several of the mightiest, the most essential aids to civiliza tion.
This superiority of the Japanese is, as may be expected more clearly visible in the representation of living figures, and particularly of the human form. Nothing can offer a more vivid contrast than the egg-shaped simpering faces, the entire absence of anatomy so long familiar to us on Chinese fans or porcelain, when compared with thevigorous muscular developments, the expressive countenances, and the everpresent sense of fun which pervades even the common pic ture-books of Japan. Printed and colored by blocks, and ob viously very cheap, their amount of artistic power is truly remarkable, and the Japanese schoolboy has needed no Felix Summerly to stand up for his rights to be nourished on good mental food so far as relates to art. It must be admitted that decorum might at times be better guarded. These cheap books are mostly pervaded by a spirit of cariacature, tending, as by its nature cariacature must, to exaggeration. But the Japanese artist can, if he will, confine hims ${ }^{\prime}$ lf within strict academic limits without thereby sacriflcing force.
A class of ornaments peculiar to these islands may, from their small size, have met with less attention from the ordinary visitor than their merits deserve. We allude to the small steel or bronze carvings which the Japanese wear at thei girdles, which-to use the language of the seafaring-have a ribbon rove thrcugh them to support a tobacco-box, much ike the watch, chain, and seals of the past generation Some of these will repay close examination. Small in size or they are rarely larger than an almond shell, they contain but one or two figures, a captive in his dungeon, or a hunts man stabbing a boar, but of singular vividness and breadth of execution.
We have in recollection at this moment, a wizard "so lean his eyes were monstrous, while the skin clung but to crate and basket, ribs and spine," that might have sat to the laurcate for his life-like word portrait of Merlin's brother enchanter. Hitherto, however, all the specimens of Japanese art which have reached England have been ordinary market able commodities, procurable by any one with a moderate command of ready cash, and it is with much interest that we can now contemplate a specimen of what they themselves re gard as an individual specimen of high art. Dr. A. Barton has lent to the South Kensington Museum, England, a painting well known to the critical community of Japan, and which indeed-so we are informed-had to be brought away with some precautions to avoid the risk of a governmental ombargo. The picture is in water color on silk, or possibly the admixture of silk and paper peculiar to that country, and represents a tiger, life-size, or to speak with strict accuracy of the size of a leopard, though the colors are those of the huge tiger of Bengal. The animal is in a singularly bold position, giving ample play to the skill of the artist in fore hortening. The body clings to a huge rock, the hind leg appearing on one side, the fore leg on the other, while the chief mass of fur appears above the top of the stone. The creature is gazing at an unseen foe, the eyes fiercely express ve, the formidable jaws open, and the skin flattened over the skull, in the manner any one may observe in the common cat when excited by fear or rage. The most wonderful poin in this very curious picture is the manner in which the fur is painted. Each particular hair seems to stand on end, and so accurately are brought out the spiral radiations of separat hairs from a central nucleus that more than one observer ha been convinced that they had before them an actual skin and not a pictorial representation. This error is the more easy to all into, as the chief defect in this marvelously vivid imita tion is its want of shadow. This, the common fault in Oriental paintings, causes the limbs to lie flat against the ack and spoils what would otherwise be an almost complet deception. The accessories of the picture, a waterfall, and mossy stones, are dashed in with a singularly bold careless ness which, to speak truly, renders it somewhat difficult to decide what the painter meant by his conventional dabs and smears.

What Are Brittleworts?

The Diatomaceæ, or Brittleworts, are unicellular microscopic plants, so numerous that there is hardly a spot on the face of the earth, fromSpitzbergen to Victoria Land, where they may not be found. They abound in the ocean, in still runnin rosh water, and even on the surface of the bare ground
They extend in latitude beyond the limits of all oth plants, and can endure extremes of temperature, being able o exist in thermal springs, and in the pancake ice in the south polar latitudes. Though much too small to be visible to the naked eye, they occurin such countless myriads as to tain the berg and pancake ice wherever they are washed by the swell of the sea; and when inclosed in the congealing surface of the water, they impart to the brash and the pancake ce a pale ocherous color.
Some species of diatoms are so universal that they are found in every region of the globe ; others are local, but the same species does not inhabit both fresh and salt water, though some are found in brackish pools. The ocean teems with them. Though invisible as individuals to the naked eye, the living masses of the pelagic diatoms form colored fringes on larger plants, and cover stones and rocks in cushion like tufts ; they spread over the surface as delicate velvet, in filamental strata on the sand, or mixed with the scum of liv ing or decayed vegetable matter, floating on the surface of the sea; and they exist in immense profusion in the open cean as free forms. The numbers in which they exist in all latitudes, at all seasons, and a^{+}, all depths-extending from an inch to the lowest limit to which the most attenuated ray of light can penetrate, or at which the pressure permits-are immeasureably in excess of what we have been in the habit
of assuming. Temperature has little to do with the distribu tion of diatoms in the tropics; it decreases with the depth at a tolerably fixed rate, till it becomes stationary. It increases in the polar regions with the depth, and approaches the standard, which is probably universal, near the bed of the ocean.
Diatoms are social plants crowded together in vast multiudes. Dr. Wallich met with an enormous assemblage of a filamental species of Rhizosclenia, which is from six to twenty imes as long as it is broad, aggregated in tufted yellow masses, which covered the sea to the depth of some feet, an extended with little interruption throughout six degrees of longitude in the Indian Ocean. They were mixedwithglist ening yellow cylindrical species of such comparatively gigan tic size as to be visible to the naked eye.
Other genera constitute the only vegetation in the high atitudes of the Antarctic Ocean. Dr. Hooker observes that without the universal diffusion of diatoms in the south polar cean, there would neither be food for the aquatic animals nor would the water be purified from the carbonic acid which animal respiration and the decomposition of matter produce These small plants afford an abundant supply of food to the hervivorous Mollusca and other inhabitants of the sea, fo they have been found in the stomachs of oysters, whelks, crabs, lobsters, scallops, etc. Even the Noctiluci, thos uminousspecks that make the wake of a boat shine like sil ver in a warm summer night, live on the floating pelagic diatoms, and countless myriads are devoured by the enormous shoals of Salpi, and other social marine animals.-Mrs. Somerville.

$\mathfrak{C b u r c s i p m i c u r e}$

respondents.

mprovement in construction of Smelting Furnaces
MEssRs. Editors:-As a reader of your excellent journal have been much interested in the various articles published on the manufacture of iron, steel, etc.
My object in writing to you is to call attention to the manafacture of pig iron, and to pret information and suggestions believe there is yet much inmerement to be made, but no ltogether in the direction now generally pursued.
If I am right, the principal improvements of late consist in building the stack much higher than formerly, in order to utilize the heat and more thoroughly prepare the stock fo melting; second, to greatly increase the temperature of the blast, in order to perfect the melting when the stock arrive at the proper point, or " bone," as I believe it is called.
I have been engaged in melting iron in a cupola for a num ber of years, and for the past two years have changed the construction of the inner walls of the cupola and tweers, nd for the past twelve months have accomplished much in utilizing the heat, and have consequently made a large saving of fuel. We use ninety graduated tweers in a cupola 36 in in diameter. This arrangement thoroughly distributes the blast through the coke in place of chilling it, as it does in the ordinary way.
I am not aware that this plan has been tried in a blas furnace, although various patents have been granted. No patent, however, haskeen allowed for this specific arrange ment or thing like it. If it could be used, and the same re ult attained in the manufacture of pig iron it would be very important advance in the right direction. It is the opinion of practical men that it can be, and the hot blast dis pensed with, but with the hot blast perhaps better result would be obtained.
I send the result of one day's work, and although it is somewhat better than the average year's work, it is not ma terially so.

re

The poor children of Philadelphia, says the Ledger, are largely interested in the peach kernel trade. They extract the kernels from the "stone," put them upon strings, or threads, in bunches numbering from one to five hundred, an sell them to the druggists. The price is one cent a hundred and an industrious gleaner might, possibly, collect, crack and string 000 in a day ; so that those urchins in the trade are not likely to be called on to pay income tax. The kernel re used, principally, for making alcoholic "bitters," and are chiefly valuable for the hydrocianic acid to be procured from them.

Kennedy's Patent Sadiron.-The inventor of the sad ron, illustrated and described on page 116, current volume, desires us to state that the bracket and pulley arrangemen for taking up the slack in the flexible gas tube, is only neces sary on very large work. For ordinary domestic use it may be dispensed with, the simple flexible tube of the proper length affording ample play for the iron.
"Cosmos" says that while some drainage works were being executed at Vielsalm, province of Liege, Belgium, the work men found, at no great depth nnder the surface, a pieco of na ive copper, weighing about four and a half pounds, and partly hollow inside exhibiting crystals. This discovery led to some urther research, which resulted in finding some veins of malachite.

Unless glass is carefully annealed and thoroughly well made it is apt to cool unevenly ; this does not affect the trans parency or its appearance, but is discoverable on examination by polarized light.

Stereotyping by the paper-machie process was invented y Genaux, of Paris, in 1829

Improved Machine for Boringi and Mortising Biind Stiles.

This machine, as illustrated in the accompanying engraving, embraces all the features of the machine for which a patent was granted to Leonard Worcester, July 5, 1859, together with several other valuable improvements for which a patent is now pending, and which, it is claimed, render it the most efficient machine for the kind of work it is designed to execute on all kinds of stock now manufactured.
Machines have been made for some time that would mortise soft lumber free of knots and shakes, but none before this have had the necessary combination for both boring for revolving slats, or mortising for fixed slats in all kinds of stock, hard or soft, ixed slats, in ar knotty ond shaty timber, and, for lea ving the mortises free from chipsready for the insertion of the slats.
This machine is entirely automatic in its operations, either boring round holes for the pivots of revolving slats, or mortising the recesses for the ends of fixed slats. In cutting thesc recesses it can be adjusted to make them at any required angle. The cutting of the recesses is done by means of a recip rocatory or traversing burr or bit, which, we have already said, can be used in any obstinate description of wood, where ordinary machine chisels fail. It will also make the mortises any length from a round hole up to two and one half inches, and of any width or depth required in a window blind. All the operator has to do is to put in the stiles and set the machine in motion, when it does its work, and, having done it, stops. It does the work on both stiles at once at the rate of sixty mortises per minute. One man, the inventor asserts, can set out and mortise from 125 to 150 pairs of blinds per day with one machine.
The bit or burr is a very simple device, not liable to be broken and casily kept sharp. It costs only ten cents.
The machine is very simple in construction and is made wholly of iron and steel. It is thoroughly built and easily set up and put in operation, and is not liable to get out put in operation, and is not hable to get out oforder.
It is peculiarly adapted to the work on car blinds, where the mortises are less than one eighth inch in width, and, conse quently, difficult to make with chisels of ordinary construc tion. Agents for its introduction throughout the United States are wanted. For further particulars address Martin Buck, agent, Lebanon, N. H.

umprofed Cork Extractor.

Our engraving shows a simple and powerfu' implement for xtracting corks from bottles, patented Jan. 14, 1868, by James Morton, of Philadelphia. It consists of three bars pivoted together, which, together with the corkscrew, constitute the entire apparatns. Onc of the bars has a socket or cap at its low r end, which is placed on and around the nose of the bottle Near the upper end of this irst post or bar is pivoted the end the econd bar nearthe iddle which the thi bar is pivoted. The second and third third ave p. have handles at their outer ends, a
inner end of the third bar is a hook.
This hook engages with the corkscrew in the manner delineated in the engraving, and by forcing the handles together or pressing them downward, the cork can be easily ex tracted. 'The instrument is equally adapted to extracting corks on which rings or hooks are already formed so that no corkscrew is needed.
For further particulars address James Mor ton, 912 South Eighth street, Philadelphia Pa .

A Deserved Testimonial
A few days since Moses G. Farmer, Esq., of Salem, Mass., was presented with a sardius, of red carnelian intaglio, of Sir Isaac Newton, estimated to be about 200 years old, by S. W Dewey, of this city, in consideration of his electrical investigations and inventions. This latter gentleman, in presenting it, stated that since being its proprietor he had often thought he would present it to Professor Morse, in tosen of the great good he had conferred upon he human family by his telegraph inven tions, but lately he had become convinced that Mr. Farmer the inventor of the fire-alarm telegraph and the American compound telegraph wire, was eminently deserving of it. Mr Dewey received the intaglio from a Mr. Bishop, late of New York, who received it from his father, who was a diamond setter to the sovereigns of England, France, Spain, and Portugal, and the records held by him of the jewels he had in his possession were such as to leave no doubt as to the antiquity of the gift and the probability that it was taken from life.-Boston Traveler.

Professor Tyndall.
The following agreeable personal sketch of Prof. Tyndall,

by a correspondent of the New York Tribune, will be perused with interest by our readers who have so often seen his name in these pages
"One of the most agreeable features of my brief visit in London was the acquaintance, which, through the kindness of friends at home, I was enabled to make with several eminent scientific men whose names ato oherished with equal honor on both sides of the Atlantic. Soon after my arrival I called on Prof. Tyndall at his rooms in the Royal Institution, present century has exerted a marked influence on the devel
and betrays a versatility of aptitude, and a reach of cultiva tion, which are rarely found in union with conspicnous emin ence in purely scientific pursuits. In his own special domain, his reputation is fixed. His expositions of the theory of heat and light and sound, and of some of the more interesting Alpine phenomena, are acknowledged to be master pieces of popular statement, to which few parallels can be found in the records of modern science. But in addition to this he pos sesses a rare power of eloquence, and manifold attainment in different departments of learning. I do not know that he has ever written poetry, but he is certainly a poet in the fir of his imagination, and in his love for all th forms of natural beauty Nor has he disdained to make himself familiar with the leadin to make lical theories of the past a in spit of on wh into which that science has been thrown by he brilizant achevements of physical research. noticed with plen his allusions to Fichte, cethe, R. W. Emerson Henry Heine, and other superior lights of the literary world, showing an appreciation of heir writings, which could only have been the fruit of familiar personal studies. Besides the impression produced on a stranger by his genius and learning, I may be permitted to say, that I have met with few men of more attractive manners. His mental activity gives an air of intensity to his expression, thoug without a trace of vehemence, or an eage assion for uterance. In thi mo tre ith the rapidity an i wow, paing little trion to , pan if you his compan rion jects, and if you are his companion, requirin not to lose sight of him.
"Though overflowing with thought, which streams from his brain, as from a capaciou reservoir, while his words 'trip around as airy servitors,' he is one of the best of listen ers, never assuming an unduc share of the talk, and lending an attentive and patient ea to the common currency of conversation, with out demanding of men the language of th gods. The singular kindness of his bearing, I

BLIND STILE BORING AND MORTISING MACHINE.

opment and popular diffusion of scientific knowledge in England. Its history is illustrated by some of the most important discoveries of the age in the natural sciences, including the labors of Count Rumford, Sir Humphry Davy, Faraday and Prof. Tyndall himself, whose enthusiastic, poetical tem perament and remarkable gifts of expression, combined with the habit of rigid scientific analysis, have contributed largel to create and gratify the taste for popular science, which prevails among a very considerable portion of the cultivate lasses in English society.
"Prof. Tyndall has all the ardor of a reformer, without any tendency to vague and rash speculations. Recognizing what

m sure, must proceed from a kind and generous heart. With oo pretense of sympathy, and no uncalled-for demonstration of interest, his name will certainly be set down by the recording angel, as 'one who loves his fellow-men.'

PROF. HORSFORD'S METHOD FOR MBKING BREAD.

In a recent letter from one of our correspondents, it wa asserted that Prof. A. J. Bellows had charged that the preparation for raising bread, patented by Prof. Horsford, was poisonous in its nature, that it was simply phosphorus disor ganized, whatever that may mean, and as such, as dangerou as any other poison,etc., etc.
To this statement, which we published without comment we say that after taking time to consider the possibility of the occur rence of free phosphorus during any stage of the process from the bones to the bread, we see no room for admitting any such possibility on chemical grounds.
Second, we have eaten of bread, pastry etc., prepared by this method for montl and do not find ourselves poisoned so far as we ase able to discern
Third, the testimony of many eminent chemists, among whom Liebig stands firs as undoubted authority on a question ot this kind, not only declares it harmless, but beneficial to health. And we have no hes itation in saying that all statements to the contrary have no scientific or practical foundation, and they could not be made b scientific chemist, who, in addition to learning, possessed that other essential of reliable judgment-candor.

Do Animals Think?

We have been asked to give our opinion upon this subject which has been recently debated in Tennessee. There has been no doubt in the minds of many eminent thinkers and observers that animals think and ers and observers that animals think and
reason. We fully coincide in this belief, and think that a careful examination of their habits and acts will convince any candid observer that they are not wholly, although doubtless to a great extent, governed

MORTON'S DOUBLE-LEVER CORK EXTRACTOR.

ever is valuable in the researches of a former age, he extends by instinct. by instinct. Those to whom our columns are familiar will recollect a number of articles containing facts which go to prove the reasoning power of animals.

The Board of Trade of St. Louis has appointed a committee of twelve to raise by subscription $\$ 120,000$ to build an iron sea-going propeller to inaugurate direct trade between St . Louis and foreign ports. The vessel will be of 1,000 tuns ca Louis and foreign ports. The vessel will be of 1,0
pacity, and will not draw over six feet when light.
gracious hospitality to new suggestions. With a noble pride in his favorite branches of inquiry, he is not restricte to an exclusive range of research, but extends his intellect a rule, are inclined to be suspicious of a man who venture beyond a special walk in the pursuit of knowledge. They have but little sympathy with the catholic taste which em braces a variety of objects, and is equally at home in the re searches of science, the speculations of philosophy, the delights of poetry, and the graces of elegant literature. But a signal exception to this trait is presented by Prof. Tyndall. His mind is singularly comprehensive in its tendencies,

IT is stated that one hour after the gas of London is lighted the air is deoxidized as much as if 500,000 people had been added to the population.

