frixutifir Ammerian.

MUNN \& COMPANY, Editors and Proprietors. publisile weekir at
NO. 37 PARK ROW (PARK BUILDING), NEW YORK
o. D. MUNN, S. II. Wales. A. E. beach.

WTM "The American News Company," A gents.12 Nassa,
ES" The New York News Company," 8 spruce street.
A. Asher \& Co $\mathrm{O}, 20$ Unter den Linden, Berlin, are Agents for the Ger-

LFV Nessrs. Sampson, Low, Son \& Marston, Booksellers, Crown Building 188 Fleet strect, London, are the Agents to receive European subscriptiona
or advertisements for the ScrismTrifc AmRRICAN. Orders sent to them will pe promptly attended to.
ero mplncrid Co., 60 Paternoster Row, London, are also Agents to receive subscriptions.
VOL. XX., No. 9....[New SERies.]....Twenty-fourth Year.
NEW YORK. SATURDAY, FEBRUARY $27,1869$.

Contents :

LaND and Water--are earthquakes land

 MAKERS?A writer in a late number of Chambers' Journal, under the caption, "The Usefulncss of Earthquakes," attcmpts the thenry that these phenomena, combined with volcanic cruptions, are the means of repairing the waste made by the actinn of the sea on shores and of rainfall on interiors. He assumes that " If the solid substance of the earth formed a perfeci sphere in ante-geologic times-that is in ages preceding those to which our present geologic studics extend-there can be no doult that there was then'to visible land above the surface of the water; the ocean must. have formed a uniformly face of the water; the ocean must, have formed a uniformly
deep covering to the submerged surface of the solid globe. In this state of things, nothing but the earth's subterranean forces should tend to the production of continents and islands."
The if which we have italicized is the best reply to his doulttul assumption; there is no evidence that the earth was ever a perfect sphere ; in fact, not only astronomy but gcology witnesses the contrary. The earth is an oblate spheroid, and, so far as our means of ascertaining extends, was always of this form. If the carth was ever, for any geologic period, submerged with water, some evidences would have remained in every portion of its surface. By a "geologic period," we mean the duration of time between one great natural condi tion, as determined by geologists, and its successor; periods counted by a lapse of time compared to which our historica period is as the dust in the balance. Any one who carefully reads the records of geological investigation will see that the probabilities are strongly in favor of a condition of the earth's surface as regards protuberances and depressions-mountains and valleys, elevated plateaus and depressed plains, land and water-in ancient times very similar to that which now ex ists. To be sure, it is evident that portions, now dry land, tormed once the bottom of seas, and mountains were but isl ands, but there is no reason for doulting that the present seas might have been dry land; our means for determining this fact, however, are meager compared with those afforded for an examination of dry land. We cannot travcrse the occan's
bottom as we can the valleys of the habitable earth. It may be possible that a larger proportion of the earth's surface was once covered by water than at present; but while this opinion may be entertaincd, it is morally certain that where scas now roll their unobstructed waves dry land in many instances existed. Why could not the peninsula of Yucatan with Cuba Hayti, Jamaica, and the group of Caribbean islands once have Hayti, Jamaica, and the group of Caribbean islands once have
inclosed as an inland lake what is known now as the Caribinclosed as an inland lake what is known now as the Carib-
bean Sca? And why not the peninsulas of Florida and Yucabean Sca? And why not the peninsulas of Florida and Yuca-
tan with western Cuba have similarly inclosed the Gulf of tan with western Cuba have similarly inclosed the Qulf of
Mexico? So at the Straits of Dover, there is evidence, from recent soundings and cxaminations, that England and France were once physically united as they sulsequently were politically.
'The writer makes this statement: " Λ t first sight it may seem paradoxical to assert that earthquakes, fearfully destruc tive as they have so often proved, are yet essentially preser vative and restorative phenomena; yet this is strictly the case. Had no earthquakes taken place in old times, man
would not now be living on the face of the earth; if no earthwould not now be living on the face of the earth; if no earth
quakes were to take place in future, the term of man's exist quakes were to take place in future, the term of man's exist
pnce, would be limited within a range of time far less than
that to which it seems likely, in all human probability, to be extended."
This does scem paradoxical, because, for every caso of the permanent upheaval of barren rock by earthquakes there can be brought the record of permanent disappearance of fertile lands. Indeed, the destruction caused by carthquakes in the sinking or ingulfing of tracts of land and producing in their place lakes of noxious waters, or allowing the inroads of the sea has been so great and so much more frequent than the gift of solid land, that earthquakes are, the world over, and in all times, regarded with dread as the mostdestructive agent er," published in 1770, has it),
rouct Korah's troop
Was swallowed up,
down to the recent destruction of Arequipa and other cities on the western coast of South America, the earthquake has been a destroyer and not a restorer. From the disappearance of the island, Atlantis, mentioned by Plato in his Timaus to the recent reports of similar disappearances, the earthquake has diminished rather than increased the amount of habitable land.

IMPORTANCE OF ACCURACY IN THE USE OF MECHAN CAL AND SCIENTIFIC TERMS.

The general employment of technical terms and phrases among scientists and mechanics, and the necessity for their use to avoid inconvenient paraphrases andinvolved sentences,
make a thorough understanding and a discriminate use of make a thorough understanding and a discriminate use of these terms a duty to all who employ them. .In our descrip tions of machinery and processes we have always studiously avoided those terms, which, not being commonly used, were either generally unfamiliar or not self-defining. It may bc that at times the article as published appeared to be too cle mentary in character, but it is better to use language under stood by all than a patois intelligible to the initiated only There are in use many technical terms, however, that of them selves are far more expressive than any phrase in common use, and these should be employed in preference to an explanatory sentence which reaches its point only by seeming to aim at another. In such cases the technicals are the proper terms. Many of them are not laid down in the dictionarics, and different oncs are used in different sections of the country by men engaged in the same business; but some are so ap parently demonstrative and in their sound so well convey the
idea that they are always understood. For instance, if a smith idca that they are always understood. For instance, if a smith
speaks of a " suant" heat, every one knows at once that it speaks of a "suant" heat, every one knows at once that it
means a soft, even heat, permeating the mass of iron-the very means a soft, even heat, permeating the mass of iron-the very
sound of the word conveying the idea. The "bite" of an acid or file, the " hang" of a hammer, the "rake" of a turning tool, and many others beside those which show their applicability by their derivation, are better than any phrase that is simply descriptive or definitive.
But all technical terms to be useful should te definite. Though a "stringer" may be a "beam," it docs not follow that a beam is a stringer. A railroad "slecper" may not be also a railroad "tie." A " bit" may be a plane iron or an instrument for boring wood. "Force" and "power" are not synonymous, neither are "weight" and "pressure." So we might go on indefinitely, and give examples of the indiscrimi nate and improper use of technical terms. We have a lette before us in which the writer, speaking of his steam boiler, uses the terms " fire surface" and "heating surface" as synonymous. Another speaks of the "forcc" of steam and the " pressure" of steam, also as synonymous or interchangeable terms. It is sometimes difficult, under such circumstances, to really understand what is meant. In such cases it would be better to use language of a less concise but more cxplanatory character.
Yet there is a pedantry affected by many in the use of technicals that is as annoying as it is pretentious. It is seen in the use of geometrical terms in defining well-known and familiar forms, and of algebraic formulas to state simple ariticmetical problems. There are occasions when this is not only proper, but absolutely necessary for the defining of the subject. As to those who air their superficialtics by a malapropos employment of all the technical terms they have been able to pick up, they do not deserve notice; such are beneath criticism and beyond improvement.
But even our professional teachers, the compilers of manuals designed to aid the beginner, are open to the charge of pcdantry, and not unfrequently to that of writing about what it is evident they do not themselves understand. It would he unkind and harsh, perhaps, to refer by title to such works, but we have been several times much surprised to note the ingenpity of two, at least, of these authors in concealing their own ignorance while assuming to teach others. Nystrom, in his "Technological Education" says: "We frequently ind most valuable formulas given by scientific men in such shape that it requires to know more than the author in order to employ them ; they are not only not trimmed to a practical shape, but even the meaning of letters is rarely explained in proper technical languago."
We are convinced that the reason why our mechanics do not generally take kindly to scientific education applicable to their department, is not because of a dislike to the sulject, but because of the needless obstructions in the way of ambiguous and involved statements that scem to be made or pre calculated to mislead.

HOLLOW vs. SOLID SHAFTING.

Hollow shafting, where large diameter is not objectionable as long been in use, made generally of cast iron, and fre quently used as a drum or continuous pulley for the reception
of belts. Such a shaft was used in the " pistol shop" of Colt's factory before the destruction of the building by fire about four years ago, and a similar line may now be in use in the econstructed building. This shaft was five hundred feet long and fifteen inches diametcr, made of hollow cast-iron cylinders, connected with each other by a solid shaft or bearing at cach end, resting in a box as a journal. The result was an al. most continuous drum, of five hundred fect in length, from which belts led to the counter shafts of the machines, the speed of each machine being regulated by the diameter of the pulleys on the countershafts. We have heard also of wrought iron pipes of only two inches diameter being used as shafting successíully.
Tredgold says that a round tube whose internal and external diameters are as seven to ten, respectively, has twice the lateral strength of a solid cylinder containing the same amount of material. A cylinder(solid) of cast iron, five inches diameter, has a transverse strength of 21,104 pounds, while one of eight inches diameter, containing the same cross sectional area of metal, has a transverse strength of no less than 45,416 pounds.
These facts would seem to show plainly the possibility of reducing the weight, materially, of shafting without a diminution of its strength. The weight of shafting is a mass the nertia of which must be overcome by the driving power, and in some cases the amount of power, otherwise uscful, that is thus absorbed, is not less than twenty per cent. If by the use of lighter shafting this could be reduced only five per cent, the saving would be worth an effort. Shafting mast be of sufficient diameter to sustain the weight of pulleys and the train of belts without springing, but if the requisite stiffness -resistance to torsion and springing-can be obtained by holow shafts of much less weight, not only is money saved in the first cost (shafting being furnished by the pound), but the continual expense in the absorption of unnccessery power in driving the unnecessary weight would also be prevented That hollow shafting of wrought iron can be made chcaply is sufficiently apparent when we examine specimens of pipe used or various purposes. And not only would the first cost lo less, but the ease of handling, owing to reduction in weight would lessen the cost of turning, etc. Such shafting could also be casily oiled from the inside which would soem to be the proper method.

THE WICKEDNESS OF WASTE.--VALUE OF BONES.

If persons who carelessly and thoughtlessly throw away what they consider useless to themselves, understood the in rinsic value of these discarded trifles or this unpleasant rub bish, we are certain some littlo trouble would be taken to pre serve and dirret them to their reai use. We will, from the thousand and one of these unconsidered trifles, select but one -bones-as a text for a few words in regard to their waste and we will not refer even to their use in the arts ass material for manufacture into various forms of use and beauty in which they reappear on our persons ond in our dwellinge, hut confino our remarks to the value of bones as a frutilizing a gemt.
Let us see, first, of what boncs are composed. Take ox boncs, which comprise the larger part of houschold bone waste. Berzelius gives the following as the constituents of the dry bones:

Every intelligent farmer knows that these are just the ments for combining with inorganic matter to make a fcrtile soil. It is, however, maintained by some that the nitroren -contained in the gelatin-is not bencficial as a fertilizing element, from the fact that calcincd bones deprived of their nitrogen, are still very valuable as a manure. But we believe that the nitrogenous element is really a valuable ingredient in fertilizers, for nitrate of soda, $\mathrm{NaO}, \mathrm{NO}_{5}$ is known to be a valuable fertilizer, and where found in natural beds as on the west coast of South America, it is exported for agricultural use as well as for the manufacture of nitric acid. The necessary amount of soda to form this combination exists in bones, and as the oxygen of the atmosphere readily combines with it, the objections against it as being unfit for fertilization do not seem to be tenable.
Prof. Johnston (than whom no better authority can be quoted) says that one hundred pounds of dry bonc-dust add to the soil as much organic animal matter as threc hundred or four hundred pounds of blood or flesh, and also, at the same time, two-thirds of their weight of inorganic matter-lime, magnesia, common salt, soda, phosphoric acid-all of whicb should be present in a fertile soil. From this it will be seen that even if the usefulness of bones was limited to their application to the soil, their value is sufficient to induce care in their saving and preparation. The superphosphate of lime so favorably known to our farmers is simply bones treated with one-third their weight of sulphteric acid and an equal quantity of water. The farmers of England understand the value of boncs. Beside those gathered in their own country, they import them from the pampas of South America, the fecding and slaughtering grounds of millions of semi-wild cattle, and prepare them for their soil.

vegetable oils used in painting.

There are two kinds of oils found in plants, called respectively volatile, or essential oils, and fixed oils. The formerare those of which essences and extracts are made, and are called volatile because when exposed to the air they will, like ether or alcohol, entirely evaporate. The fixed oils, on the contrary, will not evaporate, hence their name. Tho latter are divided into two classes, unctumus, or greasy oils, and siccative. or drying

