+(2+\mathrm{x}) \mathrm{S}$.
The details of the reaction are, however, very complicated, almost all the different acids of sulphur being probably formed during the process.
In practice, about 90 per cent of the muriatic acid, calcu ated according to the above-described method, is required to thus effect the complete decomposition of a well-proportioned liquor. If it contains more hyposulphite than above indicated less acid is, of course, to lee used. About 90 per cent of the sulphur contained in the liquor is precipitated in an almost pure state, and settles exceedingly well within two hours. The supernatant clear solution of chloride of calcium is then drawn off, and another operation directly commenced in the same vessel as soon as a sufficient quantity of sulphur is col lected in it, which will depend on the size of the vessel and on the strength of the liquor, ranging from 4 per cent to ${ }^{7}$ per cent of sulphur; it is drawn out by means of a door a the lower part of the vessel into a wooden tank with a double floor, where the chloride of calcium is washed out by water, and the sulphur is then simply melted down in an iron pot. The product thus obtained contains only from one tenth of one per cent to one per cent of impurities, and is thus by ar superior to any sort of brimstone in the market, though has sometimes a rather darker color, caused by traces of sulphide of iron, or a little coal dust, which latter may hav been suspended in the muriatic acid.
'The total yield of sulphur obtained by the process amounts thus to 10 or 11 per cent of the weight of the salt cake used in making black-ash, or to about one half of the sulphur therein contained, and to about 60 per cent of the sulphur ontained in the waste. It is still hoped, however, to con iderably increase this quantity after some more years of xperience
The cost of production is inconsiderable. In the different continental and E:wlish works, where the process has now been working for years, the expense for wages, fuel, and maintenance amounts only to $\$ 5$ per tun of sulphur, and the outlay for the apparatus will be more than covered by the net profits of the first year. An establishment making three tuns can save at least 想, 000 .

(To be continued.)

For the simitule American
THE RELATION OF MECHANISM TO ART.

[BY w. L. ormsiby, JR.]

The facility for duplication produced by mechanical processes has aided signally in the perpetuation of artistic pro ductions. In the single department of casting, the varietie of artistic forms that are multiplicd become illimitable. Th ommonest articles of domestic use, with the aid of mechan ism are embellished by the perpetuation of the work of artists Even so ordinary an object as a parlor stove is now decorated with scrolls and flowers and other devices not unworthy the chisel of a sculptor. The application of the same principle of casting gives us beautiful ornaments in gas fixtures, chandeliers, picture frames, cornices, type, and a million ther devices of the plastic art.
Likewise the wondertul improvements in printing have perpetuated tho achievements of the draftsman and earaver, until the cheapest book is incomplete without its omplement of artistic illustrations.
In articles of dress, too, the combination of mechanism and art is peculiarly striking; see the exquisite texture and pat terns of brocades, of cmbroideries, of laces, and cven of the choaper goods. How beautifully is the universal taste for regular forms ministered to, while in even the cheapest cali coes are seen some productions of great artistic skill.
Take the single article of carpets, of all the varied products of the loom, and we find that in the combination of colors, the delineation of objects, the art of the painter is often fairy rivaled. The cheapness of duplication by mechanical means is also an essential requisite for its success in multi plying artistic forms. Take, for instance, paper hangingsthe finest of which are almost undistinguishable from fresco painting-a day-laborer can paper the walls of his dwelling lmost as cheaply as he can whitewash them.
The dificult and expensive art of engraving affords one of the most striking illustrations of ths point in question. Few persons are aware of the ixmense expenditure of time and money and artistic ability that are necessary to produce an ordinary bank note or a common stamp. The elegance that marks them would be absolutely unattainable without the Wonderful mechanism through which an expense of a hundred housand dollars is made available on each two cent letter stamp.
Nor should we overlook in this connection the beautiful shapes that are furnished by such absolute mechanism as the turning lathe. 'The ornamentation of bank notes, of the backs of watches, of furs, machincry, and tools, by the And i lan
train of mechanical triumphs comes chromo lithography, per petuating the ekill of the painter as printing has perpetuated the skill of the engraver.
The whole sulject is suggestive of the correlation of the rts. Just as individuals cannot improve without improving he nation, so one art or science cannot advance withou carrying the sister arts and sciences in its train. The triumph of mechanism has been the perpetuation of art.

Corteymudrce.

The Eaitors are
respondents.

The Califormia Fairs

Messrs. Editors:-While waiting to keep an engagement in this Fair building of the Mechanics' Institute of San Fran cisco, I am reminded that your readers might be pleased to ee cven a hasty sketch of the two California Fairs--the Stat air at Sacramento recently closed, and this one at San Franisco, recently opened.
Of the State Fair at Sacramento I cannot say too little hile of this one I can scarce say enough, in the little space t your disposal for such a purpose. To say that the State Fair, so much and so loudly heralded, was a disgrace to Cali ornia, and would have been unworthy as an exhibition of he industry and productions of any fourth-rate county with in her borders, is to speak a simple truth.
The one thing which seems to have engrossed the facultics of the managers, was the half-mile race course. The ontire machinery department consisted of a boiler, engine, and shaft ing-all the requisites for machines in motion, without a single machine of any kind to be thus exhibited ; a part of the space set apart for this purpose was used for the display of a slim collection of agricultural implements.
Pleasanter far is the duiy of calling attention to this Fai the Mechanics' Institute, held in a building some 250 by 50 feet, provided with double galleries on each side of the nave (which is not far trom 75 feet wide and 50 feet high) onstructed for the purpose, and well filled in every part with rticles of use and novelty.
The central feature of the main exhibition room is an oval haped fountain, around which, and freskened by the ceas less play of the waters, the most tempting fruits are displaycd -fruits of all seasons and of almost every clime. Beans and blackberries, apples and apricots, grapes and lemous, melons and oranges, pears and pomegranates, peaches and pumpkins plums and potatoes, peppers and quinces, strawberries and squashes. Turnips and vegetables, of every kind, are exhibited in great profusion, while pilfering fingers are restrained by the intervention of coarse wire nettings. Flowers and plants, too, of number and variety uncounted, are aces places in the immediate vicinity; and behind them again ar stands, where new cider is made, which, with California Vichy water, slakes thirst for the thirsty.
The general effect of the decorations of the room is excel ent. Indeed the exhibition of taste in the arrangement o draperies and in the classification of articles is well worthy the attention of our American Institute managers. Without attempting to particularize, I will content myself with a par ial enumeration of articles which attract my attention as f pecially novel or useful. Not the least of these is the Patent Agency-where a variety of quaint models appear, and behind them two specimens of printing presses, one a power and the other a hand press. On the latter is being printed a fac simile of Ben Franklin's first newspaper, copies of which are in very good demand at a dime each.
A suspension bridge connects the galleries near the foun tain, and enlightens the otherwise ignorant as to the modes of making and using wire cables for such purposes. The ridge is the joy of all juvenile and many senile visitors.
Did you never think of the advantages of windows without eights? Here is Sullelt's ball window catch which hold either upper or lower sash at the precise point desired---a more simple and effective appliance for the purpose than have heretofore seen.
Dreamed you never of an endless band saw for scroll as well as heavy work? Many a time have I, and my dream here has substantial shape in the contrivance of Otis Jackson. The wheels upon which the saw moves are about five feet diameter, made of iron, tired with leather ; and the ends of the saw are skillfully brazed together, forming, substantially, an endless belt. Have you broken your beck at your father's wood pile? Then you woould look with pleasure on Noel's application of crank power to a common buck-saw, worked in connection with a common buck for the wood.
And if the pamp were as̃ absolute a necessity in New York as it is in California, your eves would sparkle at sight of At wood \& Bodwell's self-regulating wind-mill tor operating it and also at that of the Gerrish submerged force pump as substitute for the usual style of the article
Had you plowing to do, and California soils in place of the stony hardnesses of New England, you would debate less upon the instrument itsclf than upon the ease of the scat. The several gang plows in use here do their work well, and all of them provide a comfortable seat for the driver, while the work goes on. Nearly a dozen different specimens of gang plows, the work of as many different makers, are here on ex hibition. They consist of two plows managed in conncction ith a two-wheeled vehicle on which the driver rides.
If the construction of water and sewer pipes required your consideration, you would doubtless respest the asphaltolin pipes, and wonder why the same material might not be applied to tunnels of large caliber
A blower on Root's plan, built at the Globe Works, Stock-

