the left in preference to the right. This view receives color from the fact that even among savage and uncivilized peoples proportion prefer. Among them, as among ours the were considered odd by the children of Israel for their pecu liarity of being left-handed. Either in ancient or moder times the proportion of left-handed men was always small.

Why does a man lost on a plain, where there are no guid for his course, make a circle in his efforts to go forward, turn ing always to the left? It may be said because the left being the less used side, and, therefore, less developed and weaker mustgive way to the superior energy of the right ; but this reason does not hold
not with our hands, because we walk with our feet and ambidexters as regard our feet. In military evolutions we ar taught to put the left foot first-to start off with the left foot; but in the dance we are instructed to start off with the right. Beside, we know of a person left-handed from his infancy, who, being lost in a snowstorm on Seekonk Plains, near Paw tucket, Mass., wandered in concentric circles, or spirals, for more than two hours, before being relieved, turning alway to the left. Ambidexters, or those who can use equally wel either hand, generally prefer to employ the right even when
using an instrument not specially designed for the right hand. using an instrument not specially designed for the right hand. Those who like gymnasts, or pugilists, have to use the left
with equal facility with the right hand, are compelle to submit to a severe course of iscipline to attain equal force and dexterity with the left that they possessed with the right The word just used-dexterity-perhaps, may be a clue to the question underlying these suggestions. Dexter, the right, sinister, the left. May there not be some meaning in these Latin terms and their derivations, physical, moral, and generally philosophical, beyond their application to manual operather term, bst the Romans, as well as our own justifies their"interchange.
In some sense all mechanics and laborers are ambidexters The wood-chopper should wield his ase with the right hand near the blade, as well as with it at the handle end ; so the dresser of timber or the ship-carpenter, the adze; so the black smith's striker with the sledge, the farmer with the hoe, rake,
or flail, and the housewife with her broom; but each and all prefer to give the dexter hand the precedence. Our guardian angel is the "angel over the right shoulder;" the sheep go to the right, the goats to the left; we give the right hand of fel
lowship, and of friendship, and in the latter case if circumtances demand the proffer of the left, the act is always ac companied wtih the palliating excuse "nearer the heart." Possibly this phrase has a physiological significance ; muscular action or violent exertion should be kept as far from the delicate and active seat of life as possible for fear of too great stress upon that organ.
Is there not something in this universal instinct-apart
 scientists, our social philosophers, and our moralists? It is not accident, circumstance, convenience, nor even tradition
that compels us to prefer the right ; what is it?

GLASS BLOWING....HOW BOTTLES ARE MADE

In a former article we treated of the composition of glass, and the construction of the furnaces in which the materials are melted preparatory to the operations by which the fused ware. The arrangement of these furnaces varie cons of glass but a common form is that of a truncated cone with a chim ney at the apex. Around and upon the interior of the base, the pots are placed, so that the workmen are distributed en tirely around the furnace. The implements used in glass blowing are of the simplest description and few in number On this account a great degree of manual dexterity is re-
quired. During our recent sojourn at Pittsburgh, we took esquired. During our recent sojourn at Pittsburgh, we took es-
pecial notice of the glass manufacture, of which nearly all branches are represented there, and with the readers permis sion we will step into some of the numerous establishments and witness, first the
manufacture of bottles.
Before we commence the description of glass-blowing, however, it will be proper to state the general principles upon which glass-blowing depends. If iron, or lead, or clay, in a plastic state, were the material desired to be worked, we should
find the application of this method entirely impossible. What sit then about glass that makes it advantageous to work it in this manner? Why can it not be cast in the shapes required like iron? or why can not iron be blown like glass? A comparison of the properties of the two substances will elucidate the whole matter. Iron is one of the best conductors of heat, while glass is one of the worst. A body of iron unless very large, will when heated or cooled in one part rapidly become heated or cooled in all its parts. Glass on the contrary may be heated at any one point to redness, while parts very pose it to be required to blow a bulb upon one side of a streight glass tube. By directing a sharp pointed flame against the side of the tube at the proper point, a well detaet disk of redness will be produced. The borders of the pot will show but little shading out of color, and the rod may be held in the fingers at only a very short distance from the heated disk. The spot thus heated has become plastic ; and
if one end of the tube be now closed with the finger and the ther placed in the mouth, and a strong blast of air forced into it, the internal pressure upon the yielding spot will immediately expand it into a bulb. If now it were reuired to produce a depression iu the bulb itself, it would only be necessary to cheat the center of the bulb, and exhaust the air from the
it would be impossible to heat it upon one side without heat ing the other, and the heat would also extend along the tube on either side of the point to which the heat should be rectly applied. Beside this, the iron would never assume that doughy plasticity possessed by properly tempered and heated glass. .The limit between the temperature when it becomes plastic and that at which it melts and runs down is very much narrower than that of glass. Beside the same conductive power which prevents heating in a given spot
without also heating others, tends to cool down very rapidly any portion which is heated above the rest, while the reverse is true of g lase, Agnian, air is a very bad conductor of heateven worse than glass-and its low conducting power aid very materially in the process of glass-blowing. These fact f the several manipulations we are about to describe
The chief instrument used in the blowing of bottles, as well s all other glass-blowing, except fancy glass ornáments and ys, to be described subsequently, is what is teechnically know as the "pipe." It is a wrought-iron tube, from four to fiv feet lifg with a small knob at one end and a wooden handle
at the other, terminating in a mouth-piece through which the air is forced ; the bore extending entirely through the instru ment. The end upon which the knob is fixed is used to col lect a mass of the fused glass, to be fashioned into a bottle With this simple instrument the workman approaches the glass, and rolling it around collects a ball of the material, and immediately withdrawing it, blows a slight blast through the tube which expands a small hollow in the mass. After the ball has cooled a little, he plunges it in a second time, thu accumulating more material, and repeats this process until sufficient material has been taken up. As soon as the ball is large enough it is brought into one ef the hollows of the marver have been excavated the hows being kept moiste ties have been excavated, the hollows being kept moistene with water. The mass is rotated in one or more of these cav-
ities while a gentle blast is forced through the tube to keep open the internal opening. After a little the plastic mass as sumes the form of a pear. This pear is now subjected, after reheating in the working hole to a complex manipulation It is elongated by the swinging of the pipe to-and-fro like a pendulum, the centrifugal force thus generated, stretching it out longitudinally and, at the same time, it is kept round by turning the tube on its major axis, and expanded by a strong er blast than heretofore. By these means combined the meta ing from the smaller end. As soon as this stage in the pro cess is reached, the vessel is inserted into the mold-a block of ironcontaining a cylindrical hole the size of the desired bottle-and expanded to fit it by a strong blast, at the same time its neck is elongated by a succession of jerks, the inertia pose. By this time the yet unfinished bottle is so cool pur a reheating is necessary. Thistime however, the bottom only is heated in order to give it the requisite concavity. As soon as it acquires enough plasticity, an assistant-usually a boywho has in the meantime attached a small mass of fused glass to a rod of iron called a "punty," places this instru
ment with its little ball of glass as near the center of the bot tom as possible and presses it inwards. As soon as the bottom becomes cool, the bottle is detached from the pipe by dropping a little cold water upon the neck as near the pipe as possible. This cracks it short off, and the bottle is now supported by the punty attacized to the bottom. The neck is now reheated and a thread of hot glass wound around it at it; the punty resting across the edge of a bench upon which the workman is seated, who, while rotating the bottle, applies an iron instrument to the yet plastic glass. A boy then siezes the punty and carrying the bottle to the annealing oven
detaches it by a quick jerk. This completes the work on an ordinary champagne bottle.
The process we have described is varied in some particular n making other kinds of bottles, for perfumers, druggists, etc. We have of ten heard people express wonder that letters panels, figures of animals and other ornaments could be blown in the sides of bottles, but it is the simplest thing im arisuble. The letters or other tics:grse are cut in the side of and so adjusted thar it can be oped or The molds for such work are also formed so that the top closes with the exception of an aperture for the neck. The glass having been blown into a pear-shaped ball of the right siz is placed in the mold and a sharp blast forces it into every
depression. At some future time we may describe the modes of making pressed glassware, and window glass.

Effects of improper diet.

The litulicitl for January contains an able and somewhat himorous review of a new work on health, by R. D. Mussey M. D., which, not without show of reason refers a vast numimproper dima will be read with interest by gourmands and Grahamites, as well as the intermediate grades of eaters who do not believe either in stuffing or starvation
Now it is triumphantly asserted, by those who do not know, feeder. Especially they insist upon the fact that his teeth and digestive apparatus show that he combines the capacities of the three classes of animals-the fruit, grass, and flesh eaters. He of food-which shows, they argue, that it was intended he
ass, and he can do it safely. But the doctording. Yet man fact and its conclusion. He quotes from Cuvier, who says that "the natural food of man isfruit, roots, and the succulent portion of vegetables. His weak jaws and small canine teeth would not allow him, in a state of nature, to live on herbage mine the food for man-first, the make of his teeth. second the make of his digestive apparatus; third, the eating habits of the kinds of animals nearest man. And he contends that hese three marks show that man was intended for a vegetable eater. First, the teeth. The fore ones in carnivorous ani mals always meet. In man they do not meet, but overlap, as in all fruit-eating creatures. Besides, they are not strong, as he side teeth are not long and with the fruit eaters. Second, rous, who thus can seize their prey; but are short, as with the fruit eaters. Third, the back teeth of man have the grinding motion which the fruit and grass eaters have, but which he fiesh eaters do not have. Then they meet squarely. But, those of the carnivorous overiap, so as to act as shears in cutting the flesh. Then they are not notched, as the carnivorous eating it. In fact, he remarks that all omniverous quadrupeds, ike the bear, the raccoon, the opossum, the hog, have no latral motion to their back teeth. But man, in common with the cow and fruit eaters, has this peculiarity. Second, the form of the digestive apparatus. This, with the grass eaters, is always ong and complex. With the flesh eaters, always short and between the two classes; as to as to length, it is intermediate Hesh eaters, not so complex as the grass eaters. But man has precisely the peculiarity here of the fruit eaters. His intestines are not short, like the flesh eaters; nor complex, like the grass eaters; but intermediate-showing, therefore, that he was meant to eat the grains and fruits. It is true, as the docor remarks, some cows and horses have been known to eat and elish oysters and fish. But this fact does not show an origi-
nal intention. But if a complex diet brings disease, as it al ways does to these animals, if the distillery-fed cow has her teeth diseased and crumbling, like those of the over-fed urchin, we must reason in the same way as to man. Third, the eating habits of the animals next to man. Now what animals are nost similar to him, in make, in teeth, in digestive apparatus? The gorilla, the ourang, the chimpanzee. Teeth and intes ines are similar. But these are all, with our other monkey riends, fruit eaters. Flesh is detrimental to their healith. Now
f all these facts o not show, as the doctor is inclined to think they do, that men and women are meant to be grain eaters $c x$. clusively, they certainly do show that we were not meant to be Falstaffs with unbounded stomachs. They do show that we were intended for simple food, like corn, or the apple or the pothe ; and that such food is compatible with high health. Λ s the rejoicing invalid said, "I mat will come from the feed of rye porrid the inspimeal that will come from the feed of rye porridge and oat geous lunch." They do show that our vast varicties of toca though produced by that glory of man, woman, are slightly Wemoniac in their origin and results.
We have hinted that often
We have hinted that often disease in its various forms could be traced to an unhappy digestion and the contents of the as to think it the only one. Now all know the weak saws that man will whine out whenhis lungs, nerves, or stomach, are in bad trim. "Oh! it is my poor constitution!" The foor constitution has to take.it. "Confound these lungs! they were never good for anything. I inherited bad nerves from my
cood mother." (Not a very shining compliment). But the octor would say, "Friend, your digestion may be at the botmof part of the trouble." Don't be too fast. And to show ng how diseases far off from the stomach can be reached that pampered center. We will give a few of the cases. A lady tacher. For two months in constant nausea, utterly prosrated. A good emetic made her digestive apparatus give up weeks before Presently got well which she had eaten six weeks before. Presently got well. A fat old gentloman.
Would have sharp cramps in his feet, and at times convulsions The doctor would instantly relieve him by a little medicine ad ministered to his sinning stomach. Dr. Wollaston, the English scientific man. Had once a Presently he threw up a large ice cream, and the pain departA woman blind for three and ahalf months. Slight doses
of guaiacum administered to the stomach brought back her ight in one week. A gentloman with terrific pains at the heart, an intermittent pulse, was sure his heart was discased. is doctor, in one arathe his stomach, found in it the all right. Then the common case of a cold. It is known that after eating there is always a secretion of mucus in the lungs and their tubes. And, with some not overhealthy, the secre-
tion is apt to be very large. A very fat fowl, therefore, will ften make a very foul throat. Cleanse the stomach, probably, of the cold will often and at once yield. Aith most acute, fierce pains from the aundice. Once, after a long cessation of pain, a single mouthful of her "pet ham" brought back the entire round of
troubles. The ham subdued, she became all right. A lady who entirely lost her voice of very costive habit. A sucessful tratment of the digestive orgilis (reached through the kidneys, which were also suggish), by a single dose of medi-
cine, brought back almost instantly her voice. A young child, cine, brought back amost instantly her voice. A young chid,
always ailing, weak, irritable, stupid, body covered with sores, with most voracious appetite. The greater the quantity of apples was commenced. Soon the passion, sturidity, voraciousness, sores, disappeared. A perfeci recovery. A person fear-
fully aftlicted with ulcers. No remedy. Cured through the stomach by a diet of bread and water. Asthma. A gentle-
manhad a severe form of it. Seven bad attacks in six months. mosed with morphine, etc. Cured perfectly by a spare bread-and-water diet, and in a short time. Dr. G regory suffered from an attack of palsy. Several light shocks. Was of full habit. vegetable diet, and in moderate quantities. Got well. Lived
thirty years to be ninety-three. A case of epilepsy of fourteen thirty years to be ninety-three. A case of epilepsy of fourteen
years' standing. Violent medicines given, including arsenic. years standing. Violent medicines given, including arsenic. ery perfect.
Now we
truth : that often, after raking heaven and earth to reduce a disease located tar away from the unsus. pected stomach, a proper treatment at that vital point will do he business. We could give many more such cases, for the Y Yankee does whittlings from a stick. But these are enough. causes where causes belons:
We concede that the teeth of man indi ate that the

