a weekly journal of practical information, arit. scievce, nechanics. Chemistry, and manufactitres.

NEW YORK, SEPTEMBER 18, 1869.

$\left\{\begin{array}{c}\$ 3 \text { per Annum } \\ \text { IN Abvanck. }\end{array}\right.$
Improvement in Glassware Presses. In the construction of glassware presses it is desirable that the movement of the platen or presser toward the bed shal begin with a rapid, and torminate with a slow but powerful movement; and it is also desirable that this movement shall be cffected by means which will operate with so little friction and side thrust that the press will work sensitively, or so that the operator can determine, by feeling, the resistance offered just when the pressing should be discontinued ; if the pressing is continucd beyond the proper point the mold is injured and the ware spoiled.
The press shown in the accompanying engraving has a peculiar combination of devices by which the moving parts of the machine operate to give the platen or presser a motion which changes from a rapid one at first to a slow but powerful movament at last, at the same time leaving the press delicate and sensitive in its indication, through the lever, of the resistance offered to a continued pressing movement.
In the engraving the parts are shown in the po sition which they occupy previous to making a stroke. The dotted lines show the position they occupy when the presser is brought to its lowest position in making an impression.
To the bed, A, are attached two uprights, B, in the top and bottom ends of which are formed guide ways, in which the ends of the crosshead, C , and crossbar, D, can be made to reciprocate simultaneously, being connected by the links, E . Toggles, made by links, F and G, on each side Toggles, made by links, F and G, on each side the rockerlever, H, connected to the toggles by the links, I. Each link, F, of each toggle is pivthe links, I. Each link, F, of each toggle is pivoted to a fixed pivot in each upright, B; and the lower link, G, of each toggle is connccted to the crossbar, D . The rocker lever, H , is fixed upon the rocker shaft, J, which carries, at the other end, a rocker lever, K , one of the links, I, being coupled to the rocker lever, H , the other to a rocker lever, K', said links being connected one to each toggle. On the inner surfaces of the uprights, B, are guide ways, L, which guide the presser in its reciprocating motion, the presser being connected to the crosshead, C, by the screw hand wheels M , and screw, N , by which the platen can be ad justed toward and from the bed to suit various hights of molds. To counterbalance the gravita tion of the moving parts, and thereby increase tion of the moving parts, and thereby increase the sensitiveness of the press, chains, O, with a
weight at one end, pass over the wheels, P and weight at one end, pass over the wheels, P, and are attached to the crosshead, C. It will be obvious that the first part of the movement of the lever toward the operator, will rapidly move the platen by straightening the toggles ; and that the movement of the platen, proportionately to the movement of the lever, will grow less and less, and more and more powerful in effect as the toggles approach a straight line. The toggles thrust directly down upon the crossbar, which pulls through the links, E , in a direct line with the crosshead, C, thus avoiding all side thrust and strains on the crossheads and platen, so that the most delicate friction, as in weighing apparatus, is reduced to a minimum riction, as weiging apparatus, is reduce to minimum y the system of pivots and center. The springs for hold ng the mold in position, shown at Q, are or good length, fou in number, and adjustable by the This press was patented June 8, 1869. The presses are manufaatured by the inventors and
patentees, Messrs. Hawes \& Herpatentees, Messrs. Hawes \& Hersey, well-known machinists and press builders, of South Boston, Mass., and arepronounced by those who have seen or used them, to be the best machine of the kind ever produced. For rights to build, or for presses, they can be addressed as above.

Harvester Cutter Bar.

Harvester Cutter Bar.
Our inventors are latterly turn ing out a series of unusually practical and valuable improvements. The one we now present to our readers, is a device that will save much time, trouble, and expense to farmers, and the convenience of which must be obvious upon even a cursory inspection. The cutter bar is made of the patent cold rolled iron of Jones and Laughlins, noticed at length on page 50, Vol. XX, Scientific American, and is made so that its cross
section is of the form made by the intersection of two equal circles. It has not a rivet hole in its entire length-a fact which will be significant enough to farmers, when they recall
the points of fracture in the finger bars they have broken in their practice.
Upon this bar are slipped the cutters, made in the form shown in detail at the upper part of the engraving. The terminal knife being fastened by a screw, shoulder, or any shown in detail at the upper part of the engraving. The ter-
minal knife being fastened by a screw, shoulder, or any now
other suitable means, and the cutter bar being thrust, in and

HAWES \& HERSEY'S GLASSWARE PRESS.
held by the set screw, A, all are held firmly, yet any one can be reached and removed with the utmost facility, when occasion requires. Should a cutter bar break, all the knives can be removed, another bar inserted, and the knives replaced in
five minutcs. But as the shape of the five minutcs. But as the shape of the bar and the absence of
rivets give great strength with lightness, it is evident that

ADJUSTABLE HARVESTER CUTTER BAR.

not only will there be less liability to breakage, but the recip

 rocation of the bar will absorb less power than the old form of bar. The easy removal of the knivesis also a great ad vantage in grinding, obviating any decessity for special applances for this object. They can be perfectly and easily ground on the ordinary grindstoneThe inventor informs us that although his patent bears date June 8,1869 , he has arready received orders for twenty housand of these bars. Communications should be addressed to G. L. Du Laney Mechanicsburg, Pa.

CHINA AND THE CHINESE.
It is now conceded by shrewd observers of current events, enincse element is destine to become in the future part of our population, and to exercise a great influence on the destiny of this continent. . It is not therefore to be wondered at that the period icals of the time should find the discussion of anything which pertains to this remarkable peo ple acceptable to their readers. So little have China and Chinese customs been understood, that now when the public mind is awakened to the importance of better information in regare to that ancient empire, it is surprised at the very erroneous ideasit has hitherto entertained. This surprise arises not only from the differences be tween our customs and those of the Chinese, but also from the fact that the Chinese have made very much greater advances in civilization than has been generally supposed by other civilized nations.
Some of these facts have been put in a very acceptable dress by a writer in the Attantic Monthly, for September, from which we extract a portion:
China is the type of permanence in the world To say that it is older than any other existing nation, is saying very little. Herodotus, who has been called the Father of history, traveled in Egypt about 450 B. C. He studied its monuments, bearing the names of kings who were as distant from his time as he is from ours-monuments which even then belonged to a gray antiquity But the kings who erected those monuments were posterior to the founders of the Chinese Empire. Porcelain vesscls, with Chinese mottoes on them, have been found in those ancient tombs, in shape, material, and appearance precisely like those which are made in China to-day ; and Roselini believes them to have been imported from China by kings cotemporary with Moses, or be fore him. This nation and its institutions have outlasted everything. The ancient Bactrian and Assyriankingdoms, the Pcrsian monarchy, Grecce and Rome, have all risen, flourished, and fallen -and China continues still the same. The dynasty has been occasionally changed ; but the laws, customs, institutions, all that makes national life, have continued.
The authentic history of China commences some three thousand years before Christ, and a thousand years in this history is like a century in that of any other people. The oral language of China has continued the same that it is now for thirty centuries. The great wall bounding the Empire on the north, which is twelve hundred and forty miles long, and twenty feet high, with towers every few hundred yards-which crosses mountain ridges, descends into valleys, and is carried over rivers on arches-was built two hundred years before Christ, probably to repel those fierce tribes who, after ineffectual attempts to conuer China, traveled westward till they appeared on the borders of Europe five hundred years later, and, under the name of Huns, assisted in the downfall of the Roman Empire.
All China was intersected with canals at a period when none existed in Europe. The great canal, like the great wall, is unrivaled by any similar existing work. It is twice the length of the Erie Canal, is from two hundred to a thousand feet wide, and has enormous banks built of solid granite along a great part of its course. One of the important mechanical inventions of modern Europe is the Artesian well. That sunk at Grenoble was long supposed to be the deepest in the world, going down eighteen hunUnited States, has since been drilled to a depth, as has reUnited States, has since been drilled to a depth, as has recently been stated, of more than four thousand feet. But in
China these wells are found in tens of thousands, sunk at China these wells are found in tens of
very remote periods, to obtain salt wate.
The method used used by the Chinese from immemorial time has recently been adopted instead of our own, as being
much more simple and economical. The Chinese have been long acquainted with the circulation of the blood; they inoculated for small pex in the tenth century ; and about the same time they invented printing. Their bronze money was made as early as $1,100 \mathrm{~B} . \mathrm{C}$., and its form has not been changed since the beginning of the Christian era. The mariner's compass, gunpowder, and the art of printing were made known to Europe through stories told by missionaries return the Celential Empire in Chinese junks, saw a little box containing a magnetized needle, called Ting-nan-Tchen, or "needlewhich points to the south." They also noticed terrible machines used by the armies in China, calle Ho-pao, or fireguns, into which was put an inflammable powder, which produced a noise like thunder, and projected stones an The first aspect of Chin ple force.
The first aspect of China produces that impression on the
mind which we call the grotesque. This is merely because mind which we call the grotesque. This is merely because the customs of this singular nation are so opposite to our own.
They seem morally, no less than physically our antipodes. They seem morally, no less than physically our antipodes. bedies. We stand feet to feet in everything. In boxing the compass they say "westnorth " instead of northwest," "east-
south " instead of southeast, and their compass-needle points soutn instead of north. Their soldiers wear quilted petticoats, satin boots, and bead necklaces, carry umbrelas and ans, and go to a night attack with lanterns in their hands, being more afraid of the dark than of exposing themsclve prefer to have them in the daytime. Ladies ride in wheel prefer to have them in the daytime. Ladies ride in wheel-
barrows, and cows are driven in carriages. While in Europe barrows, and cows are driven in carriages. While in Europe
the feet are put in the stocks, in China the stocks are hung round the neck. In China the family name comes first, and round the neck. In China the family name comes first, and
the personal name afterward. Instead of saying Benjamin Franklin or Walter Scott, they would say Franklin Benja\min, Scott Walter. Thus the Chinese name of Confucius Kung-fu-tsee, the Holy Master Kung; Kung is the family name.
In the recent wars with the English, the mandarins or soldiers would sometimes run away, and then commit suicide to avoid punishment. In getting on a horse, the Chinese little boys look on. The left hand is the seat of honor, and to keep on your hat is a sign of respect. Visiting cards are painted red, and are four feet long. In the opinion of the Chinese, the seat of the understanding is the stomach. They have villages which contain a million of inhabitants. Their oats are drawn by men, but their carriages are moved by sails. A married woman while young and pretty is a slave
but when she becomes old and withered is the most power ful, respected, and beloved person in the family. The em peror is regarded with the most profound reverence, but the empress mother is a greater person than he. When a man
furnishes his house, instead of laying stress, as we do, on furnishes his house, instead of laying stress, as we do, on rosewood pianos and carved mahogany, his first ambition is
for a handsome camphor-wood coffin, which lie keeps in the best place in his room.
The interest of money is thirty-six per cent, which, to be sure, we also give in hard times to stave off a stoppage while with them it is the legal rate
We once heard a bad dinner described thus: "The meat was cold, the wine was hot, and everything was sour but the vinegar." This would not so much displease the Chinese,
who carefully warm their wine, while we ice ours. They understand good liv:ngr, however, very well, are great. epicures, and somewhat gourmands, for, after dining on thirty dishes, they will sometimes eat a duck by way of a finish.
They toss their meat into their mouths to a tune every man They toss their meat into their mouths to a tune, every man
keeping time with his chop-sticks, while we, on the contrary, make anything but harmony with the clatter of our knive and forks. A Chinaman will not drink a drop of milk, but he will devour bird's nest, snails, and the fins of sharks, with a grear relish. Our mosicuitir color is black, and theirs is white ; they mourn for their parents three years, we a much shorter time. The principal room in their houses is called
"the hall of ancestors," the pictures or tablets of whom, set "the hall of ancestors," the pictures or tablets n f whom, set other hand, are very apt to send our rratilather's portrait to the grarevt.
Such are a few of the external differences between their customs and ours. But the most essential peculiarity of the Chinese is the high value which they attribute to knowledge, and the distinctions and rewards which they bestow on schol-
arship. All the civil offices in the Empire are given as rewards of literary merit. The government, indeed, is called a complete despotism, and the emporer is said to have abso-
lute authority. He is not bound by any written constitution indeed; but the public opinion of the land holds him, nevertheless, to a strict responsibility. He , no less than his people, is bound by a law higher than that of any private will-the authority of custom. In China, more than anywhere else, " what is gray with age becomes religion." The authority of the emperor is simply authority to govern according to the ancient usages of the country, and whenever these are persistently violated, a revolution takes places and the dynasty is changed. But a revolution in China changes nothing but the person of the monarch ; the
stitution of old usages remains in full force.

Setting Mineral Teeth.

Surgeon Duchesne, of Paris, has invented a method of fixing mineral teeth to the dental piece. Each tooth is furnished ing mineral teeth to the dental piece. Each tooth is furnished
with a hollow of a size exceeding that of the orifice, by with a hollow of a size exceeding that of the orifice, by
which orifice the rubber in its plastic state enters into the tooth, assuming inside the internal configuration, and, as it
were, the shape of a nail-head of a pyramidal form, or of the
form of a flattened cone, and the rubber being properly vul carized, the tooth becomes firmly attached to the denta piece. The hole being obtained by placing on the rear side
of the mold of the tooth, which is molded of materials well known to tooth manufacturers, the base of a piece of wood or of any other suitable material, cut into the shape of a cone, and which can be consumed or melted at a lesser degree of heat than that required for the baking of the tooth; this piece of wood or other material being destroyed during the process of biscuiting, there remains in the center of the tooth hollow, corresponding in size and shape with the materia which has been burnt out. The principle of strength which claimed for this tooth consists in the fact, that the rubber portion of the dental piece to which it is to be attached ntering into the tooth itself, the tooth actually forms par nd parcel, so to speak, of the dental piece; and the principle ooth of a larger size than the orifice by which the rubber ooth of a larger size than the orifice by which the rubber r other plastic material is introduced, of whatever form this hollow may be, whether produced by the consuming, melting,
or annihilating of any animal, vegetable, or mineral matter, or annihilating of any animal, vegetable, or mineral matter,
that can be annihilated by a less heat than that required that can be annihilated
for the baking of the tooth.

THE MANUFACTURE OF PAPER-..-PAPER MADE FROM RAGS.

Rags are a marketable commodity, and command fixed pr es according to their quality. As with all articles of com merce, these prices are governed in a measure by the mercan tile law of supply and demana. As core: eri rags are sold at less price than the American article, and the consumption in
the United States is considerably greater than the supply of the United States is considerably greater than the supply of the latter, large quantities are imported from Europe. The larger proportion of foreign rags that find their way to our Atlantic cities, are exported from Bremen, Hamburgh, Rostock, Ancona, Messina, Leghorn, Palermo, and Trieste. They rrive in our ports in closely packed bales, containing eac about four hundred pounds, which, according to their respect
ive qualities are branded S.P.F.F., S.P.F., F.F., F. X., and F.B. There are many varieties, even in these divisions, and their qualities afford very clear indications of the state of com ort and cleanliness of the particular localities from whenc they were originally gathered. The rags of England and the United States are generally clean, and require but little washing and cleansing before they are ground into pulp ; the Italian rags, on the contrary, are originally so dirty that they require to be washed in lime before they are fit for use. The greater portion of the rags from the north of Europe are so dark in their color and so coarse in their texture that one naturally wonders how they could have formed part of any 4ly woman's garments; while those, on the other hand which are collected in England, Scotland, and the United States, appear evidently to have belonged to a people much better clad. Having thus aliuded to the material employed in paper making, the reader's attention will now be directed to the process of its manufacture. The visitor to a regularly organized paper mill is first conducted to

IIIE RAG ROOM.
The initial process of sorting the rags is conducted in oner room, in which from twenty to thirty women are em ployed in sorting, dusting, and cutting them. Each woma stands at a frame or table, the top of which is covered with net-work of wire, through which to admit tha dust ; on her left is a quantity of rages conveniently placed, on ber right is a box divided into three compartments. On a part of the table an upright knife is fixed for cutting the rags into suitable lengtins. As it is the business of the woman to sort and cut the rags, she spreads a certain quantity on the wire frame and as she shakes them a great deal of the dirt passes throug the interstices of the wire into a box beneath. Those piece that require to be cut she draws across the blade of the knite by which it is instantly divided. All seams are thrown out as the sewing thread, unless thoroughly ground, would pro duce filaments in the paper. These are afterwards picke out by children, and asgain find their way to the woman's ta
ble. The work of sorting and cutting rags is performed with ble. The work of sorting and cutting rags is performed with
great rapidity. When cut, sorted, and dusted, the rag are weighed into bags of a hundred poundseach and con veyed to
the boiling and washixg room.
Here they are placed into large square chests or vats, in which steam is admitted from below and boiled with lime for a few hours. From the boiling room they are conducted in suitable vessels to an upper room in the mill, where they are emptied into troughs or cisterns, several of which are ranged in a row ; these croughts and the machinery within them, are echnically called engines, and are used for washingthe rags The troughs are usually ten feet long, four and a halt feet broad, and two and a half feet deep, and are made of woo ined with lead. In each trough an iron cylinder 224 inches in diameter and 26 inches wide is fitted ; pure water is conveyed by means of a pipe or tube into the trough a fewinches from the top, and another tube connects with the lower par fir carrying off the soiled water. The cylinder being set in motion by means of steam or water power, about a hundred weight of rags are dumped in, as before mentioned, and as much water introduced as will raise the whole to within an inch or two of the brim. Into the cylinder is fixed a number of knives at given distances apart, projecting a little more han an inch from its axis; and beneath the roller is a plate in which is also attached a number of knives. When the cylinder commences its revolutions, of which it is made to make bout 160 per minute, the rags are carried with great rapidity through the knives; and as the cylinder is depressed or ele
the cylinder is a cover made of a wire frame communicating the cylinder is a cover made of a wire frame communicating
with the pipe which admits the pure water. When, therefore, the whole mass is in agitation, the rags, after passing through the knives of the cylinder and plate are carried up an inclined plane in the trough and the foul water is carried off through the waste pipe below; in this way the rags ar cut bruised, and washed.
After the above operation is continued for a sufficient time the water is let off and the cleanse mass is removed to ress for the purpose of driving out the greater part of the water. They then undergo the process of
bleaching.
This process reduces all descriptions of rags to a uniform whiteness, and requires to be so conducted as not to injure the uality of the fabric. On being removed from the press the ags are placed in a receiver, or chamber made of wood, from which the external air is carefully excluded. Into this cham er are conveyed pipes commanicating with a retort, in which a chemical chlorine is formed by the application of heat to due proportion of manganese, common salt, and sulphuric acid. This part of the process is completed in a few hours The rags are now white, but they have an intolerable smell To remove this, and to preserve them from being injured through the effects of the bleaching, they undergo a second process of washing and bruising which entirely purifies them. From the washing engine the rags are conveyed to the beat ing engine, which is constructed similar to the other except that the knives on the cylinder and plate are closer together, and the former revolves with greater rapidity. Having been ground for several hours in this machine, the rags assume the beautiful appearance of pulp technically called "stuff?" It hould here be remarked that all paper manufacturers do not se the same materials for loweching the rags: In several arge paper mills a substitute for manganese is used. Thisis mixture of phosphates of lime and soda ash which seems to nswer the required purpose,and is much less expensive. The same may be said of the whole prescribed formule in paps. making. So rapid are the strides of scientific progress, that ere a useful practical theory is put in full operation, new in provements are suggested, which, in many ase, are made to f art dill Hence, no dorn essential features, however, of the processes employed in pa per making, are similar in all paper mills.
As what is technically called "machine-made paper" is a comparatively late invention, it may properly be expected that this treatise should preface any remarks upon the sul ject with a brief description of

HAND MADE PAPER
Until a little more than half a century since all desoriptions of paper were made by hand. The precess though simple is very beautiful, and evinces a remarkable degree of mechani cal ingenuity. We have already described the various stages the rags have gone through up to the time they are reduced to a pulp. From this pulp or "stuff," which is about the consistency of pure milk, and resembling it in appearance, paper is made. The stuff is irst poured into a vat, at che bottom of which is a copper vessel made to fit exactly within it, for the purpose of keeping the stuff warm. This warmth is commanicated by means of heat supplied by a steam pipe from be low. The workman forming the sheet, who is called a " vat man," is provided with two molds. These are slight frame food, wire cloth. Fitting mold is a dekle or movable raised edging which determine the size of the sheet. The vatman, putting the dekle on on of the molds, dips it vertically into the stuff, and bringing it to the surface horizontally, covered with pulp-which, to pro serve an equal consistency is kept in a state of agitation in the vat-and shakes it gently so that all parts of the wire frame shall be equally covered with it. This operation re quires a great deal of nicety, both in determining the re quired thickness of the sheet and in producing it of a unikern thickness throughout. The vatman then pushes the mold with the incipient sheet to his fellow workman, who is called a coucher," and carefully taking off the dekle applies it to the second mold, and proceeds as before. The coucher, wh eceives the first mold, having a pile of porous pieces of flanne by his side (called "felt"), turns the mold carefully over upo one of these, and upon which the sheet remains, having been detached from the mold; he then places a felt on the sheet
and is ready to turn over anotherfrom the second mold. Thas the vatman and the coucher proceed, only two persons being required at each vat, the one molding a sheet of paper and the other placing it upon the felt, until a certain quantity is made, when the pile of felts is subjected to the action of powerful press. The sheets, after this pressure is completed, pressquin sufficient consistency to enable them to be again pressed by themselves. They are next parted, then dried next sized in a mucilage, to give them greater body and strength, and again dried and pressed, and finally counted into quires and reams. Any number of vats, each requiring the servic s of two men, may be used at the same tirae. This is a matter, however, usually regulated by the capacity of the mill and the means of the munfacture:

machine made paper.

As previously intimated, the progress of mechanical science of late years, in paper making as in many other branches of art, has been so rapid in its onward march that manual labor is in a great measure supersed by machinery. In paper making, machinery is not only a saving of manual labor, but economizes time and money, and largely multiplies the facilities for its manufacture, as will be made plainly manifest to the most indifferent observer
The process of converting a thin pulp into paper by ma-

